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Abstract
Theglial cell line–derivedneurotrophic factor (GDNF) family of ligands (GFLs) comprisingofGDNF, neurturin, artemin, and
persephin plays an important role in the development and maintenance of the central and peripheral nervous system,
renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported
by recent progress in the area, we examine their emerging role in endocrine-related and other non–hormone-dependent
solid neoplasms. The ability ofGFLs to elicit actions that resemble thoseperturbed in an oncogenic phenotype, alongside
mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
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Introduction
The glial cell line–derived neurotrophic factor (GDNF) family of
ligands (GFLs) is comprised of four structurally related factors:
GDNF, neurturin (NRTN), artemin (ARTN), and persephin
(PSPN) [1–3]. As their name suggests, these transforming growth
factor beta–like growth factors have traditionally been implicated in
the development and maintenance of central and peripheral neurons
[2,4] and consequently have generated therapeutic interest for
combating neurodegenerative diseases such as Parkinson's disease
[5]. Outside the nervous system, these factors mediate many other
processes such as renal morphogenesis in the kidney [6,7].
It is well known that tumors use growth factor pathways to progress

an oncogenic phenotype and consequently escape the typical
constraints of cellular growth. Growth factor pathways such as the
epidermal growth factor (EGF) pathway [8,9] and the vascular
endothelial growth factor (VEGF) pathway [10,11] have become the
basis for development of anticancer therapeutics. Several lines of
evidence suggests that the GFL/RET (rearranged during transfection)
receptor tyrosine kinase signaling pathway may also present further
potential targets for a multitude of cancers [12,13].
The purpose of this review is to provide a renewed perspective of

the emerging role of neurotrophic factors, specifically the GDNF
family, in neoplasm.
GFL Signaling
Each member of the GDNF family is expressed as a pre-pro-precursor
protein, which is proteolytically cleaved at a putative furin-like
cleavage site (RAAR) by yet unidentified enzymes to generate an
active form [14,15]. GFLs act as biologically active homodimers that
signal canonically through the transmembrane receptor RET. This is
facilitated by each GFL binding to a preferred glycosyl phos-
phatidylinositol (GPI)–linked GDNF family receptor α (GFRα)
co-receptor, e.g., GDNF predominantly binds to GFRα1, NRTN to
GFRα2, ARTN to GFRα3, and PSPN to GFRα4. However, this
ligand-specific binding to GFRα co-receptors at times is promiscuous
with a GFL ligand capable of interacting and functionally signaling

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neo.2017.10.010&domain=pdf
https://doi.org/


100 The GDNF Family: A Role in Cancer? Fielder et al. Neoplasia Vol. 20, No. 1, 2018
with one of other nonpreferred GFRα proteins. GDNF can also bind
to GFRα2, NRTN to GFRα1, and ARTN to GFRα1 [16,17]. In
neuronal populations, transforming growth factor beta is responsible
for recruiting GFRα1 to the plasma membrane to allow GDNF
activation [18–20]. The stoichiometry of GFL:GFRα:RET binding
interaction (as based on GDNF) is postulated to be one ligand
homodimer to two GFRαmolecules to two RET receptors, forming a
heterohexameric complex [21]. RET homodimerization and subse-
quent autophosphorylation activate downstream signal transduction.
Although not fully understood, all three components appear to be
requisite for downstream signaling, as mice with homozygous
deletions in either Ret or Gfra1 exhibit a similar phenotype to mutant
Gdnf −/−mice,which die shortly after birth due to kidney defects and a lack
of enteric innervation [3].However,GFRα-independent signaling has also
been observed. For example, heparan sulfate proteoglycan syndecan-3 can
serve as a co-receptor to transduce GFL signal to the RET with the
involvement of Src kinase activation [22].

The RET receptor tyrosine kinase has three functional regions: an
extracellular domain containing four cadherin-like domains (CLD1
to 4) followed by a cysteine-rich domain (CRD), a hydrophobic
transmembrane region and an intracellular dual tyrosine kinase
domain (TK1 and TK2) [23]. RET possesses several glycosylation
sites, resulting in a mature protein molecular weight of 170 kDa. RET
is present in at least three isoforms, RET51, RET43, and RET9,
which contain 51, 43, or 9 amino acids in their unique C-terminal
tails, respectively [23]. Isoforms RET9 and RET51 have distinctive
signaling properties. The internalization process of RET isoforms was
studied using total internal reflection fluorescence microscopy. The
RET51 was robustly internalized from the cell surface into endosomal
compartments upon the activation by GDNF, while RET9 was
considerably slow [24].

GFLs activate several signal transduction pathways, including
phosphatodylinositol-3-kinase (PI3K)/protein kinase B (AKT), RAS/
mitogen activated protein kinase (MAPK), phospholipase C gamma
(PLCγ), and c-Jun N-terminal kinase (JNK) pathways. These
pathways propagate the cellular effects of RET activation such as
cell survival, proliferation, differentiation, migration, branching
morphogenesis, chemotaxis, and potentially oncogenesis (Figure 1).

Four key tyrosine residues, Tyr905, Tyr1015, Tyr1062, and Tyr1096,
are responsible for initiating the downstream phosphorylation cascade
following RET autophosphorylation. Only the long isoform (RET51)
possesses Tyr1062 and Tyr1096 [25]. Tyr905, Tyr1015, and Tyr1096 are
binding sites for the adapter proteins GRB7/10, PLCγ, and GRB2,
respectively. Additionally, Tyr1062 can bind to at least five additional
families of docking proteins: Src homology 2 domain containing
(SHC), fibroblast growth factor receptor substrate 2 (FRS2), insulin
receptor substrate 1 or 2 (IRS1/2), the DOK (downstream of kinase)
family of proteins (DOK1/4/5/6), and Enigma [3,26–28]. Activation
of RET via GPI-linked GFRα takes place predominantly within
lipid rafts, while signaling outside lipid rafts is mediated by soluble
GFRα bound to extracellular GFL [29]. In addition to tyrosine
phosphorylation, RET phosphorylation can also occur at Ser696 in
response to increased cAMP levels, resulting in protein kinase A
(PKA) activation [30].

A recent development in GFL signaling has been the identification of
an essential interaction of heparan-sulfate proteo-glycosaminoglycans
(HSPGs), such as syndecans and glypicans, [31,32] withGFLs and their
receptors. An interaction between GDNF and HSPGs had always been
suspected since the discovery that ex vivo kidney development failed
under heparin-sulfate deprivation, in a similar fashion to GDNF or
GFRα1 deletion [33–36]. GDNF,NRTN, and ARTN, but not PSPN,
have been shown to bind to syndecan-3 [22]. Likewise, ARTN is also
known to bind heparin-sulfates [37]. GDNF promotes migration of
cortical neurons via interaction with syndecan-3 [22]. It was
demonstrated that the presence of heparin-sulfates is required for
GDNF activation of RET tyrosine kinase activation in a MDCK cell
line [31]. It was suggested that the low-affinity GDNF:GFRα1
interaction, identified by [21] in RET-deficient cells, is likely to be due
to heparan-sulfate binding. It has been found that HSPGs have a role in
facilitating RET activation, acting to increase the local GDNF
concentration through low-affinity binding in the vicinity of the
GFRα receptors [2], and providing a linking mechanism to activate Src
kinases and subsequently Met during RET-independent signaling [38].

Unlike other receptor tyrosine kinases, binding of different GFLs
to their cognate co-receptors GFRα does not appear to result in a
differential activation of downstream signal transduction pathways. In
fact, different GFLs actually induce coordinated phosphorylation of
the same four key RET tyrosine residues (Tyr905, Tyr1015, Tyr1062,
and Tyr1096) with similar kinetics and eliciting a similar signaling
pathway profile [39]. The Tyr1062 plays a key role in RET signaling
during development as revealed by mice with a silencing mutation at
Tyr1062 displaying a similar phenotype as Ret−/− null mutants
[40,41]. The RET Tyr1062 phosphotyrosine serves as a docking site
for multiple intracellular adaptor proteins, which are differentially
used by different GFL-GFRα complexes to regulate alternative
RET-stimulated cellular events [42]. Therefore, the binding
promiscuity of Tyr1062 may prove to be an avenue of further research
in this regard, with yet unidentified adaptor proteins serving as
distinct modifiers of biological activity. Furthermore, there is a
mounting body of evidence for RET-independent signaling
mechanisms.

RET-Independent Signaling
Recent questions have been raised as to how GFL molecules elicit

discrete functions. Adaptor proteins, GFL-GFRα-RET internaliza-
tion rates, and RET stimulation in trans (via soluble GFRα) can
partially explain this; however, RET-independent signaling mecha-
nisms hold more promise. It has been demonstrated that many tissues
express GDNF and GFRα1, but not RET, suggesting the presence of
RET-independent pathways [43]. In addition to the aforementioned
HSPG-dependent signaling, other mechanisms exist through which
GFL members can interact with other growth factor receptors such as
neural cell adhesion molecules (NCAMs) or integrins [44] (Figure 2).

In the absence of RET, GDNF is able to signal through lipid raft
associated Src family kinases (SFKs). Despite the report of the
co-immunoprecipitation of GFRα1 and Src [38], a direct interaction
is not plausible due to their positions on opposite sides of the lipid
bilayer [43]. Hence, the existence of a new transmembrane receptor
linking Src and GDNF:GFRα1 has been postulated [2,38]. A
potential candidate is the Met tyrosine kinase receptor, as Met
phosphorylation in cultured Ret-deficient epithelial and neuronal
cells is dependent on SFKs [45]. Additionally, there is an overlap
between GDNF:Ret and hepatocyte growth factor (HGF):Met
signaling pathways, resulting in similar cellular phenotypic conse-
quences [45]. This suggests an indirect GFRα1-Met association as
Met does not immunoprecipitate with GFRα1 [45].
The GDNF:GFRα1 complex is also able to bind to NCAM with

high affinity to activate SFKs and FAK [44]. NCAM may also be



Figure 1. Traditional RET-dependent signaling pathways of GFLs with physiological and oncogenic consequences. Upon binding of the
GFL dimer to its respective GFRα pair, the complex induces RET dimerization and consequently tyrosine kinase domain (TK)
autophosphorylation. A series of SH2 (Src Homology 2) domain adapter proteins (green) including FRS2 (fibroblast growth factor receptor
substrate 2), PLCγ (phospholipase C gamma), DOK (downstream of kinase) 4/5, GRB (growth factor receptor-bound protein) 7/10, IRS 1/2
(insulin receptor substrate 1 or 2), GRB2 (growth receptor binding protein 2), SHC (Src homology 2 domain containing), and Enigma binds
to their respective phosphorylated tyrosine residues, predominantly Tyr 905, Tyr1015, Tyr1062, or Tyr1096. The signaling cascade activates
downstream effector molecules (orange and black), resulting in functional responses such as differentiation, self-renewal, proliferation,
survival, apoptosis, and cell motility. When perturbed, these processes become the driving facets of oncogenesis. Arrows are not
restricted to only direct interactions.GFL, GDNF family ligand; TK, tyrosine kinase domain; TM, transmembrane domain; LR, lipid raft; P,
phosphorylated tyrosine residue; GFRα, GDNF family receptor alpha; PI3K, phosphatidylinositol 3 kinase; AKT, protein kinase B; IP3,
Inositol triphosphate; SOS, Son of Sevenless; MAPK, mitogen activate protein kinase; FAK, focal adhesion kinase; MMPs, matrix
metalloproteinases; cAMP, cyclic adenosine mono phosphate; PKA, protein kinase A; JNK, c-Jun N-terminal Kinase; CREB, cAMP
response element binding; NFкB, nuclear factor-kappa beta; IL-8, interleukin 8; GAB1, GRB2 associated binding protein 1; CSC, cancer
stem cell.
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responsible for facilitating the GFRα-Met interaction alluded to
above. GDNF signaling through NCAM is known to occur
independently of GFRα1 through direct interaction with the third
immunoglobulin domain of NCAM. However, the introduction of
GFRα1 results in a higher binding affinity to NCAM. In fact,
GFRα1 can also signal through NCAM in the absence of GDNF
[44,46]. NCAM is expressed in many human cancers including
mammary and small cell lung carcinoma, and NCAM expression in
biliary carcinoma correlates with perineural invasion [47–52]. In the
physiological context, GDNF utilizes NCAM signaling pathways to
promote axonal growth [44], and may play a role in regulating cell
adhesion and synaptic plasticity in the CNS [53]. The effects of
GDNF on survival and growth of midbrain dopaminergic neurons
can be suppressed by inhibitory anti-NCAM antibodies [54]. GFRα1
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Figure 2. Alternative signaling pathways of GFLs. In addition to the traditional GFL:GFRα:RET51 pathway, several other novel pathways
have been discovered to modulate GFL signaling [from left to right]. (a) Alternative RET isoforms, e.g., RET9 (ret proto-oncogene isoforms
c); (b) activated Src (v-src sarcoma viral oncogene homolog) signaling associated with lipid rafts (LR) by means of yet an unknown
transmembrane protein; (c) soluble GFRα responsible for RET activation outside lipid rafts; (d) GAS1 (growth arrest-specific 1), a recent
GFRα alternative receptor; (e) MET (met proto-oncogene); (f) NCAM (neural cell adhesion molecule); (g) integrins; and (h) HSPGs (heparan
sulfate proteoglycans) are essential for RET activity. TM, transmembrane domain; TK, tyrosine kinase domain; Fyn, p59fyn kinase; FAK,
focal adhesion kinase; GAB1, GRB2 associated binding protein 1;GRB2, growth receptor binding protein 2; PI3K, phosphatidylinositol 3
kinase; AKT, protein kinase B; JAK, Janus kinase; STAT, signal transducer and activator of transcription; SHC, Src homology 2 domain
containing.
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has two alternative splicing isoforms, GFRα1a and GFRα1b, which
differ by only five amino acids [55,56]. GFRα1b, not GFRα1a,
mediates GDNF-stimulated cell migration in C6 glioma cells through
GDNF-GFRα1b-NCAM-RhoA signaling pathway, which is inde-
pendent of RET [57].

The recently discovered growth arrest specific gene 1 (GAS1), a
protein structurally similar to the GFRα family of receptors, has been
shown to regulate RET signaling by binding and sequestering the
receptor tyrosine kinase to lipid rafts in the plasma membrane in a
similar fashion to the “classic” GFL receptors [58]. Like the GFRα
molecules, GAS1 is a GPI-linked protein and constitutively localized
in the lipid raft compartment of the plasma membrane. GAS1 is a
protein with pleiotropic functions depending on its spatiotemporal
expression in development. Such functions include growth inhibi-
tion, proliferation, and apoptosis [59]. GAS1 has also been shown to
be co-expressed with RET in various tissues [60,61]. As a co-receptor,
GAS1 modulates RET signaling in a ligand- and GFRα1-
independent fashion, specifically through the reduction of AKT
phosphorylation, and without affecting MAPK activation [58].
CD133, also known as AC133 or prominin-1, is a transmembrane
glycoprotein expressed on the surface of normal and cancer cells [62].
GDNF signaling can be regulated by CD133 in the absence of RET
in neuroblastoma. It was shown that CD133 repressed neuroblasto-
ma cell differentiation in part by downregulating RET transcription
[63]. In CD133-expressing cells, GDNF-induced neurite outgrowth
can be rescued by RET overexpression, whereas GDNF-induced
expression of neuronal cell differentiation markers cannot be
recovered by RET in CD133-expressing cells [63]. Therefore,
GDNF can also function in a RET-independent manner in
neuroblastoma cells.

The Physiological Role of GFLs

GDNF
GDNF was originally purified from a rat glial cell line (B49) [64]

and is widely expressed throughout the rat and mouse central and
peripheral nervous system, as well as the inner ear, corneal
keratinocytes, olfactory epithelium, skin, submandibular gland,
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bone, seminiferous tubules, cochlea, oocytes, kidney, teeth, gastro-
intestinal tract, and carotid body [65–67]. GDNF expression is
detected in mouse embryonic development during early stages of
neurogenesis between E7.5 and E10.5 [68]. During organogenesis,
GDNF is found primarily in the mesenchyme and its derived tissues,
specifically in tissues where epithelial-mesenchymal interaction
occurs, such as in the previously mentioned kidney, submandibular
gland, and tooth [66,67]. Similarly, in humans, GDNF is known to
be expressed in the nervous system (central and peripheral), retina,
kidney, lung [69], pituitary gland [70], skeletal muscle [71], testis,
and mammary gland [72].
GDNF was first identified as a promoter of survival and

morphological differentiation of rat embryonic midbrain dopaminergic
neurons [14]. This observation had dramatic implications for the
pursuit of a treatment for Parkinson's disease. But despite early success
during human clinical trials [73,74], treatment of patients with GDNF
by direct brain infusion failed to improve the symptoms [75].
Recently, it has been reported that GDNF's protection of

dopamine neurodegeneration is due to an inhibition of caspase-3
activation and suppression of endoplasmic reticulum stress–related
genes [76]. As a survival factor for motor neurons, GDNF is
significantly more potent (75-fold) than the neurotrophins
brain-derived neurotrophic factor (BDNF), ciliary neurotrophic
factor (CNTF), and cholinergic differentiation factor–leukemia
inhibitor factor (CDF-LIF); GDNF successfully rescued facial
motor neurons from atrophy after deprivation of other survival
factors following lesions [77]. Further evidence is provided from
studies on Gdnf and Gfra1 knockout mice, which experience a
substantial loss of motor neurons due to increased cell death
[33,35,78,79]. In these mice, enteric neurons, where GDNF
stimulates migration, proliferation, differentiation, and survival of
multipotent enteric precursor cells, fail to develop, and the mice die
soon after birth [33,34,80,81]. Interestingly, mice lacking other GFLs
or co-receptors are viable and fertile [2]. GDNF was shown to induce
regeneration of spinal motor neurons after injury [82]. It was
observed that GDNF is expressed by skeletal muscle and is localized at
the plasma membrane, predominantly near neuromuscular junctions,
providing a source of GDNF for nearby motor neurons [83].
Reports of a functional role for GDNF outside the nervous system

are accumulating. Most notable is a pivotal role that GDNF plays in
renal morphogenesis [7]. GDNF signaling from mesenchymal cells
around the ureteric bud tips is required for them to branch out. This
happens through the RET receptor kinase and GFRα1, which then
form the renal collecting duct system. It was conferred that the RET/
Etv4 signaling promotes directed cell movements in the ureteric bud
tips [84]. GDNF also plays a role in spermatogenesis [85,86]. Firstly,
GDNF is expressed by the nephrogenic mesenchyme in the
developing kidney, located in immediate proximity to the
RET-expressing tips of the ureteric bud. GFRα1 is localized to
both the mesenchyme and ureteric bud. This mesenchymal-epithelial
interaction induces the initial branching from the Wolffian duct,
continuing into morphogenesis of ureteric bud [87]. While
mesenchyme-derived GDNF expression is initially quite sparse across
the Wolffian duct, upon branching, RET and GDNF become more
concentrated around distal tips of the ureteric bud and periphery,
respectively. GDNF is essential for kidney development as Gdnf
knockout mice show defects in this respect and die soon after birth [34].
However, while GDNF is essential, it cannot promote development on
its own [88]. It does appear that RET-independent pathways are
utilized as RET-deficient mice exhibit metanephric development to
some degree [80]. Moreover, the PI3K/PTEN axis was identified as
being critical for chemotaxis and branching morphogenesis [89].

The enteric nervous system (ENS) develops following the
migration of neural crest cells (NCC). GDNF is an essential trophic
factor for the developing ENS, as knockout mice with deletions in
Gdnf or Gfrα1 lack enteric neurons [35]. Ret knockout mice lack
enteric neurons in the small and large intestines but do develop them
in the esophagus [90], although the density of neurons in this region
is significantly reduced [91]. Nedd4-related E3 ubiquitin ligase-2
(NEDL2) is pivotal in regulating ENS development and GDNF/Ret
signaling. The NEDL2-deficient mice die within 2 weeks after birth
and have a low body weight. These mice showed a progressive bowel
motility defect [92]. GDNF is chemoattractive to NCC, thereby
promoting their migration into the gastrointestinal tract [91,93].
Additionally, GDNF supports the survival, proliferation, and
differentiation of NCC [94–96].
GDNF is secreted by Sertoli cells, somatic cells of the seminiferous

tubule, and ensures the self-renewal of spermatogonial stem cells
(SSCs) and prevents terminal differentiation [85,86,97], predomi-
nantly acting in the perinatal period [98]. GDNF achieves this
through the inhibition of Notch signaling, halting differentiation, and
promoting the expansion of the stem cell pool [99], or via the Src
family kinase/PI3K/Akt pathway that leads to the upregulation of
both c- and N-Myc [100–104]. In addition to this crucial role in the
self-renewal and maintenance of SSCs, GDNF may also play a role in
the proliferation and differentiation of these cells into Apaired and
Aaligned spermatogonia via the GDNF-ERK1/2-FOS pathway [105].
Evidence of a role for GDNF in SSC cell fate has been established in
mouse Gdnf knockout models, which results in the depletion of the
SSC population [106]. Conversely, overexpression of GDNF results
in a larger, undifferentiated spermatogonia population, leading to the
shutdown of spermatogenesis and generation of a nonmetastatic,
seminoma-like tumor [106]. To complete this autocrine interaction,
both RET and GFRα1 are located on undifferentiated spermatogonia
and are routinely used as markers for spermatogonia isolation [86].
ARTN and NRTN also exhibit the capacity to regulate spermato-
gonial stem cell proliferation [107]. A study with double-mutant mice
model has showed that the NOTCH signaling is activated in the
Sertoli cells in vivo, and in vitro, the NOTCH ligand works through a
ligand called JAG1 [108]. However, a negative feedback regulation
was indicated in the testicular stem or progenitor cells. The activation
of NOTCH signaling in Sertoli cells upregulates the transcriptional
repressors HES1 and HEYL, which directly downregulate GDNF
expression by binding to the Gdnf promoter [108,109].

GDNF is also known to functionally interact with BMP4, a key
inhibitory protein of embryonic stem cell differentiation, to enhance
neuronal development during kidney development [110,111].
Further evidence of a role for GDNF:RET signaling in stem cell
differentiation and biology includes an involvement in the regulation
of hematopoietic cell differentiation [112] and the co-localization of
GDNF and GFRα1 with ABCG2 and p63, two known stem cell
markers within the human corneal epithelium [113]. It was suggested
that GDNF and GFRα1 may represent a phenotypic property that
identifies a population of stem-like precursor cells [113]. GDNF also
interacts with integrin β1 and was observed to be upregulated in
mammospheres, neurospheres, and hematopoietic and embryonic
stem cells [114]. GDNF is also capable of dimerizing with α6

integrin, an adhesion molecule required for cancer stem cell
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tumorigenicity [115]. Moreover, integrin β1 could form a complex
with GFRαl, which is enhanced by GDNF [116]. Furthermore,
cancer stem–like cells derived from medullary thyroid carcinoma
(MTC) on the basis of CD133 positivity have demonstrated a
dependence on RET for their self-renewal and differentiation [117].
Lastly, significant cross talk exists between the Notch and
RET:GFRα1 signaling pathways during nephrogenesis [118].

GDNF also functions in oocyte development [119,120],
follicular proliferation in ovaries [121], regulation of hair growth
[122], tooth innervation [123], corneal regeneration and wound
healing [113,124,125], immune homeostasis and response, and
psychoregulation including drug abuse [126]. A recent study
observed reduced levels of GDNF and ARTN mRNA in the
peripheral blood cells of patients with major depressive disorders
compared to those same individuals in a remissive state [127].
Furthermore, GDNF may promote angiogenesis through increasing
production of IL-8, a potent angiogenic factor, in SK-N-MC human
primitive neuroectodermal tumor cells [128]. Functionally, GDNF
is known to exhibit cross talk with the VEGF:VEGFR and
NGF:TrkA pathways [129,130]. GDNF is a key regulator of the
endothelial cell network formation. GDNF, by itself and in the
presence of adipose-derived stem cells, was associated with enhanced
capillary network formation [131].

GDNF expression and activity are regulated by a complex network
of factors and mechanisms ranging from epigenetic regulation in
peripheral blood cells [132] to regulation by a host of small molecule
drugs such as antidepressants [133–136], glucocorticoids [137,138],
and follicle-stimulating hormone [139]. This extends to the
neurotransmitters dopamine, serotonin, glutamate, and adenosine
[140,141]. Additionally, lipopolysaccharides and inflammatory
cytokines, such as IL-1β, IL-6, TNF-α, and TNF-β, regulate
GDNF in C6 glioma cells [142–145]. The regulation of GDNF
expression in the nervous system has been extensively reviewed [146].

While the neuroprotective effects of estrogens may be mediated by
neurotrophic factors [147], it appears that GDNF expression is not
estrogen regulated in certain tissues. Instead, GDNF signaling can be
significantly modulated by, or can participate in, cross talk with
estrogen. The estrogen receptor (ER) modulator tamoxifen had only a
limited effect on GDNF levels in C6 glioma cells [148], and Esr1
knockout mice demonstrated no alteration of GDNF expression
within the murine midbrain [149]. Paradoxically, 17β-estradiol
stimulates GDNF expression in developing mice hypothalamic
neurons [150]. This effect, however, appears to manifest itself
through nonclassical estrogen action since treatment with ER
antagonist ICI182,780 (fulvestrant) does not alter GDNF expression.
This nonclassical action is mediated by Ca2+ and cAMP/PKA
signaling [151]. Conversely, in mammary carcinoma, RET and
GFRα1 are highly regulated by estrogen, and significant cross talk
exists between the pathways (see below) [152–154]. Genomic
profiling of invasive melanoma found that GDNF was one of the
genes that were highly amplified in invasive cell lines as compared to
noninvasive ones, suggesting an important function in the melanoma
metastasis [155].

Signaling pathway, genome-wide chromatin binding, and tran-
scriptome analyses have demonstrated that SPIN1 has a direct impact
on the expression of GDNF, which activates RET pathway [156]. It
was shown that knockdown of SPIN1 in liposarcoma cells reduced
GDNF expression, which was activated in human liposarcoma tissues
as compared to normal tissues [156].
ARTN
ARTN, the most recently discovered member of the GFLs,

promotes the survival of peripheral ganglia and dopaminergic neurons
in vitro [157,158]. Through alternative splicing, human ARTN
mRNA possesses at least five functional transcript variants, which
encode three pre-pro-ARTN isoforms forming identical mature
proteins [15]. These splice variants appear to be differentially
expressed in different human tissues, with some tissues only
expressing nonfunctional variants, with the highest expression levels
of total variants observed in nonneural tissues [15]. According to the
National Center for Biotechnology Information UniGene database
and as reported by our laboratory, human ARTN is expressed in a
number of tissues, including esophagus, intestine, kidney, larynx,
lung, pancreas, parathyroid, placenta, prostate, uterus, colon, trachea,
cerebellum, adipose, cartilage, and stomach [159].

Artn and Gfra3 knockout mice are viable and fertile but exhibit
ptosis (a characteristic drooping of the eyelids) due to the lack of
sympathetic innervation to the superior tarsus muscle [160,161]. In
wild-type mice, GFRα3 is expressed in the ganglia of the peripheral
nervous system at a higher level than GFRα1 or GFRα2. In
particular, GFRα3-mediated signaling is required for the survival and
migration of superior cervical ganglion neurons (SCG), as Gfra3−/−

mice show gross postnatal SCG cell death and impaired rostral
migration of SCG neurons to target organs [160,162]. This impaired
migration most likely contributes to the death of neurons due to a
lack of target-derived growth factors such as nerve growth factor
(NGF). Despite expression in other sympathetic ganglia such as the
dorsal root ganglion, these ganglia appear to be normal in Gfra3−/−

mice. Specifically, a study using low-density dissociated cultures
demonstrated a role for ARTN in the embryonic generation and in
the survival and growth of sympathetic neurons, in fact promoting
survival to the same degree as NGF [160,162]. ARTN also appears to
have a transient effect on the survival of mature SCG neurons as they
lose their survival dependence on NGF with age, and concomitant
treatment of ARTN and NGF increases neurite growth to a greater
extent than NGF alone [162]. The source of this endogenous ARTN,
however, is unclear as an inhibitory anti-GFRα3 antibody did not
have any effect on mature sympathetic neurons cultured in the
absence of growth factors, indicating the lack of an autocrine loop
[160,162]. The parasympathetic ganglia normally innervate some of
the same targets as sympathetic ganglia. Mice do not appear to be
affected by Gfra3 deletion. Gdnf −/− mice have also been shown to
have subtle defects in the SCG, suggesting some degree of cross talk
between GDNF and GFRα3 [35]. Unlike Gdnf knockout mice,
Artn/Gfra3 knockout mice have normal ENS development
[160,161], and ARTN does not induce the migration or neurite
outgrowth of NCC [91]. ARTN complexed with GFRα3 is believed
to have a normalizing effect on the pathophysiology of mechanisms of
neuropathic pain [163]. In addition to GDNF and NRTN, ARTN
was also studied for its effects in the gastrointestinal tract. While
GDNF and NRTN promoted the migration of neurite outgrowth in
the esophagus, ARTN had no effect [91,164].

Immunohistochemistry studies in the normal human brainstem
and hippocampus have revealed a distinct temporospatial expression
pattern for each of the GFLs and GFRα subtypes at prenatal,
perinatal, and adult ages [165–169]. ARTN and its cognate receptor
GFRα3 consistently show a more restricted distribution compared to
the other GFLs and associated receptor subtypes [167,168]. In
particular, ARTN/GFRα3 localize to the caudal spinal trigeminal
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nucleus, which corroborates with the findings of other studies that
suggest a role for ARTN in nociception, touch, and thermal sensory
perception [170–172].
Expression of ARTN, GFRα3, and RET was detected in early

murine embryo cultures [173]. They established that endogenous
ARTN promoted embryonic development by increasing trophecto-
derm cells, decreasing blastocyst cell apoptosis, and ultimately
increasing the percentage of early embryos or zygotes progressing
into mature blastocysts [173]. Conversely, depletion of ARTN
suppressed embryo development. Similarly ARTN and RET, but not
GFRα3, were detected in early pregnancy oviducts, suggesting that
paracrine ARTN from the oviduct ampulla epithelium also facilitates
preimplanted embryo development. GDNF has also been reported to
exhibit a similar function [174].
ARTN also facilitates the development and maintenance of

vascular system innervation. The vascular and nervous systems have a
very close relationship, such that vascular-derived neurotrophic
factors have long been postulated to regulate vascular innervations
[175]. The vascular system largely exerts its effects on the neuronal
system by signaling to receptors located on postganglionic
sympathetic neurons to direct the innervation of the vasculature
[175]. In mice and rats, ARTN is secreted by arterial smooth muscle
cells and acts as a chemoattractant to developing axonal processes
from SCG at the final stages of innervation [161,176]. Likewise,
ARTN expression is present within smooth muscle cells of blood
vessels of normal human breast tissue and mammary carcinoma
[159]. Vascular-derived ARTN is also a determinant of neurite
outgrowth in adult rats [176]. It is alone in this regard, as GDNF-
and NRTN-deficient mice do not exhibit abnormal sympathetic
nervous systems, and PSPN does not act on the peripheral nervous
system [35,177,178]. ARTN-, RET-, and GFRα3-deficient mice
have grossly abnormal development of the sympathetic nervous
system [161,179].

PSPN and NRTN
PSPN has several unspliced (nonfunctional) and spliced (func-

tional) transcripts. The unspliced forms are detected in most human
tissues, while the spliced transcripts are only detectable at very low
levels in the human adrenal gland, cerebellum, spinal cord, and testis
[180]. PSPN specifically binds GFRα4, of which there are several
splice variants, one of which is a non–GPI-linked soluble form
[180,181]. In newborn and adult mice, the expression pattern of
these splice variants is restricted to the thyroid, adrenal medulla, and
the pituitary intermediate lobe, with RET co-expression occurring
only in the thyroid C-cells and adrenal chromaffin cells [182,183]. In
the adult human, expression of GFRα4 is restricted to the thyroid
gland, while RET was found to be widely expressed [180]. PSPN
knockdown in oral squamous cell carcinoma cells significantly
reduced cell proliferation, and overexpression of PSPN was closely
related to tumoral size [184].
NRTN is particularly important in the development, maintenance,

and function of the parasympathetic system, both centrally [168,185]
and peripherally [186–192]. Mice homozygous for NRTN or
GFRα2 (the co-receptor for NRTN) deletion show defects in
parasympathetic ganglia [177,178]. Additionally, a stem/progenitor
cell niche was identified within the pituitary (predominantly localized
at the marginal zone between the intermediate lobe and adenopitui-
tary) that is characterized by the expression of GFRα2, Prop-1
(Prophet of Pit-1), and several stem/progenitor cell markers. It has
been suggested that these nonendocrine cells are responsible for
maintaining postnatal pituitary homeostasis and expansion as they
exhibit the ability to differentiate into hormone-producing cells or
neuron-like cells [193].

GFLs in Cancers
As shown in Table 1, GFLs have been implicated in a variety of
cancers. In this section, the roles of individual GFL signaling in those
neoplasms will be discussed.

RET Germline Mutations and Neuroendocrine Tumors
Germline activating mutations of the RET proto-oncogene, which is

highly expressed by several cell lines of the neural crest lineage [194],
cause several forms of neuroendocrine cancer including multiple
endocrine neoplasia type 2A and 2B, familial medullary thyroid
carcinoma, papillary thyroid carcinoma, pheochromocytomas, and
neuroblastomas [195–197]. However, not all cases of MEN2 have
mutated RET. In addition, GFRα4 has also been proposed as a
modifying factor for this set of diseases, as it is only detected in MTC,
and no other thyroid tumors such as follicular thyroid adenomas,
follicular thyroid carcinomas, or papillary thyroid carcinomas [180].
Whether PSPN functions as the GFRα4/RET ligand in MTC is
unclear as its expression pattern is limited. MTC cells secrete calcitonin,
which is used as a marker of tumor burden. Exogenously applied PSPN
appears to regulate the expression of calcitonin in MTC, a process
mediated by the oncogenic forms of RET [198]. Alternatively, one
particular mutation in GFRα4 results in the formation of a truncated,
soluble form of the receptor, capable of activating RET independent of
its ligand PSPN [199]. However, use of calcitonin as a biomarker in
MTC may need to be reassessed in light of the evidence that treatment
with a RET inhibitor results in a dose-dependent reduction of calcitonin
levels, while tumor volumes remain the same [198].

In normal anterior and neoplastic pituitaries, GDNF and RET are
predominantly expressed in almost all somatotrophs but absent in
most of the other cell types (corticotrophs and gonadotrophs) in
normal pituitaries. Furthermore, GDNF was expressed in all growth
hormone–secreting pituitary adenomas and absent in almost all other
types of pituitary tumors [70]. These findings suggest a link between
the GDNF and growth hormone signaling pathways, although the
physiological significance has not yet been ascertained [70]. One role
may be the regulation of cell populations because RET was shown to
control the somatotroph population numbers through the p53
apoptotic pathway [200]. This is mediated by RET activating Pit-1, a
potent transcription factor that also binds and activates the human
growth hormone promoter [200,201]. However, upon the applica-
tion of GDNF, Pit-1 expression and apoptosis are suppressed [200].

In contrast, Hirschsprung disease is a congenital malformation
associated with aganglionosis of the gastrointestinal tract resulting
from inactivating mutations in RET [25]. These individuals tend to
lack certain parts of the enteric nervous system [197]. Polymorphisms
in the GFL genes do not appear to be a modifying factor in
Hirschsprung disease phenotypes [202]. Beyond these neuroendo-
crine disorders, GFLs have also been implicated in a series of other
cancers of epithelial origin particularly pancreatic, testicular, bile duct,
colon, glioma, mammary, endometrium, ovarian, and lung.

Pancreatic Cancer
GDNF is upregulated following acute induction of pancreatitis in

mice [203]. Pancreatic cancer tissues and pancreatic cancer cell lines



Table 1. GFL Signaling Involved in Cancers

Cancer Types GFL Signaling Involved Other Signaling Pathways Implicated

Neuroendocrine tumors RET mutations [195–197]; RET [200,201]; GDNF [70];
RET/GFRα4 [180]; PSPN (?) [198]

p53/Pit-1 [200,201]

Pancreatic cancer GDNF and RET/GFRα1 [203–207] PI3K/AKT and NFκB [213,214]; integrin β1 and MMP-9 [218,219,221,222]
ARTN and RET/GFRα3 [208–211,216,223] MMP-2 and E-cadherin [211]
NRTN and GFRα2 [225]

Glioma GDNF and RET [227,228]; GFRα1 [227,229] MAPK and JNK [227,228]; GAS1 [232,233]; PCDNA and Ki-67 [235]
NRTN and GFRα1/2 [231,234]

Colorectal cancer GDNF [237]; RET/GFRα1 [236] integrin β1 [236]; VEGF-VEGFR1, p38, PI3K/AKT, and HIF1α [237]
NRTN [238]

Breast cancer RET [255]; GDNF [249,250]; RET/GFRα1 [72] TNFα and IL-1 β [72]; ER and PR [241]; HER2 [250,252]; p44/42
(ERK1/2)/mTOR and JNK [152,154]; SRC [262]; PAX2 [263,264].

ARTN [153]; GFRα1 and GFRα3 [265] ER [153]; HER2 [159]; TWIST1 [256] [257]; BCL-2 [258]; VEGF-A [259]
Endometrial cancer ARTN and RET/GFRα3 [266] AKT and CD24 [267]
Lung cancer ARTN and RET/GFRα3 [268] BCL-2 [268]
Ovarian and testicular cancers GDNF/GFRα1 [120,273–276] NCAM/FYN [273]; ERK1/2 and AKT [275]
Melanoma GDNF and RET/GFRα1 [278–282] ERK1/2, c-JUN, MMP-9, c-Kit and p38 [278–280]
Oral cancer and salivary adenoid

cystic carcinoma
GDNF [283] NF-κB, MMP-9 and integrin β1 [283]
PSPN and RET [184] ERK and CDKs [184]

Prostate cancer GDNF, RET/GFRα1 [284,285] ERK and AKT [284]
Liver cancer ARTN [286] AKT/HIF1α [286]

GDNF [131]
Bone cancer GDNF [287,288] ERK [287,288]
Gastric cancer GFRα1 methylation [289]; GFRα3 methylation [290]
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express GDNF and the RET and GFRα1 receptors [204]. GDNF
promotes pancreatic cancer cell proliferation and invasion through
the GFRα-1/RET receptor complex in an autocrine/paracrine
manner [205,206]. Endoneurial macrophages are shown to secrete
high levels of GDNF, which activates RET and promotes perineural
invasion of pancreatic cancer [207]. ARTN may be involved in
chronic pancreatitis, a precursor disease to pancreatic cancer
characterized by progressive and irreparable damage to the organ,
severe fibrosis, and intense abdominal pain leading to functional
insufficiency [208,209]. ARTN is closely related to a normalizing
effect of neural pain. In chronic pancreatitis where there is increased
pain, ARTN and its co-receptor GFRα3 are upregulated [210].
ARTN, through GFRα3, was found to promote pancreatic cancer
cell motility and invasiveness in MIA PaCa-2 cell lines [211].

Both GDNF and ARTN are strongly expressed in the endocrine
cells and intrapancreatic nerves of normal pancreatic tissue, as well as
in pancreatic cancer tissue using immunohistochemical methods
[212]. Intrapancreatic neural invasion is correlated to GDNF
expression and is facilitated through the PI3K/AKT and nuclear
factor kappa B (NFκB) pathways [213,214]. GDNF and RET both
correlate with survival rate and clinical parameters in pancreatic
cancer [215–217]. GDNF enhances the expression of integrins in the
pancreas, specifically the β1 subunit [218,219], which combined with
GDNF-induced upregulation of matrix metalloproteinase-9
(MMP-9) production and activation facilitates metastasis
[212,218–222]. Another group found that both ARTN and its
receptor complex GFRα3/RET were both increased in expression in
cases of pancreatic cancer, with strong expression in both primary
cancer cells, in liver metastases, and in surrounding tissues (the
strongest of which was in hypertrophic nerves and arterial walls)
[216,223]. Most notably, ARTN appeared to increase cell migration
and invasion in pancreatic cancer cell lines in a similar manner to
GDNF but did not affect proliferation [223]. While ARTN did not
affect the expression either of MMP-2 or of MMP-9 mRNA in their
study [223], another study showed that ARTN treatment resulted in
an increase of MMP-2 and a decrease of E-cadherin expression [211].
Moreover, MMP-9 was found to mediate GDNF-stimulated invasion
of pancreatic cancer cells [221,222]. Therefore, the signal transduc-
tion pathways involved in ARTN-mediated migration/invasion need
to be investigated further. It is possible that the invasion of pancreatic
cancer cells into nerves results in injury and inflammation, which in
previous research have been shown to result in the upregulation of
GFLs in Schwann cells, in an effort to regenerate nerves; GFLs then
act in a paracrine/autocrine fashion to perpetuate further intravasation
by pancreatic cancer cells [210]. Additionally, certain RET
polymorphisms can increase the effect of GDNF-induced pancreatic
cell invasion [224].

Pancreatic cancer tissue and pancreatic cancer cells expressed
increased amounts of NRTN. NRTN promoted invasiveness and
silencing of NRTN reduced proliferation and invasion of pancreatic
cancer cells [225]. RET was also upregulated in pancreatic
adenocarcinoma, and GDNF depletion in perineurial macrophages,
or inhibition of RET with shRNA or a small-molecule inhibitor,
reduced perineurial invasion in a mouse model [226].

Glioma
GDNF expression is abundant in the highly invasive C6 rat glioma

cell line but is significantly lower in the noninvasive Hs683 human
glioma cell line, suggesting that an autocrine/paracrine mechanism
stimulates glioma cell migration [227]. GDNF induces glioma cell
migration via MAPK and JNK pathways [227,228]. RET and
GFRα1 are also reported to be highly expressed in glioma cells
[227,229]. GDNF appears to confer chemoresistance while promot-
ing mitogenesis in glioblastoma cell lines [230]. It was reported that
GDNF additionally permitted neuroblastoma cells to proliferate in
the presence of a range of cytotoxic chemotherapeutic agents [231].
GAS1 was shown to inhibit the growth of gliomas by blocking the
GDNF-RET signaling pathway [232,233].

There is a contentious role for NRTN and GDNF in
neuroblastomas. It was found that NRTN and GDNF potentiated
retinoic acid–induced differentiation in neuroblastoma [234]. This
effect was much more pronounced in nonaggressive tumors compared
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to aggressive ones. Conversely, GDNF and NRTN were found to
induce faster growth of neuroblastoma cell lines, conferring
protection against chemotherapeutic drug treatment [231]. GDNF
has also been shown to stimulate proliferation of glioma cells by
upregulating expression of cyclins PCDNA and Ki-67 [235].

Colorectal Cancer
Colorectal cancer cells express the RET/GFRα1 receptor complex

for GDNF, and their β1 integrin expression is also significantly
enhanced by GDNF, and consequently, the enhancement and
associated increase in adhesion and invasive abilities in response to
GDNF were inhibited by blocking the GDNF receptor or the
integrin β1 subunit [236]. GDNF is also shown to enhance the
migration of colon cancer cells by increasing VEGF-VEGFR
interaction, which is mainly regulated by the p38, PI3K/Akt, and
HIF1α signaling pathways [237]. In a case of intestinal ganglion
neuromatosis associated with colon adenocarcinoma, GDNF and
NRTN were found to be highly expressed in the adenocarcinoma
cells, while co-receptors GFRα1 and RET were expressed in
surrounding ganglion and glial cells [238].
Methylation may affect GDNF signaling in colorectal cancer.

GDNF locus in colonic mucosa of ulcerative colitis patients was found
highly methylated and the level of methylation was significantly
higher in active inflamed mucosa than in quiescent mucosa [207].
GDNF gene is among the 15 genes that have been differentially
methylated in colorectal cancer in comparison to adjacent normal
mucosas [239].
RET has been shown to be an oncogene in many cancers, but a

recent study has shown that RET is a potential tumor suppressor gene
in colorectal cancer [240]. RET locus was methylated in 27% of colon
adenomas and in 63% of colorectal cancers, resulting in a decrease in
RET expression, whereas the restoration of RET expression in
colorectal cancer cell lines caused apoptosis [240].

Breast Cancer
Increased expression of GFRα1 and RET transcripts is observed in

mammary carcinoma compared to normal breast tissue [72]. GFRα1
mRNA expression was detected in 59.4% of the tumor samples, and
was associated with ER receptor expression and lymphovascular
invasion/lymph node metastasis at diagnosis. GFRα1 mRNA
expression was inversely correlated with p53, EGFR, basal markers,
and basal-like tumors but positively correlated with luminal-type
tumors [72]. There are many other studies in the cancer microarray
database Oncomine that have identified a significant correlation of
GFRα1 and RET receptors with both estrogen and progesterone
receptor (PR) positive status [241]. Elevated GFRα1 levels in
mammary carcinoma have been reported in several studies
[242–244]. Of the 212 tumor samples surveyed, RET mRNA
expression was expressed in 29.7% of the tumors [245]. Of those,
only 18.1% co-expressed RET and GFRα1 compared with 41.9% of
the tumors being GFRα1 positive/ RET negative. This suggests that,
in mammary carcinoma, GDNF (or other GFL acting through
GFRα1) predominantly acts via a RET-independent signaling
mechanism.
We have observed similar correlations for GDNF in human normal

mammary tissue and mammary carcinoma in an analysis of data
extracted from the Oncomine database [159]. However, we did not
observe a repeatable correlation between GDNF expression and
grade, which had been previously demonstrated by other groups
[246–248]. Although additional studies have detected GDNF
upregulation in mammary carcinoma [249,250] and GDNF is
significantly linked to luminal/apocrine but not basal tumors [251],
there is still a lack of evidence that GDNF expression is significantly
correlation with disease and outcome. However, it is clear that
GDNF correlates consistently with HER2 positive status [250,252]
but not ER status [159,250,253].

It has been demonstrated that in MCF-7 cells (RET+/GFRα1+),
treatment with exogenous GDNF resulted in increased S-phase entry,
enhanced cell survival as measured by cell attachment after serum
starvation, and increased cell scattering [72]. GDNF treatment also
resulted in the loss of cortical actin organization and formation of
actin stress fibers [72]. In a wild-type MCF-7 xenograft mouse model,
the authors also detected strong GDNF-expressing, infiltrating
fibroblasts around the tumor and a low level of GDNF expression
by the tumor itself, with localization of GDNF on the invasive margin
of the tumor [72]. Untreated MCF-7 cells showed very little
endogenous GDNF mRNA, but treatment with inflammatory
cytokines TNFα and IL-1 β resulted in a substantial increase [72].
Together, these results suggest that mammary carcinoma cells not
only secrete GDNF in response to inducing cytokines, but also
respond to paracrine- and autocrine-derived GDNF sources.
Additionally, MCF-7 cells have been found to have robust expression
of both GFRα1 and RET proteins [72,159,254].

RET gene has previously been reported to contain an estrogen
response element located in its promoter region [255]. Both RET and
GFRα1 mRNA expressions were strongly increased following
estradiol treatment with similar kinetics to that of early response
genes such as the trefoil family factor TFF1 and c-Myc. It appears
that, rather than altering GDNF levels, estrogens contribute to an
enhanced level of GDNF signaling, albeit in a cell line–dependent
manner [152]. In fact, GDNF stimulates anchorage-independent
proliferation through RET, an effect mediated by p44/42 (ERK1/2)
MAPK and JNK [152].

ARTN expression is regulated by estrogen. Overexpression of
ARTN is associated with resistance to antiestrogen drugs like
tamoxifen in patients with ER-positive mammary carcinoma, and
inhibition of ARTN restores the tamoxifen sensitivity [153]. ARTN
is also expressed in ER-negative breast cancers. ARTN synergizes with
TWIST1 to promote metastasis and poor survival outcome in
patients with ER-negative tumors [256]. TWIST1 is a transcription
factor. High TWIST1 expression is associated with breast cancer
invasion and metastasis [257]. ARTN has also been reported to
s t imula te radio- and chemores i s tance by promot ing
TWIST1-BCL-2–dependent cancer stem cell–like behavior in
mammary carcinoma cells [258] and to promote de novo angiogenesis
in ER-negative mammary carcinoma through activation of
TWIST1-VEGF-A signaling [259]. Enhanced GDNF/RET signaling
in ER positive breast cancers promotes resistance to aromatase
inhibitors in postmenopausal patients with ER breast cancers [260].

The RET kinase inhibitor NVP-AST487, superior to the
aromatase inhibitor letrozole, inhibited the GDNF-induced motility
and tumor spheroid growth in ER-positive breast cancer cells
in vitro and demonstrated similar efficacy in impairing tumor
growth in vivo [261].

GDNF was able to neutralize trastuzumab-induced apoptosis in
HER2+ breast cancer cells in vitro and induce in vivo growth in
xenograft tumors [262]. Interestingly, the SRC kinase inhibitor
saracatinib effectively blocked GDNF-stimulated growth of
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trastuzumab-sensitive cells but did not inhibit GDNF-promoted
growth of trastuzumab-resistant cells, indicating that SRC mediates
GDNF prosurvival functions by bridging RET-HER2 cross talk in
trastuzumab-responsive breast cancer tumors, whereas GDNF is also
linked to trastuzumab resistance by acting independently from SRC
in trastuzumab-resistant tumors [262].

Therefore, targeting the GDNF- and ARTN-induced RET
signaling may be an effective way to overcome endocrine resistance
in ER-positive breast cancers [153,154,261] as well as trastuzumab
resistance in HER2-positive breast cancers [262].

A previous study demonstrated that PAX2 (paired box 2 gene), a
transcriptional activator, coordinated GDNF expression by binding
to the 5′UTR of exon 1 within the gene, driving kidney development
[263]. This is interesting not only because GDNF may be under
similar transcriptional control within the breast but also because
PAX2 has been implicated in mediation of tamoxifen resistance
through an interaction with ER and the HER2 promoter [264].

Unlike GDNF, ARTN appears to play more of an autocrine role
within mammary carcinomas. ARTN protein expression was detected
in 65% of human mammary carcinoma samples and correlated to
HER2 positivity and higher tumor stage, and increased ARTN
expression is linked to decreased overall survival of stage III and
HER2-negative patients [159].

Forced expression of ARTN in MCF-7 mammary carcinoma
cells increased cell survival, promoted anchorage-independent
growth and enhanced cell migration and invasion, and promoted
a more aggressive cellular morphology with formation of proliferative
and disorganized colonies in a three-dimensional basement mem-
brane culture model [159]. Like GDNF [152], ARTN had little
effect on anchorage-dependent proliferation under serum-replete
conditions but displayed a stimulatory effect under serum-depleted
conditions [159].

ARTN significantly increased the expression of the antiapoptotic
BCL-2 protein and several genes involved in invasion and metastasis,
such as SERPINE1, MMP1, and PLAU [159]. Forced expression of
ARTN significantly promoted tumor formation and tumor progres-
sion in vivo, with a greater than two-fold increase in size after 6 weeks
compared to control tumors [159]. Additionally, ARTN is correlated
with ER-positive status in mammary carcinoma, and its expression is
correlated with poorer distant metastasis-free survival [153]. ARTN
both increases ER transcriptional activity and function, as well as
mediates resistance to antiestrogen therapies. Resistance appears to be
driven by ARTN-induced BCL-2 expression [153]. Concordantly,
targeting of the RET receptor sensitizes mammary carcinoma cells to
antiestrogen therapies, and recurrent invasive tumors are twice as
likely to exhibit RET positivity following adjuvant tamoxifen
treatment [154]. GDNF stimulation of RET was also shown to
increase ERα phosphorylation and estrogen-independent activation
of ERα transcriptional activity by a mammalian target of rapamycin
(mTOR)–dependent mechanism [154]. We have demonstrated that
ARTN co-receptors GFRα1 and GFRα3, but not Syndecan-3, are
significantly upregulated in breast cancer and that their expression is
significantly associated with survival outcome of breast cancer
patients, especially in ER-negative or HER2-negative mammary
carcinoma [265].

It has been demonstrated that ARTN can induce epithelial to
epithelial-to-mesenchymal transition (EMT) in ER-negative mam-
mary carcinoma cells through the upregulation of TWIST1 [256].
In vivo, this resulted in enhanced local invasion and distant metastasis.
Interestingly, low expression of both ARTN and TWIST1 was
sufficient to predict 100% relapse-free and overall survival in patients
with ER-negative breast cancer [256]. On the other hand, high
expression of both ARTN and TWIST1 was correlated with a poor
survival.

Endometrial Cancer
ARTN exhibits similar oncogenic effects in endometrial carcinoma

to mammary carcinoma [266]. Expression of ARTN was significantly
associated with higher-grade tumors and myometrial invasion. ARTN
stimulated the in vitro proliferation and cell survival of RL95-2 and
AN3 cells, regulating such key genes as CDC25A, CDK2, Bcl2, p53,
Bad, Bax, and TERT. Furthermore, anchorage-independent growth
was enhanced, while ARTN overexpression also induced a
mesenchymal phenotype, which was correlated to deregulation of
vimentin, Met, MMP1, MMP9, PLAUR, SERPINE1, and SERPI-
NEB5. Mechanistically, AKT phosphorylation was indicated as
pivotal to the survival and invasive response demonstrated by ARTN.
In vivo, xenografts yielded almost two-fold larger tumors that were
poorly differentiated and significantly more invasive, infiltrating
surrounding supporting tissues. Enhanced proliferation and survival
were also evident in vivo. We have also demonstrated that ARTN
confers endometrial carcinoma chemoresistance through transcrip-
tional activation of CD24 [267]. Specifically, ARTN alleviates the
G2/M arrest initiated by doxorubicin and the apoptosis induced via
microtubule disruption by paclitaxel treatment. Additionally, ARTN
inhibition by functional antibody or small-interference RNA (siRNA)
delivery enhanced the efficacy of the respective chemotherapeutic
drug treatments [267]. Forced expression of ARTN in endometrial
carcinoma cells was shown to decrease sensitivity to chemodrugs
doxorubicin and paclitaxel, and ARTN-stimulated resistance can be
abrogated through inhibition of CD24 expression [266].

Lung Cancer
ARTN has also been implicated in non–small cell lung carcinoma

(NSCLC) [268]. ARTN, RET, and GFRα3 have been demonstrated
to be unregulated in primary neoplasms relative to their normal
counterparts, while high ARTN expression also correlated with lymph
node metastasis and increasing grade of NSCLC, according to an
examination of the Oncomine database [268]. Transcriptional
activation of BCL-2 by ARTN enhances in vitro survival in
monolayer and anchorage-independent conditions. Furthermore,
ARTN significantly enhanced invasive capability of H1299 and
H1975 NSCLC cell lines. The former, when injected into
immunodeficient mice, yielded 63% larger tumors at day 30
compared to control. Tumors exhibited increased S-phase entry
and reduced apoptotic levels. Conversely, these oncogenic effects
abated following siRNA or functional antibody inhibition. GDNF
and GFRα1 on the other hand lacked any significant correlation
between normal and cancerous lung tissue [268]. GFRα2 in the
majority of cases exhibited a downregulation in the neoplastic setting
(squamous cell carcinoma and adenocarcinoma) [268]. In terms of
RET mutations causing SCLC, several novel somatic RET mutations
were reported in squamous small cell lung carcinoma cell lines and
tumor samples [269]. However, another study was unable to detect
the same RET (or GDNF) mutations in 54 SCLC cell lines [270].
Moreover, there was no consistent pattern for RET, GDNF, or
GFRα1 expression in 21 SCLC cell lines assayed [270]. Therefore,
RET mutations may not be an important step in the tumorigenesis of
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SCLC. Nevertheless, RET fusion genes occur at a rate of
approximately 1% (84/6899) in NSCLC patients, and female
patients (or those less than 60 years old of age) usually have higher
frequencies than male patients (or those aged 60 years and older),
particularly in patients from Asian [271]. For example, RET fusion
genes occur at 1.9% (3 of 156) of NSCLC patients in Koreans [272].

Ovarian and Testicular Cancers
GDNF and GFRα1 are localized to follicles at various stages of

development, being actively secreted by oocytes and acting in an
autocrine/paracrine fashion [120]. GDNF has also been implicated in
ovarian tumorigenesis, being influenced by androgens [273,274].
Interestingly, the expression of GDNF in the ovary is distinct to that
in the testes, where it is the somatic Sertoli cells which express
GDNF. Testicular tumors develop regularly in older
GDNF-overexpressing mice [275], and GDNF promotes invasive
behavior in testicular seminoma cells [276]. Because spermatocytic
seminoma cells share many phenotypic markers with SSCs, whose
self-renewal is triggered by GDNF, it is possible that GDNF
contributes to spermatocytic seminoma by promoting the formation
of SSCs [277].

Melanoma
Activated RET signaling is found to be correlated with the

development of malignant melanoma in a mouse model [278–280].
Several human melanoma cell lines express RET and GFRα1, and
GDNF stimulation significantly enhances the proliferation of human
melanoma cells [281,282]. The expression level of intrinsic Ret,
Gdnf, and Gfrα1 transcripts in malignant melanomas from
RET-transgenic mice was significantly upregulated compared with
those in benign melanocytic tumors, and GDNF treatment activated
RET via phosphorylated Tyr905 in human malignant melanoma cells
[282]. Therefore, GDNF-mediated RET kinase activation is
associated with the pathogenesis of malignant melanoma.

Oral cancer and salivary adenoid cystic carcinoma
PSPN mRNA and protein were significantly upregulated in oral

squamous cell carcinoma (OSCC)–derived cells compared with
human normal oral keratinocytes. Pspn knockdown significantly
decreased cell proliferation and reduced receptor tyrosine kinase
signaling and cell cycle arrest at the G1 phase. Primary OSCCs have
significantly higher PSPN protein expression than normal counter-
parts, and overexpression of PSPN is closely related to tumoral size,
suggesting that PSPN is a regulator of OSCC progression and may be
a diagnostic marker for OSCC [184].
GDNF protein was strongly expressed in salivary adenoid cystic

carcinoma and adjacent nerve fibers and positively correlated to the
expression of NF-κB, MMP-9, and integrin β1 [283]. This
observation suggests that GDNF may increase the matrix degrading
and cell adhesion in the process of perineural invasion of salivary
adenoid cystic carcinoma.

Prostate Cancer
A recent study found that RET was expressed in all prostate cancer

cell lines tested, but GFRα1 was only expressed in 22Rv1 cells; as a
result, 22Rv1 cells responded to exogenous GDNF, while all cell lines
responded to combined GDNF and GFRα1 treatment [284]. RET
knockdown inhibits tumor growth in vivo, and mechanically, RET
activates ERK or AKT signaling to promote transformation-associated
phenotypes, including perineural invasion via activation of p70S6
kinase [284]. Immunohistochemical analysis of tumor tissues revealed
that GDNF expression was significantly stronger in higher-stage
prostate tumors [285].

Our group has unpublished evidence examining the role of ARTN
in prostate carcinoma. Immunohistochemistry indicated a significant
increase in the expression of ARTN in 50 cases of human prostate
carcinoma in comparison to 23 cases of human benign prostate
hyperplasia. ARTN does not appear to regulate cell proliferation or
survival, as ARTN overexpression, knockdown by siRNA, and
inhibitory antibody treatment had negligible effects (unpublished
observations). This was also the case for chemotherapeutic resistance
to doxorubicin and paclitaxel. However, ARTN overexpression
increased the metastatic potential of cells, registering significant
changes in monolayer and 3D Matrigel culture cell morphology,
lamellipodia formation, cell migration and invasion, and characteristic
deregulation of mRNA species involved in EMT (unpublished
observations). ARTN also promoted anchorage-independent growth,
an effect that is inexplicably not abrogated by ARTN inhibitory
antibody or chemodrugs.

Liver Cancer
ARTN has been shown to be a hypoxia-responsive factor essential

for hypoxia-induced expansion of cancer stem cells in hepatocellular
carcinoma (HCC). In addition, increased ARTN expression was
associated with larger tumor size and worse clinical outcome of HCC
patients. Similar to the role of ATRN in breast cancer, forced ARTN
expression reduced apoptosis; increased proliferation; and enhanced
EMT and motility, tumorsphere formation, and the tumor-initiating
capacity of HCC cells. ARTN was also shown to dramatically
increased xenograft tumor size and metastasis in vivo [286]. GDNF is
secreted by adipose-derived stem cells and HCC and contributes to
pathological neovascularization [131]. Therefore, targeting ARTN
and GDNF signaling may be an effective approach to treating HCC.

Bone Cancer
Metastasis of any cancers to the bone causes the bone cancer pain

in cancer patients. GDNF was shown to be involved in bone cancer
pain in an animal model. Lentivirus-mediated GDNF RNAi
significantly attenuated mechanical and thermal hyperalgesia and
downregulated the ratio of pERK/ERK, where its activation is crucial
for pain signaling [287,288]. Therefore, it is possible to target GDNF
signaling as a therapeutic treatment for bone cancer pain.

Gastric Cancer
Genome-wide DNA methylation profiling of metastatic and

nonmetastatic gastric carcinomas and their surgical margins has identified
thatGFRA1 gene is 1 of the 15 genes that were significantly differentially
methylated in gastric carcinoma compared with the surgical margins, and
methylation changes ofGFRA1, together with SRF andZNF382, may be
potential biomarkers for gastric carcinoma metastasis prediction [289].
Similarly, GFRA3 promoter region was shown to be markedly
hypermethylated in almost all gastric tumors [290].

Concluding Remarks
The GDNF family represents a group of four structurally related
ligands that have traditionally taken up developmental roles within
the neuronal system. However, more recently, they have been
ascribed additional developmental and maintenance functions within
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extraneuronal tissues, including the kidney, testis, eyes, ovary,
hematopoietic system, vascular system, pituitary, and endometri-
um. Owing to their ability to regulate numerous physiological
actions in these tissues such as cell survival, motility, and
proliferation, their deregulation has always been suspected to
yield oncogenic effects. Central to this has been their indirect
implication in neuroendocrine tumors, and from the aforemen-
tioned studies, this has been recently expanded to include cancers
of epithelial origin in endocrine-responsive tissues—most notably
breast, endometrial, and pancreatic cancers. Here we have reviewed
GFL biology and discussed the evidence and rationale behind
whether components of the GFL signaling complex, particularly
the ligands themselves, present novel opportunities for therapeutic
intervention in cancer.

Taken together, the literature suggests that GFLs have a very
complex and tissue-dependent role in both homeostatic physiology
and oncogenesis. Indicative of this is the multitude of heterogeneous
phenotypes and mechanisms that cell populations can exhibit with
respect to combinations of GFLs and GFRαs: both membrane-bound
and -soluble forms, RET, nontraditional receptors (HSPG, NCAM,
integrins, Met), GFL paracrine versus autocrine actions, and GFL
extracellular concentration and release. This inherent complexity
ensures that challenges remain and highlights the importance of
further research that links in vitro biology with clinical significance.

All GFLs have a pronounced role in early development and postnatal
repair. Oncogenesis sees their reactivation and/or deregulation of
homeostatic levels. With respect to GDNF, it appears that it functions
primarily in a paracrine nature whether it is from the surrounding
microenvironment—more specifically, support or stromal cells (adipose,
fibroblasts, immune, epithelial ,and muscle)—or the neuronal architec-
ture supporting the tissue. Endogenously sourced GDNF seems to act in
a supporting role as opposed to being a key driver of nonneuronal
function. The lack of clinical and primary tumor correlation is indicative
of this. Conversely, ARTN exhibits a predominantly autocrine role
within tumors of various origins. Currently, there is a lack of sufficient
data to attribute an oncogenic role to NRTN and PSPN.
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