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S6K in geroconversion
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Markers of cellular senescence 
depend in part on the MTOR 

(mechanistic target of rapamycin) path-
way. MTOR participates in geroconver-
sion, a conversion from reversible cell 
cycle arrest to irreversible senescence. 
Recently we demonstrated that hyper-
induction of cyclin D1 during gerocon-
version was mostly dependent on MEK, 
whereas rapamycin only partially inhib-
ited cyclin D1 accumulation. Here we 
show that, while not affecting cyclin D1, 
siRNA for p70S6K partially prevented 
loss of RP (replicative/regenerative 
potential) during p21-induced cell cycle 
arrest. Similarly, an inhibitor of p70 S6 
kinase (PF-4708671) partially inhibited 
phosphorylation of S6 and preserved 
RP, while only marginally prevented 
cyclin D1 induction. Thus S6K and MEK 
play different roles in geroconversion.

Cell cycle arrest is not yet senescence.1 
To induce senescence in cell culture, cells 
first need to be arrested by different means 
such as telomere shortening, DNA dam-
age, cytotoxic stresses, as well as strong 
oncogenic stimulation (Ras and Raf), 
which induce cell cycle arrest by induc-
tion of CDK inhibitors such as p21 and 
p16.2-14 Importantly, cells become arrested 
in growth-promoting conditions (in the 
presence of serum, nutrients, and oxygen, 
which all activate MTOR, like in prolifer-
ating cells). At first, arrested cells are not 
senescent. Yet, still active MTOR initi-
ates the conversion to senescence, named 
gerogenic conversion or geroconversion.1 
Under the pressure of MTOR, cells 
acquire markers of senescence: hypertro-
phy (a large, flat cell morphology), cellular 
hyper-functions, including hyper secre-
tion of cytokines, hyper-elevated levels of 
cyclins D1 and E and loss of regenerative/

replicative potential (RP), i.e., the ability 
to resume proliferation when cell cycle is 
released (Fig. 1A). The process of gerocon-
version is a proper target for suppression 
of senescence without abrogating cell cycle 
arrest. Inhibition of MTOR by rapamy-
cin, p53, hypoxia, and MEK inhibitors 
suppresses geroconversion, preserving RP 
(Fig. 1B) and preventing other markers of 
senescence (in cell type-dependent man-
ner, in the case of hypoxia, p53, and MEK 
inhibitors).15-25 Recently, we demonstrated 
that MEK inhibitors completely prevented 
induction of cyclin D1, even when MTOR 
remained fully activated.26 In contrast, 
the effect of rapamycin on cyclin D1 was 
modest compared with the complete elim-
ination of cyclin D1 by MEK inhibition. 
The MTOR pathway was mostly respon-
sible for loss of RP and hypertrophy.26 
p70 S6 kinase 1 (S6K1) is a crucial sub-
strate of MTOR given that knockdown 
of S6K1 extends lifespan in mice.27 Here 
we compared consequences of inhibition 
of MEK26 with inhibition of S6K1, using 
RNAi technology (Fig. 2).

siRNA for S6K1 decreased level of 
phosphorylated p70S6K1 (Fig. 2A). Both 
siRNA for MEK1 and S6K1 decreased 
acidification of cell culture medium as 
evident by reddish color compared with 
yellow medium in control cells (Fig. 2B), 
reflecting inhibition of lactic acid produc-
tion.28 siRNA for MEK1 and S6K1 also 
decreased cell size, as was measured by 
the amount of protein per cell (Fig. 2B). 
This effect was especially prominent with 
siRNA for S6K1 (Fig. 2B). Finally, both 
siRNAs for MEK and S6K1 preserved 
RP in HT–p21 cells treated with IPTG 
(Fig. 2C).

We next used small-molecule kinase 
inhibitors (Fig. 3). As expected, both 
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Figure 1. How to measure geroconversion and gerosuppression. (A) Geroconversion (conversion 
from arrest to senescence). in proliferating cells, the MtOr pathway is active (especially in malig-
nant cells used as a model). when the cell cycle is arrested, MtOr drives geroconversion (during 
3–5 days in cell culture conditions). senescent cells cannot proliferate after abrogation of cell cycle 
arrest (release). as a particular example, cells expressing ectopic iPtG-inducible p21 can be arrested 
by addition of iPtG.57 when iPtG is removed, then the cells are released. (B) Gerosuppression. 
inhibition of the MtOr pathway suppresses geroconversion. Cells resume proliferation, when cell 
cycle is released. a number of colonies or cells may serve as a quantification of gerosuppression 
(determined by dividing a number of colonies [or cells] in (B) by respective numbers in panel (A). 
B/a = regenerative or replicative potential (rP).

Figure 2. Effects of sirNa for MEK and s6K1 on senescence. (A) Ht–p21cells transfected with sirNa 
for MEK1 or p70s6K1 or with lipofectamine alone were lysed 4 days after transfection and immu-
noblotted with the indicated antibodies. (B) Ht–p21 cells were transfected with sirNa for MEK1 or 
s6K1 or with lipofectamine alone (Mock). Next day cells were trypsinized and plated at low den-
sity. after 6 days in culture, wells were photographed for the color of the media, trypsinized, and 
counted, then lysed. Protein amount per cell was determined (shown as pg/cell). (C) regenerative/
replicative potential (rP). Ht–p21 cells, transfected with sirNa for MEK1 or s6K1 or with lipo-
fectamine alone (Mock), were split 4 days after transfection and treated with iPtG for 3 days. (Note: 
iPtG causes cell cycle arrest in Ht–p21 cells by inducing ectopic p2157). then iPtG was washed 
out, and colonies were grown for 10 days and stained with Crystal Violet. a number of colonies is 
presented as mean ± sD.

rapamycin and everolimus prevented 
loss of RP in HT–p21 cells (Fig. 3A). 
This potent gerossupressive effect can 

explain life-extending and anti-aging 
effects of rapamycin in diverse species,29 
including yeast,30 worm,31 flies,32-34 and 

mice.35-45 Treatment with inhibitors of S6K 
(PF-478671)46 and MEK (PD184352), 
especially at concentration 10 mM, pre-
served RP of IPTG-treated HT–p21 cells 
(Fig. 3A). These results were consistent 
with the effects of siRNAs for S6K1 and 
MEK (Fig. 2C). In addition, we tested 
inhibitors of several related pathways: 
p90/RSK (SL 0101-1 and BRD7389), 
phospholipase D2 or PLD2 (halopemide), 
and JNK (SP600125). PLD2 is known 
to activate the MTOR/S6K pathway.47-50 
P90/RSK was chosen as a target, because 
it phosphorylates S6 independently from 
the MTOR pathway. Lastly, JNK is 
involved in aging and age-related pathol-
ogy in Drosophila.51-54 However, effects of 
these inhibitors on gerosuppression were 
insignificant (data not shown).

In agreement with our recent work,28 
MEK inhibitors (PD184352 and U0126) 
eliminated cyclin D1, whereas effect 
of rapamycin on cyclin D1 accumula-
tion was incomplete, and cyclin D1 was 
still visible on the longer exposured blot 
(Fig. 3B). Inhibitor of S6K (PF478671) 
only slightly decreased levels of cyclin D1, 
indicating that effects of rapamycin on 
cyclin D1 accumulation may involve dif-
ferent pathways. In fact, it was shown 
that MTOR increases cyclin D1 through 
inactivation of 4EBP1.55,56 We also inves-
tigated 2 inhibitors of p90 RSK (SL 
0101-1 and BRD7389). These inhibitors 
did not affect MTOR pathway and just 
slightly decreased cyclin D1 (Fig. 3B). 
Compared with SL 0101–1, BRD7389 
exerted a stronger effect on cyclin D1, 
which could be due to its toxicity at con-
centration 10 mM. Halopemide affected 
neither phosphorylation of S6 nor cyclin 
D1 levels. Thus, we identified p70 S6K as 
a target for gerosuppression, yet an inhib-
itor of p70 S6K did not decrease cyclin 
D1 levels. In contrast, MEK inhibitor 
was extremely effective in prevention of 
cyclin D1 accumulation, confirming our 
conclusion that markers of senescence 
can be dissociated. At standard con-
centration of 10 mM, inhibitors of p90 
ribosomal S6 kinase or RSK (SL 0101-1 
and BRD7389), Jun N-terminal kinase 
(SP600125), and phospholipase D2 
(halopemide) failed to suppress gerocon-
version in this preliminary assessment. 
It is possible that, while ineffective as 
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single drugs in this cell line, SL 0101-1, 
and SP600125 might potentiate effects of 
other gerosupressants and be effective in 
drug combinations as a cocktail of inhib-
itors at low doses. Finally, the effects of 
gerosuppressants may be cell type-spe-
cific and detailed study is under way.
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