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Abstract

Sensitization is defined as a process whereby repeated intermittent exposure to a given stimulus results in an enhanced 
response at subsequent exposures. Next to robust findings of an increased dopamine synthesis capacity in schizophrenia, 
empirical data and neuroimaging studies support the notion that the mesolimbic dopamine system of patients with 
schizophrenia is more reactive compared with healthy controls. These studies led to the conceptualization of schizophrenia 
as a state of endogenous sensitization, as stronger behavioral response and increased dopamine release after amphetamine 
administration or exposure to stress have been observed in patients with schizophrenia. These findings have also been 
integrated into the neurodevelopmental model of the disorder, which assumes that vulnerable neuronal circuits undergo 
progressive changes during puberty and young adulthood that lead to manifest psychosis. Rodent and human studies have 
made an attempt to identify the exact mechanisms of sensitization of the dopaminergic system and its association with 
psychosis. Doing so, several epigenetic and molecular alterations associated with dopamine release, neuroplasticity, and 
cellular energy metabolism have been discovered. Future research aims at targeting these key proteins associated with 
sensitization in schizophrenia to enhance the knowledge of the pathophysiology of the illness and pave the way for an 
improved treatment or even prevention of this severe psychiatric disorder.
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Significance Statement
Sensitization denotes a neuro-behavioral process where repeated exposure to a stimulus leads to a progressive enhancement 
in the response to this stimulus. The underlying neurobiological processes are essential for reinforcement learning in animals 
and humans. However, sensitization occurs also with many drugs of abuse. The neurotransmitter dopamine plays a key role in 
mediating the amplification of neuronal and behavioural responses to environmental stimuli and drugs of abuse. Amphetamines 
increase the release of dopamine in the brain, a mechanism that is essential for inducing addictive behaviour. However, release 
of dopamine also induces psychotic symptoms in patients with schizophrenia. Patients with schizophrenia are particularly sen-
sitive to amphetamines even if they have never before consumed the drug. Thus, schizophrenia is believed to be associated with 
a state of ‘natural sensitization’ towards amphetamines. This review highlights the importance of understanding sensitization 
for better understanding and treating schizophrenia.
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Introduction
The Concept of Sensitization

Sensitization denotes a nonassociative learning process in 
which repeated exposure to a stimulus leads to a progressive 
amplification in the behavioral and neurochemical response. In 
a pharmacological context, sensitization is defined as an ampli-
fied response to a constant dose of a substance after repeated 
administration. Sensitization has been described for most drugs 
of abuse associated with addictive behavior, including ampheta-
mines, cocaine, opiates, nicotine, Δ9-tetrahydrocannabinol, and 
alcohol. Sensitization is, so to say, the opposite of the more 
familiar concept of drug tolerance, the diminishing effect of 
a drug resulting from repeated administration. Sensitization 
is thus often referred to as reverse tolerance (see Figure 1). In 
animals, sensitization to cocaine or d-amphetamine typically 
presents as an increase in locomotor responses or stereotypies 
(Robinson and Becker, 1986). Humans sensitized with low-dose 
amphetamine report an increase in alertness, euphoria, or focus 
after amphetamine administration (Strakowski et al., 2001; 
Boileau et al., 2006).

A common mechanism of action of substances also serving 
as drugs of abuse is that they elicit a direct or indirect increase 
in brain extracellular dopamine levels immediately after drug 
administration. A  release of dopamine is also a central ele-
ment in the neurochemistry of behavioral learning (Keiflin and 
Janak, 2015), as dopamine release and specific patterns of activ-
ity in dopaminergic neurons are detected during conditioned 
(or Pavlovian) learning paradigms. In conditioned learning 
paradigms, a previously neutral environmental cue (the condi-
tioned stimulus) is repeatedly presented in close temporal and 
spatial proximity to a primary or unconditioned stimulus such 
as food, sex, or an aversive pain stimulus. An animal’s learning 
rate in conditioning paradigms can be influenced by manipu-
lating brain dopamine transmission: Higher levels of extracel-
lular dopamine are associated with an increased response to 
the conditioned stimulus (better “learning”), and lower levels 
are associated with a decreased conditioned response. The 
connection between dopamine release induced by drugs of 
abuse and conditioned (or “cue”) learning is found across spe-
cies using a broad variety of research methods, and it forms 

something like the core of the dopamine theory of addic-
tion. As outlined later in this manuscript, there is substantial 
evidence that sensitization to psychostimulants is associ-
ated with a progressive increase in the amount of dopamine 
released in response to a given dose of the drug. As reflected 
in the term “drug learning” sometimes used when referring to 
psychostimulant sensitization, release of brain dopamine is a 
neurochemical mechanism common to learning and sensitiza-
tion to psychostimulant drugs.

Amphetamines

Amphetamines constitute a group of chemically related 
synthetic derivatives of phenethylamine, a so-called trace 
amine that is naturally produced in catecholaminergic neu-
rons by decarboxylation of the essential amino acid pheny-
lalanine (Sitte and Freissmuth, 2015). Amphetamine itself is 
a synthetic compound first synthesized in 1887 (Edeleano, 
1887) and is not known to occur naturally in any animals or 
plants. The main somatic effects of amphetamine include 
an increase in the activity of the sympathetic nervous sys-
tem leading to mydriasis, bronchodilatation, and increased 
blood pressure and heart rate. The main psychophysiologi-
cal effects are an increase in attention and vigilance, slight 
euphoria, increased drive, and an improvement in psychomo-
tor speed and some cognitive domains related to attention 
and vigilance. However, amphetamine also increases errors 
in memory retrieval (Ballard et  al., 2014). At higher doses, 
amphetamine induces stereotypies in animals and psychotic 
symptoms in humans.

The main sites of action of amphetamines are presynap-
tic monoamine-transmembrane transporters (the dopamine, 
norepinephrine, and serotonin reuptake transporters DAT, 
NET, and SERT) and the vesicular monoamine transporter 2 
(VMAT2; Sulzer et al., 2005). The main physiological role of 
monoamine transporters is reuptake of monoamines into 
the presynaptic neuron immediately after they have been 
released into the synaptic cleft. Thereby, monoamine trans-
porters regulate temporal and spatial spread of the mono-
amine signal. In contrast to pure transporter blockers such 
as cocaine or methylphenidate, amphetamines are also sub-
strates of DAT, NET, and SERT and are thus transported in 
an ion gradient-dependent way into the neuron (Sitte and 
Freissmuth, 2015). There, amphetamines lead to neurotrans-
mitter release from storage vesicles into the cytosol. Most 
importantly, however, amphetamines reverse the transport 
direction of monoamine transporters (Sitte and Freissmuth, 
2015). By binding to the transporter from on the inside of the 
cell, amphetamines switch monoamine transporters from 
a reluctant to a willing state to perform outward transport 
and thus lead to a massive outflow of neurotransmitter into 
the synapse and surrounding extracellular space (Robertson 
et al., 2009).

Various amphetamines differ in their respective affinity to 
the 3 major monoamine transporters and have thus a distinct 
neuropharmacological profile. d-Amphetamine, the compound 
used in most animal and human studies, acts primarily at DAT 
and NET, and administration of d-amphetamine was shown to 
increase extracellular dopamine levels by several hundred per-
cent over physiologic baseline levels (Zetterstrom et al., 1983; 
Laruelle et al., 1995; Breier et al., 1997).

Figure 1.  Sensitization leads to an increase in drug effects. The dose of a drug 

producing half-maximal response (ED50) decreases with sensitization, so that 

a lower dose is needed to produce half-maximal drug effects (ED50S). Alter-

natively, the original ED50 will cause larger effects in the sensitized state. The 

opposite is found in tolerance, where the efficiency of a drug decreases and a 

higher dose (ED50T) is now needed to produce half-maximal effects, or where 

the original ED50 will now induce smaller effects.
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Sensitization in Schizophrenia

Schizophrenia is a disorder with heterogeneous clinical manifes-
tations characterized by a large variety of so-called positive (hal-
lucinations, delusions, thought disorder, and motor symptoms) 
and negative symptoms (poverty of speech, apathy, social with-
drawal). The presence of pronounced positive symptoms is what 
marks an acute psychotic episode of the illness, and generally, 
positive symptoms respond better to antipsychotic treatment. 
Negative symptoms are frequently found also outside of acute 
psychotic episodes and present a major therapeutic challenge in 
the treatment of schizophrenia (APA, 2013). The good responsive-
ness of positive symptoms to antipsychotic dopamine D2/3 recep-
tor-blocking drugs is one of the reasons why psychosis has been 
associated with a hyper-dopaminergic state. Several complex 
genetic and environmental factors (birth in the winter months, 
urban upbringing, parental age, and others) have been shown to 
increase the risk for schizophrenia (Collip et al., 2008; van Winkel 
et al., 2008). As of yet it is unknown how these risk factors are 
related to each other and in which way they increase the illness 
risk. However, according to current interpretations (Laruelle, 2000; 
Kapur, 2003; Collip et al., 2008; van Winkel et al., 2008; Howes and 
Kapur, 2009; van Os and Kapur, 2009) of the dopamine theory of 
schizophrenia (van Rossum, 1966), all known risk factors seem to 
converge in a common final pathway, a hyper-dopaminergic state 
that causes psychotic symptoms in schizophrenia.

While sensitization is a concept that has substantial face 
value for explaining many behavioral patterns observed in 
patients with substance use disorders, its relationship to the 
phenomenologically diverse schizophrenia syndrome is not as 
self-evident. However, first descriptions of newly emerging psy-
chotic states related to amphetamine intake date back to the first 
half of the last century (Young and Scoville, 1938). Since then, a 
link between amphetamine intake and psychotic symptoms has 
been described in many studies, some of them using escalating 
doses of amphetamine for prospective induction of psychotic 
symptoms in healthy volunteers (Ellinwood et al., 1973). Low 
doses of amphetamine induce mild euphoria, sometimes an 
increased sense of purpose, subjects feel awakened and notice 
an increase in the ability to focus their attention. In a plastic 
description, N. Richtand (Richtand 2006) notes that with increas-
ing dose and frequency of intake, “symptoms following repeti-
tive stimulant drug use evolve gradually from intense curiosity, 
progressing to intense exploration of the environment, which 
may be displayed in repetitive stereotyped searching, sorting, 
and examining behaviors. This curious ‘suspiciousness’ of the 
environment later evolves into paranoia and psychotic thought.” 
Moreover, experimentally administered amphetamine induces 
hallucination and classical Schneiderian first rank symptoms in 
healthy subjects (Janowsky and Risch, 1979). In these studies, 
symptoms usually resolved within hours after discontinuation 
of stimulant intake. In addition to positive symptoms of schizo-
phrenia, an analysis of subjects suffering from methamphet-
amine-induced psychosis (Srisurapanont et al., 2011) showed 
considerable frequency and severity of negative symptoms. In 
summary, amphetamine is able to induce a reversible clinical 
picture resembling psychosis in schizophrenia in many aspects. 
However, to do so, amphetamines need to be consumed repeat-
edly and at high doses. Although studies specifically designed 
to measure behavioral and neurochemical effects of sensitiza-
tion in humans used low amphetamine doses only, there is no 
reason to assume that neurochemical mechanisms of sensitiza-
tion to higher stimulant doses differ completely from those to 
lower doses. In fact, as further discussed below, neurochemical 

findings in regular abusers of stimulants are in good agreement 
to what is found in prospectively sensitized animals.

Administering psychostimulants to patients with schizo-
phrenia is one of the most frequently used challenge tests in 
psychiatric research. A  classic 1987 review by Lieberman and 
colleagues (1987) lists 36 studies on the use of amphetamines 
or methylphenidate in patients with schizophrenia. Despite 
considerable heterogeneity of methods and design, the studies 
show that patients with schizophrenia exhibit greater respon-
siveness to psychostimulants than healthy subjects or patients 
with nonpsychotic illness. Generally, patients with full-blown 
psychosis showed larger changes in psychopathology upon psy-
chostimulant administration, while patients with prominent 
negative symptoms showed no or little response. As described 
later in this review, today it is safe to say that hyper-respon-
siveness to stimulants in schizophrenia is due to an increased 
amount of dopamine released in response to the drug.

Competition and Blocking Experiments in Schizophrenia

So-called competition, displacement, or blocking paradigms 
use a decrease in dopamine D2/3 receptor radioligand bind-
ing after administration of a dopamine-releasing agent such as 
d-amphetamine as a proxy for the amount of dopamine released 
into the extracellular space (Laruelle, 2000; Ginovart, 2005). The 
effects of amphetamine-induced dopamine release on D2/3 radi-
oligand binding have also been repeatedly studied in patients 
with schizophrenia. Using [123I]IBZM and single photon emission 
tomography, enhanced radioligand displacement in patients with 
schizophrenia and a positive correlation between displacement 
and the emergence or worsening of positive psychotic symptoms 
has been found (Laruelle et al., 1996). A study using [11C]raclopride 
and positron emission tomography (PET) (Breier et al., 1997) con-
firmed the finding in patients with schizophrenia and showed a 
clear relationship between amphetamine-induced displacement 
and the amount of dopamine released into the extracellular 
space in a cohort of nonhuman primates undergoing PET and in 
vivo microdialysis. Further studies confirmed and extended the 
finding by adding a dopamine-depletion paradigm that also elic-
ited larger changes in radioligand binding in psychotic patients 
(Abi-Dargham et al., 1998; Abi-Dargham et al., 2009).

Presynaptic Dopamine Precursor Uptake and Storage 
in Schizophrenia

An increase in uptake and storage of the radiolabelled dopamine 
precursor [18F]FDOPA into the striatum is a robust and well-rep-
licated finding in patients with schizophrenia (Fusar-Poli and 
Meyer-Lindenberg, 2013). The uptake of [18F]FDOPA shows a posi-
tive correlation with the severity of positive symptoms (Meyer-
Lindenberg et  al., 2002; McGowan et  al., 2004; Kumakura and 
Cumming, 2009). This, together with evidence from the aforemen-
tioned competition studies where positive symptoms correlated 
with d-amphetamine-induced dopamine release, supports the 
close relationship between high dopamine levels and psychotic 
symptoms in schizophrenia. However, to our knowledge, there 
is no study directly relating increased uptake of [18F]FDOPA to 
enhanced d-amphetamine-induced dopamine release in sensiti-
zation or schizophrenia. A recently described key finding is that 
increased [18F]FDOPA uptake already occurs in prodromal stages 
of schizophrenia, where patients show no or almost no psychotic 
symptoms (Howes et al., 2009). This shows that dopamine overac-
tivity predates the onset of full-blown psychosis and suggests that 
dopamine is causally involved in the pathogenesis of the illness.
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In summary, several studies support a close link between the 
mechanism of action of psychostimulant drugs and psychotic 
symptoms in schizophrenia. The behavioral super-sensitivity 
of patients with schizophrenia towards substances increasing 
brain extracellular dopamine levels, together with an enhanced 
d-amphetamine-induced dopamine release suggest that schiz-
ophrenia is associated with a state of “natural sensitization” 
towards dopamine-releasing agents. We will further discuss 
below how the mechanisms of d-amphetamine sensitization 
might relate to the enhanced dopamine synthesis and storage 
capacity shown by [18F]FDOPA PET studies in schizophrenia.

The Neuropharmacology of Sensitization

Findings in Humans
On a neurochemical level, sensitization to amphetamines mani-
fests as lasting hyper-responsiveness of mesencephalic dopa-
minergic pathways, paralleled by an increase in the amount of 
extracellular dopamine released from presynaptic terminals to 
a given dose of d-amphetamine in animals (Kalivas and Duffy, 
1993; Wolf et al., 1993; Paulson and Robinson, 1995; Pierce and 
Kalivas, 1995; Robinson and Badiani, 1998; Robinson et al., 1998) 
and humans (Boileau et al., 2006; Booij et al., 2016). The litera-
ture reports only on a limited number of studies where humans 
were prospectively sensitized to stimulants (Strakowski et al., 
2001; Farre et al., 2004; Boileau et al., 2006, 2016; O’Daly et al., 
2011, 2014a, 2014b). An increase in d-amphetamine-induced 
reductions in striatal binding of the D2/3 receptor radioligand [11C]
raclopride after repeated administration of a constant dose of 
d-amphetamine shows a progressive increase in the amount of 
dopamine released into the extracellular space in the striatum of 
sensitized individuals (Boileau et al., 2006; Booij et al., 2016). This 
increase is paralleled by an enhancement in behavioral meas-
ures, for example the eye-blink rate, ratings of alertness, eupho-
ria or focus, and by enhanced amphetamine-induced plasma 
cortisol secretion (Strakowski et al., 2001; Farre et al., 2004).

Interestingly, dopamine release after a single amphetamine 
or ethanol administration seems to be greater in males (Munro 
et al., 2006; Urban et al., 2010), while behavioral effects of sensi-
tization in animals have been found to be stronger in females 
(Becker et al., 2001; Strakowski et al., 2001; Cope et al., 2010; 
Chen et al., 2014). Sex differences are frequently attributed to the 
action of gonadal steroid hormones either during an early organ-
izational period or in adulthood (Gillies et al., 2014). Castration 
of male rats facilitated the behavioral sensitization produced by 
either repeated amphetamine treatment or repeated restraint 
stress. In contrast, ovarectomy in female rats was without effect 
(Camp and Robinson, 1988). Neurochemical effects of sensitiza-
tion to amphetamines in humans have so far been studied in 
males only (Boileau et al., 2006). Since schizophrenia, substance 
use disorders, and many other dopamine-related psychiatric dis-
orders show a robust sexual dimorphism, there is a clear need 
for studies filling the gaps in our knowledge on the effects of sex 
on sensitization and its neurochemistry in humans.

Findings in Animals
Sensitization in research animals has been induced using sev-
eral different protocols of repeated substance administration. 
The strength of sensitization is influenced by various factors, 
such as number and interval between treatments, dose, sex, 
age, and genetics (Post and Contel, 1983). Behavioral sensitiza-
tion has been reported to occur in response to cocaine, amphet-
amine, morphine, ethanol, nicotine, and tetrahydrocannabinol 
(Joyce and Iversen, 1979; Robinson and Becker, 1986; Benwell 
and Balfour, 1992; Cunningham and Noble, 1992; Post et al., 1992; 

Cadoni et al., 2001). An important finding of several studies is 
the occurrence of cross-sensitization of the behavioral response 
between drugs. Cross-sensitization has been shown for amphet-
amine to morphine (Vezina and Stewart, 1989), amphetamine to 
cocaine (Santos et al., 2009), ethanol to cocaine and vice versa 
(Itzhak and Martin, 1999), and Δ9-tetrahydrocannabinol to mor-
phine (Cadoni et al., 2001).

Molecular Mechanisms of Sensitization
As of yet, molecular mechanisms of sensitization of the dopa-
mine system are only partially understood. Apparently, sensi-
tization occurs in 2 stages, first by changes in VTA dopamine 
receptors, followed by a so-called expression phase, in which 
dopamine release is enhanced in the nucleus accumbens 
(Marinelli et  al., 2003). Among others, a transient subsensitiv-
ity of dopamine autoreceptors in the ventral tegmental area 
has been suggested to play a role in the induction of sensiti-
zation (Wolf et  al., 1993; Paulson and Robinson, 1995; Pierce 
and Kalivas, 1995; Calipari et al., 2015), as this change has been 
associated with increased basal activity of dopamine neurons 
(White and Wang, 1984; Henry et al., 1989). Long-lasting sensiti-
zation might also be accompanied by increases in the sensitivity 
of D1 dopamine receptors in the nucleus accumbens (Henry and 
White, 1991). This is supported by findings of blunted locomo-
tor sensitization in D1-deficient mice (El-Ghundi et al., 2010) and 
the prevention of pertussis toxin-induced sensitization by D1 
antagonists (Narayanan et al., 1996). For D2/3 autoreceptors, ani-
mal work points to decreased intracellular signal transmission 
via intracellular G-proteins after repeated amphetamine trans-
mission (Sharpe et al., 2015) and changes of regulatory proteins 
of intracellular G-proteins such as Rgs9 (regulator of G-protein 
signalling) (Maple et al., 2007). These changes may occur already 
after a single stimulant administration specifically in the ventral 
tegmental area (Arora et al., 2011; Padgett et al., 2012).

Other cellular mechanisms involved in sensitization include 
altered activation of VMAT2, as a recent publication discovered 
that argon blocks sensitization by its antagonistic properties at 
the VMAT2. Chen et al. (2014) on the other hand found an impor-
tant role of AKT1, a protein directly downstream of dopamine 
D2/3 receptors that interacts with beta-arrestin complex, a regu-
lator of dopamine signalling cascades. Interestingly, male AKT1 
knockout animals were less sensitive to methamphetamine-
induced hyperlocomotion during methamphetamine challenge 
compared with wild-type controls and AKT1 knockout females 
(Chen et al., 2014). Another protein, the calmodulin kinase IIα 
(αCaMKII) is a transporter-interacting protein, which was found 
to regulate amphetamine-triggered reverse DAT transport. 
αCaMKII has been associated with development of sensitization, 
as mice depleted of this kinase showed blunted sensitization 
effects following repeated amphetamine exposure (Steinkellner 
et al., 2014). Furthermore, the authors speculate that subtle vari-
ations in the relative expression levels of DAT and of αCaMKII 
may contribute to inter-individual differences in the susceptibil-
ity to amphetamine addiction (Steinkellner et al., 2014).

A recent proteomics study (Wearne et  al., 2015) examined 
brain protein expression in rats sensitized to methampheta-
mine. Expression of proteins previously implicated in the patho-
physiology of schizophrenia was significantly altered in the 
prefrontal cortex of sensitized rats. These proteins are involved 
in mitochondrial function, cellular architecture, cell signalling, 
and synaptic plasticity, which, in turn, are tightly related to 
stress mechanisms on a cellular level. In accordance, cell adhe-
sion molecules assessed peripherally were found to be altered in 
patients with schizophrenia and correlated with prefrontal grey 
matter volume (Piras et al., 2015).
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The Role of Dopamine D3 Receptors
Cocaine- or methamphetamine-dependent subjects can safely 
be assumed to be sensitized to the action of psychostimulant 
drugs. Studies using the dopamine D2/3 receptor agonist PET radi-
oligand [11C]-(+)-PHNO (Wilson et al., 2005) in humans addicted 
to cocaine or methamphetamine have consistently shown an 
increase in [11C]-(+)-PHNO binding in the substantia nigra/ventral 
tegmental area (Boileau et al., 2012; Matuskey et al., 2014; Payer 
et al., 2014). In these brain regions, the signal measured with 
[11C]-(+)-PHNO is predominantly due to binding to dopamine D3 
receptors (see Figure 2; Graff-Guerrero et al., 2010). An increase 
in dopamine D3 receptor expression is also found in postmor-
tem studies of cocaine addicted subjects (Staley and Mash, 1996; 
Segal et al., 1997). In view of these findings, dopamine D3 recep-
tor antagonists have been proposed as a possible treatment for 
stimulant addiction. This notion is supported by rodent stud-
ies administering D3-preferring agonists, such as pramipexole, 
which enhanced opioid-conditioned reinforcement (Bertz et 
al., 2015). Vice versa, D3-preferring antagonists inhibited related 
rewarding effects of cocaine- and drug-seeking behavior (Xi et 
al., 2006; Song et al., 2012; John et al., 2015; Galaj et al., 2016).

Still, this concept is somewhat at odds with a solid body of 
evidence showing that an increase in dopamine D3 receptor sig-
nalling in the ventral tegmental area actually acts as a brake on 
dopamine release in the striatum and reduces psychostimulant-
induced behaviors in rodents (Damsma et  al., 1993; Ahlenius 
and Salmi, 1994; Pugsley et al., 1995; Caine et al., 1997; Richtand 
et  al., 2001). A  pilot study on the administration of the D3-
preferring agonist pramipexole to patients with schizophrenia 
(Kasper et al., 1997) showed beneficial effects against negative 
and positive symptoms. Since positive symptoms in schizophre-
nia correlate directly with amphetamine-induced dopamine 
release in the striatum of patients with schizophrenia, D3 ago-
nism, although not directly shown in this or other studies so far, 
may have reduced striatal dopamine release in this collective.

There are various possible reasons for the discrepant findings. 
One is that most D2 or D3 receptor-preferring compounds are not 
entirely selective for either subtype. Therefore, it is hard to distin-
guish via which receptor behavioral or neurochemical effects are 
exerted, especially when opposing roles are suggested (Ellinwood 
et al., 2000). Another aspect is that D3-preferring compounds may 

act in a species-dependent way, and that their action may depend 
on the administration paradigm (cocaine self-administration vs 
conditioning/reinforcement) (Keck et  al., 2015). Furthermore, 
studies suggest that individual D3 availability and the resulting 
occupancy or alternative D3 gene splicing might lead to differ-
ential effects when D3 ligands bind (Richtand, 2006; Mugnaini 
et al., 2013; Kim et al., 2014; John et al., 2015). Interestingly, brain-
derived neurotrophic factor might influence the expression of D3 
receptors and seems to be necessary for behavioral sensitization 
and co-occurring D3 overexpression (Guillin et al., 2001).

Although it would be intuitive to state that sensitization 
leads to increased D3 receptor expression and therefore that 
D3 should be antagonized in order to prevent sensitization, 
increased expression of D3 in its role as a regulator of DA release 
might be a compensatory mechanism in the development of 
sensitization, which, however, fails to fulfil its purpose.

In summary, the differential impact of dopamine D2 autore-
ceptors and D3 receptors in the substantia nigra/ventral tegmen-
tal area on induction and expression of sensitization appears 
insufficiently understood as of yet. An intriguing concept though 
is that sensitization to amphetamine, together with an increase 
in amphetamine-induced dopamine release into the striatum, 
are a consequence of tolerance in inhibitory systems induced 
by repeated exposure of brainstem dopamine receptors to high 
levels of dopamine itself (Richtand, 2006).

Stress, Sensitization, and Neurodevelopment

Several studies on the relationship between stress and psycho-
stimulants in rodents were able to show cross-sensitization 
between repeated stress and repeated exposure to ampheta-
mine (Antelman et al., 1980; Kalivas et al., 1986; Hamamura and 
Fibiger, 1993; Febo and Pira, 2011; Booij et al., 2016). It is known 
that stress preferentially stimulates dopamine release in mes-
olimbic projection (Horger and Roth, 1996) and frontal areas 
(Lataster et  al., 2011) and that glucocorticoids modulate the 
sensitivity of mesencephalic dopaminergic neurons to drugs of 
abuse (Sorg and Kalivas, 1991; Deroche et al., 1995). In good agree-
ment with animal studies, it was shown that exposure to stress 
is able to induce recurrence of psychotic symptoms in remitted 
patients with methamphetamine-induced psychosis (Yui et al., 
2002). Patients with schizophrenia exhibit distinct alterations 
in the hypothalamic-pituitary-adrenal axis (Borges et al., 2013), 
and an increase in dopamine release and behavioral reactivity 
in response to stress has been observed in healthy subjects sen-
sitized to amphetamine, in patients with schizophrenia (Mizrahi 
et al., 2012; Lataster et al., 2013), and in subjects at high risk for 
psychosis (Soliman et al., 2008; Mizrahi et al., 2014).

Lieberman and colleagues (1997) have proposed a framework 
extending the classical stress vulnerability model of psychosis 
to integrate the neurodevelopmental model of schizophrenia 
with findings linking stress to altered dopamine signalling: in 
early development, neuronal circuits are being formed which 
then experience neuroplastic changes during early adolescence 
(Feinberg, 1982; Keshavan et al., 1994). There, stress-related activ-
ity of mesolimbic dopamine neurons sets the vulnerability for 
sensitization. Sensitization finally leads to excessive dopamine 
release and progressive development of psychosis (Laruelle, 
2000; Seeman 2011). Importantly, the view of schizophrenia as 
a degenerative disease has been substituted by the view of a 
disorder in which deficits in regenerative capacity are present 
(Falkai et  al., 2015). These deficits may include the previously 
mentioned alterations of cell architecture and metabolism, 
higher oxidative stress, and the consequent changes of synaptic 

Figure 2.  Adjacent transversal slices of a positron-emission tomography image 

using the dopamine D2/3 receptor agonist radioligand [11C]-(+)-PHNO. Bright areas 

show binding to dopamine D2/3 receptors in the human striatum and brainstem 

substantia nigra/ventral tegmental area.
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formations (Flatow et al., 2013; Wearne et al., 2015). In addition, 
as the prefrontal cortex is hypothesized to act as a brake on stri-
atal dopamine release (Carlsson et al., 2001), a dysregulation of 
inhibitory feedback mechanisms involved in the regulation of 
ventral tegmental neuronal activity may result in a pathologi-
cal potentiation of impulse-dependent phasic dopamine release. 
The association of frontal cortical thickness with amphetamine-
induced dopamine release corroborates this notion (Casey 
et al., 2013). As of yet, the question is unresolved whether it is 
increased striatal dopamine transmission to cause altered acti-
vation of cortical networks (bottom-up) or whether insufficient 
frontal-cortical control of striatal neurons is leading to altera-
tions in presynaptic dopamine release in psychosis (top-down).

Sensitization in Cells

In an in vitro examination, rat pheochromocytoma cells (PC-12), 
which are capable of dopamine release upon pharmacological 
stimulation but possess no dopamine receptors, were sensi-
tized successfully by intermittent treatment with amphetamine 
for 5 consecutive days followed by a >6-day, drug-free interval. 
Sensitization of PC12 cells was marked by significantly increased 
dopamine release upon amphetamine stimulation in sensitized 
when compared with nonsensitized cells. This was not accom-
panied by increase in [H3]-dopamine uptake (Kantor et al., 2002). 
Intermittent amphetamine treatment also led to increased neu-
rite outgrowth in PC-12 cells after an interval of more than 3 
drug-free days (Park et  al., 2002). Increased dopamine release 
and neurite outgrowth were dependent on protein kinase C and 
MAP kinase in vitro (Park et al., 2003). The fact that it is possible 
to sensitize cells to amphetamine holds the promise that it may 
be possible to identify drug targets enabling to target alterations 
in dopamine release already in presynaptic neurons.

What Can We Learn for Schizophrenia Research?

The observation of alterations in the dopaminergic system has led 
to the question how this effect might be related to clinical symp-
toms of schizophrenia. Notably, the dopaminergic changes are 
dependent on the illness phase (Laruelle et al., 1999), and the corre-
lation of radioligand uptake and positive symptom severity (Meyer-
Lindenberg et  al., 2002; McGowan et  al., 2004; Kumakura et  al., 
2007) suggests that the method does indeed capture a biologically 
meaningful signal closely connected to the pathogenesis of schizo-
phrenia. There seems to be a differential effect of amphetamine on 
positive and negative symptoms of schizophrenia: positive symp-
toms and thought disorder intensify temporarily, while negative 
symptoms tend to improve. This suggests that, although positive 
and negative symptoms are likely to differ in their pathogenesis, 
dopamine plays a major role in both symptom groups. Patients 
in remission show comparably small responses to amphetamine 
(Lieberman et  al., 1987), and amphetamine-induced dopamine 
release is larger during the acute phase of the illness (Laruelle, 
2000). Although some authors consider the processes predisposing 
to psychosis in schizophrenia to be irreversible, especially those 
hypothesized to have a neurodevelopemental origin, and although 
the disorder has a progressive course in a considerable proportion 
of the patients, findings from imaging studies suggest that at least 
part of the dopamine-related pathogenetic alterations are revers-
ible. In this context, antipsychotic medication has been proposed 
to contribute to the reversibility of sensitization by D2/3 blockade, 
although the exact mechanism is yet unknown. On the other hand, 
some observations suggest that chronic blockade of dopamine D2/3 
receptors rather induces supersensitivity of postsynaptic receptor 

systems, leading to increased vulnerability for relapse once antip-
sychotic medication is discontinued. However, the possibly life-
long persistence of a predisposition of the dopamine system to 
sensitize supports the necessity of long-term proactive measures 
to prevent psychosis in many patients.

In sum, an increase in amphetamine-induced dopamine 
release is common to amphetamine-induced sensitization in ani-
mals and humans, and the natural sensitization of the dopamine 
system observed in patients with schizophrenia is associated with 
increased amphetamine-induced dopamine release as well. The 
exact mechanisms and the association with increased dopamine 
synthesis observed in schizophrenia and preceding phases of 
the illness have yet to be elucidated, and amphetamine-induced 
sensitization might provide a suitable model for this purpose. 
Nevertheless, sensitization of the dopamine system is prob-
ably only one small part of the bigger picture of neurobiological 
changes occurring in schizophrenia. Different molecular changes 
are under intense investigation and might shed light on the devel-
opment of sensitization in schizophrenia. Antipsychotics might 
reverse sensitization and restore the flow of information from 
frontal areas to cortico-striatal-thalamo-cortical loops, thereby 
leading to symptom relief. As of yet, schizophrenia is a disorder 
often associated with nonresponse or partial response to treat-
ment, leading to high disability. Sensitization to amphetamine is a 
narrowly defined pharmaco-behavioral construct. Its neurochem-
ical signature can be readily studied in humans and animals. One 
day, translational research on amphetamine-sensitization will 
hopefully help to identify new molecular drug targets allowing for 
improved therapeutic strategies in schizophrenia.

Sensitization

•	 Increased response after repeated exposure to a stable 
dose of a substance

•	 Cross-sensitization with stress described for most sen-
sitizing substances

•	 Close relationship to dopamine-mediated learning (e.g. 
conditioned learning)

•	 Increased release of dopamine in response to a stable 
dose of amphetamine, cocaine, opiates, or methylphe-
nidate

•	 Increased release of dopamine in sensitized animals 
and humans

Sensitized dopamine response and 
psychiatric disorders

•	 Behavioral sensitization towards amphetamines and 
methylphenidate in schizophrenia

•	 Sensitization is believed to underlie habit-formation in 
addiction

•	 Blunted dopamine release in substance use disorders

Dopaminergic changes in sensitization

•	 Increased presynaptic release of dopamine
•	 Increased quantal size
•	 Increase in markers of dopamine synthesis
•	 Increase in postsynaptic dopamine-D2/3 function
•	 Sub-sensitivity of inhibitory auto-receptors
•	 Altered dopamine D3 receptor binding and function
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