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ABSTRACT: In the construction of QSAR models for the prediction of molecular
activity, feature selection is a common task aimed at improving the results and
understanding of the problem. The selection of features allows elimination of
irrelevant and redundant features, reduces the effect of dimensionality problems, and
improves the generalization and interpretability of the models. In many feature
selection applications, such as those based on ensembles of feature selectors, it is
necessary to combine different selection processes. In this work, we evaluate the
application of a new feature selection approach to the prediction of molecular activity,
based on the construction of an undirected graph to combine base feature selectors.
The experimental results demonstrate the efficiency of the graph-based method in
terms of the classification performance, reduction, and redundancy compared to the standard voting method. The graph-based
method can be extended to different feature selection algorithms and applied to other cheminformatics problems.

1. INTRODUCTION

In the construction of quantitative structure−activity relation-
ship (QSAR) models based on classification or regression
techniques, the preprocessing step is a fundamental compo-
nent to avoid the use of data that yield an identical effect, no
effect, or even a deceptive effect.1 Feature selection is one of
the most common tasks used in this preprocessing step. The
selection of an optimal set of features from which a model can
achieve maximum performance is a nondeterministic poly-
nomial problem (NP).
The objective of feature selection is to eliminate, as much as

possible, the amount of irrelevant and/or redundant features to
improve the performance of the prediction algorithms,
reducing the negative effects related to high dimensionality,
accelerating the learning process, and improving the general-
ization and interpretability of models. Feature selection
methods can rank individual features according to their
importance (ranking methods) or evaluate complete sets of
features to select an optimal subset (feature subset selection
methods). This paper is only concerned with the latter.
From a taxonomic point of view, feature selection methods

are traditionally divided into four categories: (i) filter methods,
(ii) wrapper methods, (iii) embedded methods, and (iv)
hybrid methods.2 Filters methods select the features regardless
of the algorithm used in building the model. A large number of
filter methods have been described in the literature, and among
the most used are the following: information gain,3 gain ratio,4

minimum redundancy, maximum relevance,5 Chi-square,4 fast
correlation-based filter,6 correlation-based feature selection,4

Fisher score,7 fast clustering-based feature selection (FAST),8

and Relief or ReliefF.9

Wrappers methods choose the optimal subset of features for
evaluating the performance of the modeling algorithm as if it
were a black box. Wrappers require a higher computational
cost compared to the filter methods. Furthermore, the subsets
of features are biased toward the modeling algorithm used in
the evaluation. For this reason, the use of independent
validation samples is necessary for the reliable estimation of the
error.
Embedded methods integrate the selection of features within

the modeling algorithm, either as part of the predictive/
descriptive method or as an extended functionality, and thus,
the selection of features is accomplished during the execution
of the modeling algorithm.
Hybrid methods combine the advantages of filter and

wrapper methods. Usually these methods initially apply a filter
method to reduce the number of features, obtaining in many
cases several possible subsets. A wrapper method is then used
to obtain the best subset of features.
Previous literature on the construction of QSAR models

shows that the most used feature selection methods are the
following: chi-square (CS),10,11 gain ratio (GR),12,13 informa-
tion gain (IG),14,15 unbalanced correlation score (UCS),7

mutual information (MI),16,17 standard correlation score
(Fisher score, FS),18,19 F-score (FS) base ranking,20−22
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Shannon entropy (SE),23,24 recursive feature elimination
(RFE),25−28 and the fast clustering-based feature selection
algorithm (FAST).29

Ensemble approaches, based on bagging and/or boosting,
have been proposed for feature selection.30 These methods
have two configurable components: the boosting scheme and
the base feature selection algorithm to be used. Ensembles of
feature selectors are constructed by repeatedly applying feature
selection algorithms and then combining their results.
Ensembles of feature selectors focused on overcoming class
imbalance problems have also been proposed.31

In the construction of feature selection ensembles, the
combination of the results of the different base selectors is
crucial.32 The set of methods for combining feature subset
selectors is usually limited to take into account the result of
applying each feature selector by storing in a vector the
number of times that each feature was selected; this vector is
used to obtain the final selection. The most straightforward
methods are the intersection or union of feature sets. However,
both of them produce poor performance. The intersection
often returns very small sets and thus results in poor
performance. The union generally achieves better performance,
but with the drawback of almost negligible reduction. A more
efficient solution is to use a vote threshold to obtain sets of
features based on the classification performance30 or subject to
a data complexity measure.33

The main drawback of these three approaches is that they
disregard relationships between features considered by the
individual application of the feature selection. To solve this
problem, in this work, we use an approach34 based on a graph
where the nodes represent the features and the links represent
the features co-occurrence in the same use of the algorithm,
rather than storing the repeated application of different
selectors of features as a vote vector. In this way, the method

considers how many times a feature was selected and also
considers the sets of features that are selected together each
time the algorithm is used.
The rest of this work has been organized as follows: Section

2 describes the data set characteristics and molecular
representation, the graph-based feature selection method, and
the experimental setup. Section 3 describes the experimental
results, and finally, Section 4 provides a summary of the
conclusions of this work.

2. MATERIAL AND METHODS
In this section, we discuss the methodology used in this work,
the data set, and the algorithms used.

2.1. Data Set Characteristics and Molecular Repre-
sentation. In our study, the data were collected from different
sources to yield a total of 24 data sets previously used for the
construction of binary prediction models for different
molecular targets. Each molecule in the data sets was
represented using GSFrag,35,36 which considers 1138 molec-
ular fragments (247 GSFrag + 891 GSFragl), with the
fragments consisting of one or more disconnected compo-
nents. Each component considers, among other factors, paths
of length n, cycles on m vertices, or paths (cycles) with a
number of attached chains of unit length.
In the construction of QSAR models, the diversities of the

data sets play fundamental roles for the generalization of the
models. Thus, models built from small or homogeneous
compound sets offer poor generalization capacity.37−39

Recently Gonzaĺez-Medina et al.40 proposed a new approach
to study the diversity of molecular databases from different
perspectives, including fingerprint-based diversity and the
diversity of physicochemical properties. In our work, we have
studied the diversity of the data sets from four perspectives: (i)
fingerprint-based diversity, (ii) diversity of physicochemical

Table 1. Data Set Characteristics

Data
set

No.
molecules Class − Class +

CV
(ALogPS)

CV
(MW)

CV (FpSim)/
Avg (FpSim) Description ref

DS1 432 155 277 0.430 0.187 0.295/0.408 Inhibitors of factor Xa of the benzamidine
Family

43

DS2 311 242 69 0.351 0.205 0.299/0.528 Inhibitors of c-Jun N-terminal Kinase-3 38
DS3 534 337 197 2.058 0.486 0.227/0.363 Plasmodium falciparum growth inhibitor assay 44
DS4 780 409 371 0.659 0.405 0.269/0.390 Molecules set versus Mycobacterium tuberculosis 45
DS5 1510 820 690 0.295 0.233 0.234/0.424 Inhibitors of human β secretase 1 46, 47
DS6 1880 639 1241 0.494 0.283 0.235/0.366 P-glycoprotein inhibitors 48
DS7 483 241 242 0.740 0.474 0.259/0.383 P-glycoprotein substrates 48
DS8 567 260 307 0.658 0.390 0.232/0.382 Chembench: 313_MDR1 49
DS9 426 201 225 0.489 0.386 0.304/0.405 Chembench: 322-MRP1i10 49
DS10 122 61 61 1.805 0.363 0.288/0.402 Chembench: 342_MRP4x 49
DS11 70 35 35 0.774 0.273 0.312/0.397 Chembench: 412_NTCPx 49
DS12 82 41 41 2.691 0.405 0.216/0.384 Chembench: 422_OCT1x 49
DS13 292 139 153 1.701 0.392 0.261/0.431 Chembench: 24_PEPT1x 49
DS14 1219 610 609 0.679 0.350 0.212/0.361 Chembench: 151305_ebola_1224cpds_PCM4 49
DS15 171 64 107 0.273 0.163 0.345/0.498 Chembench: ack1 49
DS16 289 146 143 0.473 0.234 0.255/0.370 Chembench: BetaLactamase_Dataset_Vini 49
DS17 3823 1951 1872 0.256 0.181 0.214/0.374 Chembench: D2_improved_eugene 49
DS18 320 182 138 0.331 0.194 0.361/0.385 Chembench: IE_M1_Descriptors 49
DS19 369 278 91 0.970 0.628 0.375/0.310 Chembench: Ld50_impress_JRC 49
DS20 1919 864 1055 0.331 0.179 0.242/0.401 Chembench: IE_5-HT6_Descriptors 49
DS21 1290 154 1136 0.798 0.476 0.310/0.337 Estimation of aqueous solubility 50, 51
DS22 806 433 373 0.589 0.318 0.211/0.365 Human Ether-a-̀go-go-Related Gene 51
DS23 4054 2362 1692 0.327 0.213 0.199/0.356 Pubchem BioAssay: AID 2044 51
DS24 19737 19562 175 0.350 0.233 0.201/0.356 Malaria (Plasmodium falciparum) 51
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properties, (iii) minority class ratio diversity, and (iv) data set
size diversity (number of compounds in the data set). To
evaluate the fingerprint-based diversity (FpSim), we used the
Tanimoto similarity index calculated from the topological
fingerprint (Morgan/Circular Fingerprints, radius = 2)41 for all
pairs of molecules in each of the data sets. The diversity of
physicochemical properties was calculated using two proper-
ties: the octanol/water partition coefficient (ALogPS) and
molecular weight (MW). Fingerprint and physicochemical
properties were calculated with the RDKit library.42

Table 1 summarizes the characteristics of the data sets. The
information shown in the table includes a unique identifier for
each data set, the number of total molecules, the number of
active/inactive elements (positive/negative class), the coef-
ficient of variations for ALogPS, MW, and FpSim, and a
description of the molecular pathway end point. The
coefficient of variation (CV) was defined as follows:

σ
μ

=
| |

CV(Me)
(1)

with σ being the standard deviation, μ the mean, and Me the
parameter under study (ALogPS, MW, FpSim).
In the Supporting Information, Figure S1a and b shows the

distribution of physicochemical properties ALogPS and MW in
each data set, while Figure S1c shows the cumulative
distribution function using the pairwise similarity values of
the compounds in each data set, where both representations
exhibit the diversity of the data sets used. The similarity
cumulative distribution function using the pairwise Tanimoto
similarity with the Morgan fingerprint shows pariwise similarity
values lower than 0.5 in 80% of the cases, highlighting the
structural diversity of the molecules. Moreover, CV (FpSim)
(Table 1) shows values equal to or less than 0.3 for a large
majority of the data sets, indicating that the mean of the
pairwise fingerprint (Avg (FpSim)) is representative of the
data set. Considering the 24 data sets, the values of Avg
(FpSim) range from 0.31 to 0.53, which confirms the structural
diversity mentioned above.
In terms of molecular properties, the CV (ALogPS) and CV

(MW) values show greater diversity in terms of ALogPS

compared to MW. Moreover, the selected data sets present a
wide range in terms of the number of compounds, with the
minimum size of 70 and a maximum size of 19,737. The
balance between the classes (active/inactive) also presents
great diversity, with the percentage of minority classes within
the range from 50% (perfectly balanced) to 0.8% (highly
unbalanced).
Figure 1 shows a more comprehensive multifactorial

representation of data set diversity, which simultaneously
represents the diversity of chemical data sets by fingerprint (x
axis), physicochemical properties (y axis), minority class ratio
(color), and data set size (mark size).

2.2. Graph-Based Feature Selection Method. The
feature selection ensemble approach used in this paper is based
on boosting.30 In every feature selection boosting step, the
selection is usually recorded by casting a vote for each selected
feature. These votes are weighted when the corresponding
boosting algorithm uses weighted classifiers as members of the
ensemble. Once the Tr rounds are finished, a vector of votes is
obtained that records how many times every feature has been
selected, and a final selection is determined using that vector.30

This approach does not take into account the relationship
among the features.
The algorithm utilized in this work uses a different approach

based on an undirected graph in the ensemble construction.34

The first step of the algorithm consists of the construction of
an undirected graph that allows storing the results of each
feature selection process. For this, the nodes of the graph are
used to store the features, and the edges represent the
concurrent selection of the two features in the same
application of the algorithm. In the second step, this graph is
used to select a group of features from the selection, which is
performed for every step of the ensemble construction process.
Figure 2 shows the graph-based feature selection algorithm.

The first step stores the feature selection results using an
undirected graph G(V, E), representing the vertices V = (1, 2,
..., M), the features Φ = ϕ1, ϕ2, ...ϕM, and the links representing
the selection of the two features simultaneously. For simplicity,
we consider that the vertex i coincides with the feature ϕi and

Figure 1. Multifactorial data set diversity representation: fingerprint (x axis), physicochemical properties (y axis), minority class ratio (color), and
data set size (mark size).
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is assigned the value vi. Moreover, a member (i, j) of the set E
corresponds to a link between i and j with an e(i, j) value.
Once a feature selection method is applied in the ensemble

construction (FAST method8 in this work), the vertices
corresponding to the selected features and the edges linking

these vertices are increased by one. If the boosting method is
used for feature selection,30,52 the votes used for the tth
member of the ensemble can be weighted by a value αt; in this
way, the value is increased by αt instead of increasing by one.
Finally, the vertex values in the created graph reflect how many

Figure 2. Graph-based feature selection algorithm.
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times each feature was selected and the link values how many
times two features were selected together.
The method is based on the assumption that the features

that represent the nonredundant information are those that are
most frequently selected together and not those that rarely
occur. The second step of the algorithm uses the created graph
to select a set of features; for this purpose, it is necessary to
establish two thresholds: the first for the vertices (τϕ) and the
second for the edges (τϵ). Using these thresholds, it is possible
to select a set of features Φ′(τϕ, τϵ) by applying different
strategies.
To select a subset of Φ′(τϕ, τϵ) features, these two terms

were evaluated using reduction, r(Φ′(τϕ, τϵ)), and the
performance in classification, measured by Cohen’s κ value,
κ(Φ′(τϕ, τϵ)). Thus, considering m selected features from allM
features set, the reduction was measured as = −r 1 m

M
, and

both metrics were combined using the following equation

τ τ τ τ κ τ τΦ′ = Φ′ · Φ′ϕ ϕ ϕϵ ϵ ϵJ r( ( , )) ( ( , )) ( ( , )) (2)

The highest performance, J, is chosen by evaluating all
possible vertex and edge threshold pairs. As possible
thresholds, all the different values for vertices and edges or a
fixed number can be considered, and in this case, the values
can be divided into equal subintervals. Once the values for a
pair (τϕ, τϵ) have been set, the feature selection process
proceeds in the following way: initially, for the vertex vi with a
value greater than or equal to τϕ, the features ϕi are selected.
Then, for every pair of selected features (ϕi, ϕj), if the
corresponding edge, e(i, j), is below the edge threshold, e(i, j)
< τϵ, feature ϕi is removed if vi < vj or feature ϕj is removed
otherwise. With a vertex threshold of 0, the method includes
the particular case of a standard voting scheme in which all
voting combinations are considered.
Using this first strategy, two variants of the algorithms are

considered: (i) the mT variant, where τϕ = 0 and τϵ ≠ 0, and
(ii) the MmT variant, where τϕ ≠ 0 and τϵ ≠ 0. These two
methods are shown in the left-hand side of the algorithm
shown in Figure 2.
The second strategy of the algorithm (right-hand side in step

2 of the algorithm, Figure 2) is based on forming a chain of
features using the following procedure. First, the feature
corresponding to the vertex with the largest value is selected.
Then, for these vertex edges, the largest value above the given
threshold τϵ is chosen, and the corresponding feature is added
to the set of selected features. In this way, this feature becomes
the new starting point, and the process ends when all of the
edges above the threshold from the current last member of the
chain are linked to already-selected vertices. In this second
strategy, two variants were also considered: mTC, for τϕ = 0
and τϵ ≠ 0, and MmTC, for τϕ ≠ 0 and τϵ ≠ 0.
2.3. Experimental Setup. The experiments were

performed following the protocol shown in Figure S2 of the
Supporting Information. Each data set was divided randomly
into two disjoint sets: one to build the model and the other to
perform the external validation. Thus, following a repeated
double cross-validation procedure,53,54 five external validation
rounds (external loop in Figure S2) were completed. The
feature selection process was conducted using the subset of
molecules that were used to build the model.
The graph-based method was evaluated with three different

well-known classifiers, a decision tree (DT), a support vector
machine (SVM), and a random forest (RF). To set the

hyperparameters of the classifiers in the model’s construction
(inner loop in Figure S2), we used a 10-fold internal cross-
validation process.
For each classifier, we identified the best hyperparameter

values from a set of possible values. For RF, we used a size of
100 trees and the Gini impurity criterion to measure the
quality of a split. The nodes were expanded until all leaves
were pure or until all leaves contained less than two samples,
and bootstrap samples were used for building the trees. For
SVMs, three parameters were set: the kernel type, the C value,
and for the Gaussian kernel, the γ value. Thus, we tested a
linear kernel with C ∈ {0.1, 1, 10} and a Gaussian kernel with
C ∈ {0.1, 1, 10} and γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}. All
21 possible combinations were evaluated. For decision trees,
we used 1 and 10 trials with the option of softening the
thresholds and tested all four possible combinations.
The performance achieved by a classifier was measured using

the geometric mean (G-Mean) of sensitivity and specificity,55

defined as

‐ =
+

×
+N

G Mean
TP

TP
TN

TN FP (3)

where TP, TN, FP, and FN are the true positives, true
negatives, false positives, and false negatives, respectively. The
use of this metric is recommended for both balanced and
unbalanced data sets because it takes into account the uneven
distribution of class instances.
The reduction capacity for feature selection methods can be

defined as follows

= −r m M1 / (4)

where m is the number of selected features, and M denotes the
total number of features.
Redundancy was evaluated using two different metrics: one

based on mutual information and the second based on the
correlation.56 Mutual information can be defined as follows

∑=I X Y P x y
P x y

P x P y
( , ) ( , )log

( , )
( ) ( )x y

XY
XY

X Y, (5)

where X and Y depict feature vector and class vector,
respectively, and P(·) represents probability.
Consider S to be a vector of a given set of features and h a

class variable. The redundancy based on mutual information
(MI) was measured as

∑=
| | ∈S

I X YMI
1

( , )
X Y S

2
, (6)

where |S| is the number of features in S.
Redundancy based on correlation (AcRed) was evaluated by

replacing mutual information with a correlation coefficient.56

For this purpose, the mean (meanC) of the correlation
coefficient was calculated. Thus, AcRed was defined as follows

= { }f fAcRed mean abs(Cor( , ))i j (7)

where f i, f j ∈ S∀i, j = 1, 2, ..., m, and Cor() is a correlation
coefficient function and abs() an absolute value function.
To guarantee a rigorous comparison between the graph-

based feature selection method and the standard method, it is
necessary to use specially designed statistical tests to evaluate
multiple algorithms on multiple data sets. To do this, it is first
necessary to know whether there is a significant difference
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Figure 3. Four metrics results (a) and the moment diagrams (b−e) representing the differences (G-Mean) of the proposals against the base
method (T) for the DT classifier.
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Figure 4. Four metrics results (a) and the moment diagrams (b−e) representing the differences (G-Mean) of the proposals against the base
method (T)) for the RF classifier.
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Figure 5. Four metrics results (a) and the moment diagrams (b−e) representing the differences (G-Mean) of the proposals against the base
method (T) for the SVM classifier.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c01578
J. Chem. Inf. Model. 2022, 62, 1618−1632

1625

https://pubs.acs.org/doi/10.1021/acs.jcim.1c01578?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01578?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01578?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01578?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01578?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


among the methods. The Iman−Davenport test is recom-
mended to determine the existence of these statistical
differences. It is based on the χF

2 Friedman test, which
compares the average ranks (R) of k algorithms for N data sets,
but it is more powerful.57

After applying the Iman−Davenport test, it is necessary to
apply some of the general procedures for controlling the
family-wise error in multiple testing. The Holm test57 is
designed to compare in a stepwise manner the algorithm with
the best performance in terms of Friedman ranges with the rest
of the methods under study. The statistical test for comparing
the ith and jth methods is defined as follows

=
−

+
z

R R

k k N( 1)/6
i j

(8)

Using the normal distribution table, the values of z were
used to find the corresponding probability. Step-down
procedures sequentially test the hypotheses in order of their
significance; the ordered p values were denoted by p1, p2...,
such that p1 ≤ p2... ≤ pk−1. The Holm method compares each
pi with α/(k − 1). The step-down procedure starts with the
most significant p value. If p1 is below α/(k − 1), the
corresponding hypothesis is rejected, and we compare p2 with
α/(k − 1). If the second hypothesis is rejected, the test
proceeds to the third and so on. When a null hypothesis

cannot be rejected, all remaining hypotheses are retained as
well. For all tests, we used a significance level α = 0.05.
To compare multiple algorithms, we used the Nemenyi58

test. This test considers the performances of two algorithms to
be significantly different if the corresponding average Fried-
man’s ranks differ by at least the critical difference. The critical
difference (CD) for N data sets and k algorithms was
formulated as follows57,58

= +
αq

k k
N

CD
( 1)

6 (9)

3. EXPERIMENTAL RESULTS
In order to assess the effectiveness of the proposed feature
selection approach in the construction of binary QSAR models
for molecular activity prediction, we performed different
experiments with the three classifiers mentioned above with
respect to 24 data sets with different molecular activities. As
stated, the algorithm supports the use of different feature
selection methods. We used fast clustering-based feature
selection (FAST) in the tests.8 The standard voting AdaBoost
method (T) was used as a reference to make the comparisons.
The experimental results are included in Tables S1−S3 of the
Supporting Information.
In this section, we present a graphical representation

(Figures 3−5) of the results for ease of presentation and

Table 2. Performance (G-Mean) Statistical Tests Resultsa

aThe best method according to the Holm test is indicated by the thumbs up hand symbol.
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discussion. These figures include two types of representation:
the first (panel (a) in Figures 3−5) represents the average
values of four metrics G-Mean (y axis), AcRed (x axis), MI
(color), and R (mark size), while the second (panels (b)−(e)
in Figures 3−5) represents the performance of two metrics (G-
Mean, AcRed) for each data set.59 To construct this 2D
representation, the value of each axis represents the difference
of the graph-based methods (MmT, MmTC, mT, mTC) with
respect to the base method (T) for the same data set. In this
way, the arrows pointing downward-left represent the data sets
for which the base T algorithm outperformed our graph-based
method for G-Mean and was worse in terms of AcRed, the
arrows pointing upward-left indicate that our graph-based
method improved the G-Mean and AcRed. The arrows
pointing upward-right show data sets for which our graph-
based method improved the G-Mean but had an inferior
AcRed, and arrows pointing downward-right show the data sets
for which the base T algorithm outperformed our graph-based
method with respect to both G-Mean and AcRed. In the
figures, the values of the differences are represented as
percentages.
Figure 3 shows the results for the DT classifier. The results

in terms of G-Mean (Figure 3a) showed a better performance
for the graph-based methods compared to the base method T.
This better behavior in terms of G-Mean was also shown by
the number of data sets for which the use of some of the graph-
based methods outperformed T. For example, with the
application of MmT (Figure 3b), G-Mean was improved in
17 of the 24 data sets evaluated. MmTC (Figure 3c) improved
it in 19 of them. mT (Figure 3d) improved it in 20 of them,
and mTC (Figure 3e) improved it in 21 of them.
Regarding redundancy, the mean values obtained for MI and

AcRed also showed better results (lower values) for the graph-
based method compared to the base method (x axis and color
scale values in Figure 3a). According to the distribution of the
differences for each data set in terms of AcRed, the best result
was obtained with the application of the methods MmTC, mT,
and mTC, where 16 of the 24 data sets obtained better results
compared to the base method T. Moreover, for reduction (R),
the results were very similar for all of the methods.
Figure 4 shows the results for the RF classifier. The overall

performance for RF in terms of G-Mean was better than that
using DTs. Higher average values were obtained, and the
advantage of using the graph-based methods with respect to
the base method T was retained. In terms of redundancy (MI,
AcRed), values very similar to those achieved by DT were
obtained, with better performance for graph-based methods
regarding T. For RF, the distribution by data set achieved the
best results for the mT and mTC methods, which have
surpassed the T method by 20 data sets in terms of G-Mean
and by 18 data sets in terms of AcRed.
For the SVM classifier (Figure 5), although the values of G-

Mean were lower than RF, they showed similar global behavior
to those obtained by both DT and RF, showing that the G-
Mean had a better performance with the use of MmT, MmTC,
mT, and mTC compared to the application of T. The values of
R, MI, and AcRed also behaved in a similar way to the results
presented for the DT and RF classifiers, observing a decrease
in redundancy (MI, AcRed) when the MmT, MmTC, mT, and
mTC methods were applied.
Although the results presented so far show the benefits of

using the graph-based method compared to the standard
method, to obtain conclusive results, the benefits must be

validated by means of statistical tests. First, we tested global
significant differences using Iman−Davenport. If this test
rejected the null hypothesis, we used the Holm procedure to
compare the best method with the rest of the methods and
then the Nemenyi test to perform a global comparison of all
the methods.
Tables 2 and 3 show the results of these statistical tests, and

Figures 6 and 7 show a graphical representation of these results

in order to facilitate comparisons.57 Holm graphs show the
best of the algorithms on the y axis and use a bar graph to
represent the p values and a line graph to represent the
thresholds. The Nemenyi graphs connect with a horizontal line
the groups of algorithms that were not significantly different
and show the critical difference in the upper left corner of the
graph.
As shown in Table 2 and Figure 6 for the performance of

classifiers in terms of G-Mean, the result obtained for the
Iman−Davenport test was very close to zero, demonstrating
the existence of a significant difference between the evaluated
methods. Moreover, as shown in Figure 6, for all classifiers, the
methods selected as the best by Holm test showed significant
differences with respect to the base method (T), with no
significant differences shown with respect to the rest of the
compared methods. The methods selected as the best were the
following: mTC for DT, mT for RF, and MmTC for SVM.
The Nemenyi test confirmed these results, with the base

method (T) performing worst for all classifiers. However a
different behavior was observed for DT as the differences were
not significant between MmT and T, indicating significant
differences of mTC and MmTC with T. RF showed significant
differences for all of the methods with respect to T, and SVM

Table 3. Reduction and Redundancy Statistical Tests
Results for RFa

aThe best method according to the Holm test is indicated by the
thumbs up hand symbol.
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did not achieve significant differences among all the compared
methods.
As shown in Table 3 and Figure 7, in terms of reduction (R),

the results of the Iman−Davenport test showed significant
differences. For redundancy, a significant difference was
obtained for AcRed but not for MI.
The best method in terms of Friedman’s ranks for R and MI

was the mTC method, and the best in terms of AcRed was mT.
In all cases, the base method T produces the worst results, with
a significant difference (below the threshold) in terms of R and
AcRed.
The results of the Nemenyi test confirmed the worst results

obtained by T in terms of R, MI, and AcRed. Moreover, in
terms of R, the results did not show a significant difference
between the T and MmT methods, with the best performances
observed for the mTC and MmTC methods with significant
differences compared to T. In terms of AcRed, the best
performance was obtained for the mT method, with significant
differences with respect to T, and in terms of MI, the results
did not show a significant difference.
Finally, the experiments were extended evaluating their

application to the prediction of toxicity. For this purpose, the
benchmark proposed in the Tox21 project60−62 was used.

Figures 8 and 9 show the results of the Nemenyi test in terms
of performance and of reduction and redundancy, respectively.
The experimental results are included in Tables S5−S9 of the
Supporting Information.
In terms of G-Mean (Figure 8), the best results for the DT

and RF classifiers were observed for the MmTC, MmT, and
mT methods, obtaining significant differences for these
methods with respect to the base method T. For the case of
the SVM classifier, the best results were obtained for MmTC
and MmT methods, with significant differences with the base
method T.
As Figure 9 shows, in terms of reduction (R), the proposals

outperform the base method. In terms of redundancy, the
proposals outperform the base method in terms of MI and
AcRed. The best results were obtained for the MmT and mT
methods.

4. CONCLUSIONS

In this work, we evaluated the application to the prediction of
molecular activity of a new feature selection approach, based
on the construction of an undirected graph to combine the
base application selectors to different features sets. In contrast
to the standard voting approach, the method not only

Figure 6. Performance statistical test results representation in terms of G-Mean.
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considers the frequency which with a feature is selected but
also the relationship with other features. Compared with the
use of the standard voting method (T), the experimental

results for different scenarios that include the DT, RF, and
SVM classifiers showed the advantages of the graph-based
methods mTC, MmTC, mT, and MmT in terms of classifier

Figure 7. Reduction and redundancy statistical test results representation.

Figure 8. Performance Nemenyi test results for TOX-21 benchmark in terms of G-Mean.
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performance. Among the graph-based methods, the mTC
method showed a better overall performance. One of the main
advantages of the graph-based method is that any standard
feature selection algorithm can be applied, thus opening new
lines of research. Furthermore, the same idea could be adapted
to the instance selection problem or the joint selection of
features and instances for the construction of QSAR models.
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