
����������
�������

Citation: Yonekawa, A.; Shimono, N.

Clinical Significance of COVID-19 and

Diabetes: In the Pandemic Situation of

SARS-CoV-2 Variants including

Omicron (B.1.1.529). Biology 2022, 11,

400. https://doi.org/10.3390/

biology11030400

Academic Editors: Seiho Nagafuchi

and Ligen Yu

Received: 7 December 2021

Accepted: 3 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Review

Clinical Significance of COVID-19 and Diabetes: In the
Pandemic Situation of SARS-CoV-2 Variants including
Omicron (B.1.1.529)
Akiko Yonekawa 1,* and Nobuyuki Shimono 2,3

1 Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University,
Fukuoka 812-8582, Japan

2 Department of General Internal Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan;
shimono.nobuyuki.679@m.kyushu-u.ac.jp

3 Center for the Study of Global Infection, Kyushu University Hospital, Fukuoka 812-8582, Japan
* Correspondence: yonekawa.a.a27@m.kyushu-u.ac.jp

Simple Summary: Amidst the dual pandemics of diabetes and coronavirus disease 2019 (COVID-19),
with the constant emergence of novel variants of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), a vicious cycle has been created, i.e., a hyperglycemic state contributes to the severe
clinical course of COVID-19, which in turn has deleterious effects on glycometabolism and in some
cases causes new-onset diabetes. Here, we present a comprehensive review of the current literature
on the clinical and experimental findings associated with the interrelationship between diabetes and
COVID-19. To control disease outcomes and glucometabolic complications in COVID-19, this issue is
still being investigated.

Abstract: The coronavirus disease 2019 (COVID-19) global pandemic, which is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains uncontrolled, with the spread of
emerging variants. According to accumulating evidence, diabetes is one of the leading risk factors for
a severe COVID-19 clinical course, depending on the glycemic state before admission and during
COVID-19 hospitalization. Multiple factors are thought to be responsible, including an altered
immune response, coexisting comorbidity, and disruption of the renin-angiotensin system through
the virus–host interaction. However, the precise underlying mechanisms remain under investigation.
Alternatively, the focus is currently on the diabetogenic and ketosis-prone potential of SARS-CoV-2
itself, even for probable triggers of stress and steroid-induced hyperglycemia in COVID-19. In this
article, we present a comprehensive review of the recent literature on the clinical and experimental
findings associated with diabetes and COVID-19, and we discuss their bidirectional relationship,
i.e., the risk for an adverse prognosis and the deleterious effects on glycometabolism. Accurate
assessments of the incidence of new-onset diabetes induced by COVID-19 and its pathogenicity are
still unknown, especially in the context of the circulation of SARS-CoV-2 variants, such as Omicron
(B.1.1.529), which is a major challenge for the future.

Keywords: SARS-CoV-2; COVID-19; diabetes; hyperinflammation; hyperglycemia; new-onset
diabetes; Omicron variant

1. Introduction

Among the global outbreaks of the modern age, coronavirus disease 2019 (COVID-19)
has become second only to the Spanish flu in terms of the number of deaths due to res-
piratory virus diseases [1]. Until 14 February 2022, i.e., in a little more than 2 years after
the outbreak was announced in Wuhan, there have been 410,565,868 confirmed cases of
COVID-19 worldwide, including 5,810,880 deaths (WHO Coronavirus (COVID-19) Dash-
board. Available online: https://covid19.who.int (accessed on 14 February 2022). Despite
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global efforts for disease control, COVID-19 remains uncontrolled, and the constant emer-
gence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
make the problem even more intractable. Individuals infected with SARS-CoV-2 present
with a broad spectrum of clinical manifestations, from asymptomatic to lethal. This sug-
gests that not only the virus antigenicity but also host factors, such as age, sex, underlying
health conditions, and genetic characteristics, may affect the natural history of COVID-19.

Diabetes is highly prevalent. In 2019, the global prevalence of diabetes in adult people
aged 20–79 was estimated to be 9.3% (463 million people), which is predicted to continue
increasing [2]. Diabetes is a heterogeneous disease that is divided into several subtypes as
follows: type 1 diabetes (due to autoimmune β-cell destruction), type 2 diabetes (due to a
progressive loss of adequate β-cell insulin secretion frequently on the background of insulin
resistance), specific types due to other causes, and gestational diabetes [3]. The association
between diabetes and infection is classically well known, and diabetes is an established risk
factor for contracting infectious diseases with a high frequency and increased severity [4,5].

Diabetes has been shown to be one of the leading risk factors for poor outcomes in
COVID-19 [6–9]. Additionally, emerging data reveal that COVID-19 itself dysregulates
glucose homeostasis and may develop diabetes [10]. In this review, we focus on the
clinical and experimental findings associated with diabetes and COVID-19 and discuss the
bidirectional interrelationships between these diseases.

2. Risk of Diabetes as the Underlying Disease of COVID-19
2.1. Risk of SARS-CoV-2 Infection in Diabetes

Initially, we must distinguish between disease susceptibility and prognosis to assess
risk. Patients with diabetes are generally more susceptible to infections. This is thought to be
due to hyperglycemia that causes immune cells to malfunction, such as the reduction of the
ability of chemotaxis, phagocytosis, and bactericidal action of polynuclear neutrophils [4,11].
Affected diabetes [11] and poor glycemic control [5] are risks of acquiring certain infections
and of aggravating viral infections, including SARS [12,13] and pandemic influenza (H1N1
pdm09) [14].

The high prevalence of diabetes was reported in several studies (33.8% [15], 26.6% [16],
24% [17], and 19% [18]). A large study that included more than 5,000 individuals in
the New York City reported high prevalence rates of diabetes (22.6%) [19]. However, the
prevalence of diabetes in non-admitted patients was 9.7% compared with 34.7% in admitted
patients [19]. The Centers for Disease Control and Prevention reported that participants,
including outpatients, had a prevalence of diabetes of 10.9% compared with 10.1% of
diagnosed diabetes among adults in the United States based on 2018 data [20]. Similarly,
an observational study in Japan showed that diabetes without complications was 14.2% of
registered COVID-19 patients, whereas diabetes is present in approximately 12% of people
of the same generation [21]. In a meta-analysis reported by Pugliese et al., the prevalence
of diabetes among COVID-19 patients was not higher than that of the general population,
in China, Europe, and the United States [22]. Therefore, it is not epidemiologically obvious
whether diabetes carries a significant risk of SARS-CoV-2 infection.

2.2. Significance of Diabetes for Increasing the Severity and Poor Outcome in COVID-19

Accumulating evidence shows that diabetes is the risk factor for the progression to
severe disease in COVID-19.

An early study in China saw that the case fatality rate was threefold higher in people
with pre-existing diabetes than in those without diabetes (7.3% vs. 2.3%) [6]. In a study
of the whole population of England, of the 23,698 in-hospital COVID-19–related deaths,
31.4% had type 2 diabetes, 1.5% had type 1 diabetes, and 0.3% had other types of diabetes;
moreover, both type 1 and type 2 diabetes were independently associated with a significant
increase in COVID-19–related mortality (adjusted odds 2.86 (2.58–3.18) for type 1 diabetes
and 1.80 (1.75–1.86) for type 2 diabetes) [7]. Regarding the fatal and critical care unit–treated
COVID-19, a whole population study in Scotland found that the adjusted odds ratios (ORs)
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for diabetes were 1.395 (1.304–1.494), with 2.396 (1.815–3.163) for type 1 diabetes and
1.369 (1.276–1.468) for type 2 [8]. In a single-center prospective cohort study conducted
in the United States, Gregory et al. initially reported that people with type 1 and type
2 diabetes showed similar risks for hospitalization and greater illness severity [9]. Their
subsequent analyses from the data that included a higher number of cases showed that
patients with type 1 diabetes had a higher risk for hospitalization than those with type 2
diabetes (adjusted ORs for type 1: 4.60, 95% confidence interval (CI) 3.04–6.98; type 2: 3.42,
95% CI 2.94–3.99) [23]. More recently, these authors assessed the risk of type 1 diabetes
among pediatric patients. A total of 22 cases of pediatric patients with type 1 diabetes were
included, and they had unadjusted ORs of 20.49 (95% CI 8.63–48.62) for hospitalization and
19.39 (95% CI 8.47–44.42) for greater severity, as compared with pediatric patients without
diabetes [9].

2.3. Comorbidity of Diabetes

Diabetes often coexists with various comorbidities, such as hypertension, obesity, car-
diovascular disease, and chronic kidney disease. It is highly possible that the overlapping
of comorbidities has some additional effects on the risk of adverse outcomes. Particu-
larly, there is a close relationship between obesity and type 2 diabetes, which is described
as “diabesity”.

Obesity is independently associated with risk factors for severe COVID-19. In a large
retrospective analysis of body mass index (BMI) in New York City, obesity, defined as
BMI ≥ 30 kg/m2, was found to be significantly associated with increased admission to
the hospital and critical care [24]. A single-center retrospective cohort study in France
found that severe obesity, defined as BMI ≥ 35 kg/m2, was associated with an increased
requirement for mechanical ventilation in the critical setting [25].

The risk of obesity has been assessed in diabetes patients. A population-based cohort
study in England reported higher mortality rates in people with a BMI > 40.0 kg/m2

compared with individuals with a BMI of 25.0–29.9 kg/m2 (hazard ratio (HR) 2.33 and 1.60
for type 1 and type 2 diabetes, respectively) [26]. A U-shaped association was detected
between BMI and COVID-19–related mortality (BMI of <20.0 kg/m2, HR 2.45 and 2.33 for
type 1 and type 2 diabetes, respectively) [26]. In a nationwide multicenter observational
study conducted in France (the CORONADO (Coronavirus SARS-CoV-2 and Diabetes
Outcomes) study), BMI was also independently associated with the primary outcome of
tracheal intubation for mechanical ventilation and/or death within 7 days of admission (OR
1.28, 1.10–1.47) in people with diabetes. When considering death on day 7, this association
with BMI was not statistically significant. Of note, BMI ≥ 40 kg/m2 has less impact on the
primary outcome than BMI 25–39.9 kg/m2 [27]. In an additional analysis of type 2 diabetes
in the CORONADO study, the impact of obesity on COVID-19 prognosis was no longer
observed among older patients aged ≥75 years [28].

The mechanisms by which obesity affects unfavorable outcomes remain obscure. The
characteristic factors of obesity, such as a chronic low-grade inflammation state and an
altered immune response [29], are potentially associated. Impaired respiratory function
is one explanation for the increased need for mechanical ventilation support, as it arises
from pulmonary restriction, decreased lung volume, and impaired lung perfusion [30]. To
determine the BMI cutoff value at which patients are at risk for aggravation, as well as the
pathogenicity of obesity in older adults, further studies are needed.

3. Role of Glycemic Control in Patients with COVID-19
3.1. Glycemic Control before Hospital Admission

An early study in China reported that poorly controlled diabetes with HbA1c ≥ 7.0%
(53 mmol/mol) was associated with increased severity of lung lesions and a higher rate of
poor clinical prognosis, including deaths, using mechanical ventilation, and admission to
the intensive care unit (ICU), as compared with non-diabetes [31]. Subsequently, several
studies have analyzed the association of HbA1c levels as an indicator of long-term glycemic
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control (Supplementary Table S1). Based on an analysis using a primary care electronic
health records analytic platform in England, diabetes increased the risk of COVID-19–
related death compared with nondiabetic patients (adjusted HR 1.31, 95% CI 1.01–1.26 for
controlled diabetes with HbA1c < 7.5%; adjusted HR 1.95, 95% CI 1.83–2.08 for uncontrolled
diabetes with HbA1c≥ 7.5%) [32]. In another nationwide population-based cohort study in
England, as the HbA1c level increased, the COVID-19–related mortality rate also increased
in both type 1 diabetes and type 2 diabetes (type 1 diabetes HR 2.23 and type 2 diabetes: HR
1.61 for HbA1c of ≥10.0% compared with people with HbA1c of 6.5–7.0%) [26]. However,
in the CORONADO study, Cariou et al. showed that the HbA1c level was not associated
with COVID-19 severity or 7 day mortality [27]. This discrepancy might arise from the
short-term prognosis. It is probable that the patient’s glycemic control status before hospital
admission can affect the host immune system and diabetic complications, contributing to
the risk of poor prognosis in COVID-19.

3.2. Hyperglycemia at the Time of Hospital Admission

Iacobellis et al. found that hyperglycemia on day 1 is the strongest predictor of chest
radiographic abnormalities in hospitalized patients with COVID-19 [33]. Many studies
have been reported on hyperglycemia at admission, although each study set different cutoff
values for glucose levels (Supplementary Table S2).

Impaired fasting glucose levels at admission were shown to be associated with mortal-
ity [34–36], severity, including ICU admission [37–42], and in-hospital complications [34,43].
Klonoff et al. reported that in ICU inpatients, severe hyperglycemia (blood glucose
(BG) > 13.88 mmol/L (250 mg/dL)) on admission was associated with increased mortality
(adjusted HR 3.14; 95% CI 1.44–6.88) compared with BG < 7.77 mmol/L (140 mg/dL) [44].
In a retrospective study conducted in China, hyperglycemia (≥6.1 mmol/L (110 mg/dL))
upon admission was an independent risk factor for progression to critical or lethal cases
among noncritical cases (HR 1.30, 95% CI 1.03–1.63, p = 0.026) and for in-hospital mortality
in critical cases (HR 1.84, 95% CI 1.14–2.98, p = 0.013) [38].

Among patients with diabetes, poorly controlled hyperglycemia (BG > 11 mmol/L)
may be associated with death and complications in COVID-19 [43]. Consistently, in age-
and sex-adjusted nonlinear models in the CORONADO study, fasting plasma glucose
(FPG) at admission was positively associated with tracheal intubation for mechanical
ventilation and death within 7 days of admission (p = 0.0001) and with death on day
7 (p = 0.0059) [27]. Notably, a strong association with hyperglycemia at admission was
observed in subjects with no history of diagnosed diabetes compared with those with
known diabetes [34,40,45,46]. In addition, Fadini et al. demonstrated that a higher FPG
level at admission with each 2 mmol/L (36 mg/dL) increase was associated with COVID-19
severity, with a stronger association among patients without diabetes than with diabetes
(relative risk 1.21; 95% CI 1.11–1.32; p < 0.001) [40].

Hyperglycemia at admission, which reflects acute hyperglycemia, is a predictor of
worse outcomes, even without a history of diabetes.

3.3. Glycemic Control during In-Hospital Treatment

Klonoff et al. reported that severe hyperglycemia (BG > 13.88 mmol/L (250 mg/dL))
on days 2–3 was an independent risk factor for high mortality (adjusted HR 7.17; 95%
CI 2.62–19.62) compared with BG < 7.77 mmol/L (140 mg/dL) in non-ICU patients [44].
Wu et al. showed that a median glucose level of 6.1 mmol/L (110 mg/dL) or higher
during the hospital stay or after critical diagnosis was independently associated with an
increased risk for in-hospital mortality and progression to critical or lethal cases in critical
cases [38]. In a multicenter retrospective observational study conducted in the United States,
a subset analysis showed that the mortality rate was higher in people with uncontrolled
hyperglycemia without diagnosed diabetes (>10.0 mmol (180 mg/dL) and HbA1c < 6.5%)
than in those with controlled diabetes (41.7% vs. 14.8%, p < 0.01) [47]. In patients with type
2 diabetes, a propensity score-matched analysis in a multicenter retrospective cohort study
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in China demonstrated that patients with well-controlled BG (3.9–10.0 mmol/L (70–180
mg/dL)) had a significantly lower all-cause mortality rate than those with poorly controlled
BG (>10.0 mmol/L (180 mg/dL); adjusted HR 0.14; CI 0.03–0.06). The well-controlled group
showed lower levels of poor prognostic indicators, such as serum C-reactive protein and
D-dimer, and a reduced frequency of serious complications associated with COVID-19,
such as acute respiratory distress syndrome, acute heart injury, acute kidney injury, septic
shock, and disseminated intravascular coagulation [48] (Supplementary Table S3).

Glycemic control has been shown to be important for improving disease prognosis.
Sardu et al. demonstrated that glycemic control with insulin infusion decreased the levels
of interleukin (IL)–6 and D-dimer and improved the prognosis in hyperglycemic inpatients
with moderate COVID-19 [49]. They also reported that decreased BG levels from baseline
to 24 h after admission were associated with a lower rate of progression to severe disease
and 20 day mortality in both non-diabetic and diabetic hyperglycemic patients [50].

Poorly controlled hyperglycemia significantly increases the severity and mortality of
patients with COVID-19, even after adjusting for multiple confounders (Table S3). The
treating physician should assess the patient’s glycemic status and achieve good glycemic
control in patients, irrespective of pre-existing diabetes.

4. Factors Associated with COVID-19–Related Hyperglycemia

Worsening glycemic control during infections is common, especially in sepsis. Hyper-
glycemia induced by inflammation is a type of biological defense reaction against the acute
stress of infectious diseases. It is known as stress hyperglycemia, which is usually defined
as a transient hyperglycemic status associated with acute illness [51]. Stress hyperglycemia
arises from a highly complex interplay between perturbed proinflammatory cytokines
and insulin counter-regulatory hormones, which leads to the hyperproduction of hepatic
glucose and the induction of insulin resistance. In addition to inflammation-induced insulin
resistance, Sestan and colleagues demonstrated that virus-induced interferon-γ increases
muscle insulin resistance [52].

Moreover, the use of corticosteroids for treating patients with COVID-19 strongly
contributes to hyperglycemia. Following the results of the RECOVERY clinical trial [53],
systemic corticosteroids have become one of the main treatment choices for COVID-19;
meanwhile, systemic corticosteroids are well known to induce hyperglycemia. The main
mechanism for steroid-induced glucose dysregulation is thought to be the alteration of
pancreatic β-cell function, promotion of glycogenolysis in the liver, and reduction of
insulin sensitivity in the liver, skeletal muscle, and adipose tissue [54]. Additionally,
reduced glucose uptake and increased glycogenolysis in skeletal muscle contribute to
hyperglycemia [54]. Indeed, in a multicenter retrospective study of critically ill patients with
COVID-19, researchers showed that the risk of hyperglycemia (>7.8 mmol/L (>140 mg/dL))
was significantly increased with the use of steroids (OR 1.521; 95% CI 1.054–2.194) [55].

Even considering the hyperglycemia that occurs in response to acute stress or the use
of glucocorticoids, the links between COVID-19 and hyperglycemia have been strongly
suggested. The underlying pathogenesis of COVID-19–related hyperglycemia can be
described by the damage to pancreatic β-cells and decreased insulin sensitivity and altered
insulin secretion due to the activation of the renin-angiotensin system (RAS) and the host’s
inflammatory response to COVID-19. The details are described below.

5. Effect of COVID-19 on Glucose Metabolism
5.1. Impaired Glucose Metabolism in COVID-19

Angiotensin-converting enzyme II (ACE2) receptors are expressed in various hu-
man organs, including pancreatic β-cells, adipose tissue, the small intestine, and the kid-
neys [12,56]. SARS-CoV-2 can infect pancreatic tissue and cause acute pancreatic injury [57],
which results in the dysregulation of glucose metabolism. In a human pluripotent stem-
cell-derived human cell and organoid model, Yang et al. found that SARS-CoV-2 infects
pancreatic glucagon-positive α-cells, insulin-positive β-cells, hepatocytes, and cholangio-
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cyte organoids [58]. Subsequently, Müller et al. showed that SARS-CoV-2 infects and
replicates within the human islets of Langerhans, leading to impaired glucose-stimulated
insulin secretion [59]. In addition to direct virus involvement, an enhanced autoimmune
process might be implicated. Moreover, ACE2 plays an important role in regulating glucose
homeostasis [60]. Downregulation of ACE2 by the entry of the virus can contribute to
insulin resistance and insufficient insulin secretion through the RAS. The proinflammatory
cytokines induced by COVID-19 also increase insulin resistance. Finally, hyperglycemia
itself exacerbates β-cell dysfunction, leading to further poor glycemic control status.

5.2. New-Onset Diabetes

The development of virus-related diabetes is rare among natural viral infections;
however, viral infections have long been suggested as potential environmental factors that
trigger diabetes [3,61]. Particular viruses, such as enterovirus, especially coxsackievirus
B virus, rubella virus, cytomegalovirus, mumps [62], and SARS-CoV-1 [12], have been
associated with β-cell destruction and the triggering of type 1 diabetes; moreover, the
hepatitis C virus has been implicated in inducing type 2 diabetes [63]. The putative
pathogenic mechanisms of virus-related diabetes include direct β-cell destruction, local
inflammatory responses, the triggering of autoimmunity against β-cells [62], and host
genetic factors [64,65]. These potential mechanisms are yet to be fully studied.

There are case reports describing diabetic ketoacidosis (DKA) in a previously healthy
man with no evidence of insulin resistance [66] and insulin-dependent diabetes presenting
with DKA in the absence of autoantibodies 5–7 weeks after the COVID-19 episode [67].
A case series of hyper-glycemic emergencies from the United Kingdom found 2 cases
with new presentation of diabetes among 35 COVID-19 patients; moreover, nine cases had
type 2 diabetes among 11 patients presenting with DKA [68]. Two retrospective cohort
studies in China identified patients with new-onset diabetes. In these studies, new-onset
diabetes was defined as no prior history of diabetes with FPG≥ 7.0 mmol/L [45] or random
BG > 11.1 mmol/L [69] and HbA1c < 6.5%; however, the type of diabetes was not reported.
The prevalence of new-onset diabetes was 5.5% [45] and 27.5% [69] in 25 of 453 and 22 of
80 hospitalized COVID-19 patients, respectively.

A recent big data analysis based on medical claim databases in the United States
observed that the individuals aged <18 years with COVID-19 were more likely to be newly
diagnosed with diabetes in >30 days after infection than those without COVID-19 and those
with non–SARS-CoV-2 respiratory infections [70]. Some multicenter studies found an in-
crease in the incidence of pediatric type 1 diabetes and the frequency of severe DKA [71–73].
However, epidemiological evidence from European studies showed no clear increase in the
incidence of type 1 diabetes during the COVID-19 pandemic [74–78]. Moreover, Hippich
et al. revealed no association between SARS-CoV-2 antibodies and autoimmunity with
type 1 diabetes [79].

It is unclear whether the phenotype of the new-onset diabetes triggered by COVID-
19 is the classic type 1, or type 2, or a new type and whether its alterations of glucose
metabolism are transient or persistent [10]. A global registry of patients with COVID-19–
related new-onset diabetes has been established (CoviDIAB Project, covidiab.e-dendrite.com)
to investigate the epidemiological features and pathogenesis [10].

The expression of ACE2 in human pancreatic β cells is controversial [58,80,81], and the
direct cell dysfunction cannot fully explain a key pathogenic mechanism of SARS-CoV-2
infection-induced diabetes. In COVID-19 patients, insulin resistance seems to be abnormal
when compared to patients with other critical conditions [82]. This could be a factor
affecting the process of new-onset hyperglycemia or diabetes in COVID-19. Montefusco
and colleagues demonstrated hyperglycemia and insulin resistance in COVID-19 patients
without diabetes [83]. The persistence of hyperglycemia [83] and insulin resistance [84] were
documented six months after acute COVID-19 infections. Furthermore, regarding glucose
homeostasis in patients with coronavirus infection, the gut is less focused than pancreas,
liver, skeletal muscle, and adipose tissue. However, increased intestinal glucose absorption
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via the sodium-dependent glucose transporter (SGLT1) in the intestinal epithelium, which
is mediated by the downregulation of ACE2 with a SARS-CoV-2 infection, might also be
involved in hyperglycemia in COVID-19 patients [85].

Assessing the diabetogenic and ketosis-prone potential of SARS-CoV-2 variants is an
additional challenge. The pandemic variants of SARS-CoV-2 have been reported to change
the viral characteristics, including the transmissibility and antigenicity (summarized in
Table 1). However, most of the currently available data were based on studies conducted
before the major variants of SARS-CoV-2 were circulated. The Omicron variant is associated
with a more attenuated disease severity compared to previous circulating variants [86,87].
Its cellular entry is reported to be less dependent on TMPRSS2 [88]. Replication is reduced
in the lower respiratory tract that highly expresses TMPRSS2, whereas the infectivity of the
Omicron variant is not affected in non-TMPRSS2-expressing cells in the upper respiratory
tract [88]. Moreover, the Omicron variant is characterized by a higher ACE2 binding affinity
and increased immune evasion [88,89]. The expressions of ACE2 and TMPRSS2 under
steady state conditions have different distributions [58,80,90]. The tissue tropism of variants
and their impact on glycometabolism might be affected.

Table 1. Comparison of the characteristics of pandemic SARS-CoV-2 variants.

WHO Label Alpha Delta Omicron
Pango Lineage B.1.1.7, Q B.1.617.2, AY.4.2 B.1.1.529, BA

First detected
United Kingdom India South Africa
September 2020 December 2020 November 2021

Key amino acid
substitutions in

spike protein
N501Y, D614G, and P681H L452R, T478K, D614G,

and P681R
30 changes, 3 small deletions,

and 1 small insertion *

Infectivity Transmissibility

↑ ↑~↑↑ ↑↑↑

43–82% more transmissible
than the ancestral lineage At least equal to alpha

RtOmicron 3.19–4.2 times
greater than RtDelta, with

higher secondary attack rates

Clinical severity →/↑ ↑↑ ↓
60% higher mortality than the

ancestral lineage
risk for hospital admission

twice as high as alpha
Decrease in severity

and mortality

Immune escape → ↑ ↑↑
Higher reinfection rate and reduced vaccine efficacy

Diabetogenecity Insufficient data ** No data No data

* A67V, del69-70, T95I, del142-144, Y145D, del211, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K,
G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H,
N764K, D796Y, N856K, Q954H, N969K, and L981F (RBD substitutions in bold type). ↑: increased; ↓: decreased;
Rt: effective reproduction number. ** A study supporting new-onset diabetes [70] included data during the period
when the alpha variant was dominant. References: [91], transmissibility [92–94], Rt [95,96], secondary infection
rate [97], severity [86,92,98,99], reinfection [100], and immune escape [89].

6. Mechanism of Disease Aggravation in Diabetes
6.1. Altered Host Immune Response in the Diabetic Host

In people with diabetes, dysfunctional immune responses appear to contribute to dis-
ease progression in COVID-19. In these individuals, innate immunity is impaired, including
the capacity for chemotaxis, migratory response, and phagocytosis [11]. Both type 1 and
type 2 diabetes result in altered cytokine secretion and low-grade systemic inflammation
status [101]. Natural killer cell activity is reduced in type 2 diabetes, in association with
glucose control [102]. As for adaptive immunity, the humoral immune response is relatively
normal, whereas the cell-mediated immune response is involved. Abnormal T-cell differ-
entiation has been reported in patients with type 2 diabetes. Jagannathan-Bogdan et al.
demonstrated a elevations in the Th17 subpopulation and in IL-17 and interferon-γ pro-
duction, which is supported by monocytes, using human peripheral blood samples [103].
Deceased numbers of Th2 and Treg cells are reported to feature in diabetes [104]. In addi-
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tion to the evidence provided by the analysis of peripheral blood mononuclear cells, Tang
et al. demonstrated in a non-obese diabetic mouse model that CD4+ Foxp3+ regulatory
T cells were decreased in inflamed islets during the progression of type 1 diabetes [105].
Taken together, T cells are naturally skewed toward the proinflammatory phenotype in
individuals with diabetes. This status potentially exacerbates hyperinflammation, resulting
in a loss of homeostasis in the inflammatory response.

In the context of COVID-19, after the recognition of SARS-CoV2 entry, proinflamma-
tory cytokines and chemokines are generated. These attract monocytes, macrophages, and
T cells to the infection site, which leads to further inflammation. In a healthy immune
response, the initial inflammation, followed by the virus-specific T-cell attraction and pro-
duction of neutralizing antibodies, leads to clearance of the virus before viral spreading
and minimal lung damage. However, in a defective immune response, the accumulation of
immune cells in the lungs, which causes an overproduction of proinflammatory cytokines,
results in lung and multiorgan damage [106].

6.2. Role of the Renin-Angiotensin Aldosterone System

Zhou et al. [107] and Hoffmann et al. [108] identified ACE2 as a functional receptor
of SARS-CoV-2. This is the same cell receptor for SARS- CoV-1 [109]. Moreover, Hoff-
mann et al. showed that receptor-mediated virus entry depends on cellular serine protease
transmembrane serine protease 2 (TMPRSS2), which primes the spike protein. ACE2 is
a membrane protein that cleaves angiotensin 2 (Ang-II) and generates angiotensin (1–7),
exerting a negative effect on Ang-II signaling. Ang-II acts not only toward vasoconstric-
tion but also toward proinflammation via the angiotensin type 1 receptor (AT1R) [110].
Meanwhile, Ang (1–7) acts toward anti-inflammation by binding to and activating the
Mas receptor. After the virus binds to ACE2, ACE2 is endocytosed together with the
virus complex, which reduces ACE2 expression on the cell surface, resulting in Ang-II
accumulation and a decreased effect of the ACE2/Ang-(1–7)/MasR axis. This competing
effect of two axes could lead to acute lung injury, cytokine storm, and ARDS [111].

In a non-obese diabetic mouse model, ACE was found to be highly expressed in the
lungs, whereas ACE2 was highly expressed in the pancreas [112]. A microarray analysis
revealed the upregulation of ACE2 in human pancreatic islets from diabetic donors [113].
From these results, the change of these expression levels might contribute to the increasing
lung damage and β-cell tropism in diabetic patients with COVID-19, although the clinical
implications remain to be established.

6.3. Other Host Factors

Other possible factors that increase the severity of COVID-19 in diabetes include
endothelial dysfunction [114,115], a hypercoagulative state [115,116], and alveolar dys-
function [117]. Hyperglycemia enhances coagulation during systemic inflammation [118].
Varga et al. found direct endothelial cell infection by SARS-CoV-2 and subsequent endothe-
litis, resulting in a hypercoagulable state [119]. This might be linked to the increase in the
incidence of thrombotic events during COVID-19. Alveolar dysfunction may contribute to
a very low tolerance for lung damage, leading to an increased oxygen requirement.

6.4. Factors Affecting Viral Replication

Codo et al. demonstrated one of the mechanisms by which people with uncontrolled
hyperglycemia develop a severe form of COVID-19. In human monocytes, elevated glucose
levels can directly promote SARS-CoV-2 replication, the production of proinflammatory cy-
tokines, and subsequent T-cell dysfunction and lung epithelial cell death via the production
of mitochondrial reactive oxygen species and hypoxia-inducible factor-1α (HIF-1α) stabi-
lization. SARS-CoV-2 promotes the transition to aerobic glycolysis in monocyte metabolism,
which sustains the SARS-CoV-2–induced monocyte response and viral replication [120].
However, Wing et al. reported the negative effect of HIF signaling on SARS-CoV-2. In lung
epithelial cells, HIF activation reduces the expression of ACE2 and TMPRSS2 and inhibits
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SARS-CoV-2 entry. Additionally, it inhibits viral replication and the secretion of infectious
particles in an HIF-1α–dependent manner [121]. Further studies are needed to determine
the role of the HIF-1α pathway and in vivo behavior.

7. Treatment of COVID-19 in Diabetes

Current treatment options for COVID-19 are divided into antiviral agents (e.g., remde-
sivir), monoclonal antibodies (e.g., casirivimab plus imdevimab and sotrovimab), im-
munomodulators (e.g., dexamethasone, baricitinib, and tosirizumab), and anticoagulant
therapy. Recently, molnupiravir was approved as the first oral antiviral medicine for adult
patients with mild-to-moderate COVID-19 and at least one risk factor associated with poor
disease outcomes. Although there is no definitive therapy, these drugs are sometimes used
in combination according to disease severity, oxygen requirements, and hospitalization in
clinical practice. Basically, antiviral agents and monoclonal antibodies are administered
against viral replication in the early stage, and anti-inflammatory drugs are administered
against a dysregulated host immune response in the later stage [122].

Although there is no specific treatment for COVID-19 in patients with diabetes, prompt
intervention is required because these patients are at a high risk of COVID-19 clinical pro-
gression. In Japan, monoclonal antibodies are recommended for administration as soon
as possible after diagnosis to reduce the risk of hospitalization and death in patients with
mild-to-moderate COVID-19 who have certain risk factors for disease progression. These
risk factors include age ≥65 years, diabetes, obesity (BMI > 30 kg/m2), cardiovascular
disease or hypertension, and chronic lung diseases (National Institutes of Health COVID-19
Treatment Guideline. Available online: https://www.covid19treatmentguidelines.nih.gov
(accessed on 7 December 2021)). Further studies are needed to determine whether the
use of monoclonal antibodies can improve the prognosis in diabetes. The reduction in
the neutralization efficacy of imdevimab and casirivimab against the Omicron variant has
been reported [89], and it is necessary to obtain up-to-date information about the epidemic
variant before initiating monoclonal antibody treatment. Dexamethasone has a potential
anti-inflammatory action that can prevent or suppress these excessive inflammatory re-
sponses in COVID-19, and it has been reported to have benefits for patients who received
supplemental oxygen [53]. Dexamethasone should be used with more attention to glycemic
control, irrespective of the diabetes status [123]. Oral Janus kinase inhibitors or anti-IL-6
receptor monoclonal antibodies might be effective for improving clinical outcomes in more
severe cases. Such anti-inflammatory therapy can have negative effects on viral elimination
in the host defense; therefore, it is important to assess the state of COVID-19 patients and
optimize the timing of administration and drug type in high-risk patients.

Although there is no consensus on the use or discontinuation of certain antihyper-
glycemic agents, patients should maintain good glycemic control. A few anti-diabetic
agents have been shown to influence ACE2 expressions in animal models [112,124–126].
Moreover, several agents not only have glucose-lowering effects but also have pleiotropic
anti-inflammatory actions [127–131], which attract attention due to their potential beneficial
roles in SARS-CoV-2 infections. However, no conclusive data demonstrate clinically signifi-
cant differences (Table 2). Great caution is required when considering the possible risks
resulting from lactic acidosis due to metformin as well as euglycemic diabetic ketoacidosis
and dehydration due to sodium-glucose-co-transporter 2 inhibitors.

Hence, it is extremely important for people with diabetes to take steps to prevent
infection, such as using hand hygiene, wearing a mask, and avoiding contact with COVID-
19 patients. Vaccination against SARS-CoV-2 is recommended and can be effective in
people with diabetes, as supported by the data showing no difference in humoral immune
response against SARS-CoV-2 in patients with or without diabetes [132,133].

https://www.covid19treatmentguidelines.nih.gov
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Table 2. Potential roles of antidiabetic agents and related clinical data in COVID-19 patients.

Antidiabetic Agent Effects on ACE2 Expression in
Animal Models Anti-Inflammatory Properties Data from Clinical Studies on

COVID-19 Clinical Considerations

Metformin – + [127]

No association [134,135]
Risk of lactic acidosis

Discontinued in severe cases
Lower incidence of COVID-19 and

no effects on mortality [136]
Improved outcomes [137]

Reduced mortality [27,138,139],
only in women [140]

Pioglitazone
Upregulation of ACE2 expressions in the

liver, adipose tissues, and skeletal muscles
in NASH rats [124]

+ [128] Insufficient evidence Risk of fluid retention and heart failure
Discontinued in severe cases

SGLT2 inhibitors – + [129]
No influence on susceptibility

compared with DPP-4 inhibitors
[141]

Risk of euglycemic diabetic ketoacidosis
and dehydration

Discontinued in severe cases

GLP1-RAs Upregulation of ACE2 expression in lungs
in STZ-induced diabetic rats [125] + [129,130] Insufficient evidence Risk of dehydration in cases with severe

gastrointestinal symptoms

DPP-4 inhibitors – + [130,131]

Not associated with adverse
outcomes [134,142–144]

Relatively safeLower mortality [145,146]
Improved outcomes [146]

Worse outcome [147]

Insulin

Normalization of renal ADAM17 and
ACE2 expressions in diabetic Akita mice [126] +; reduced inflammatory

marker [148]

Poor prognosis [149] Risk of hypoglycemia
Require frequent blood glucose

monitoring

Increased mortality [27,137,145,150]

Increased ACE2/ACE in NOD mice [112]
No association [134,139]

Beneficial effects of control during
hospitalization [49]

SGLT2 inhibitors, Sodium-glucose cotransporter-2 inhibitors; GLP1-RAs, Glucagon-like peptide 1 receptor agonists; DPP-4 inhibitors, Dipeptidyl peptidase-4 in-hibitors; ACE2,
angiotensin-converting enzyme 2; ACE, angiotensin-converting enzyme; NASH, Nonalcoholic Steatohepatitis; STZ, Streptozocin; NOD, Non-obese diabetic.
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8. Conclusions

We are amidst dual pandemics of COVID-19 and diabetes and face the threat of the
emergence of SARS-CoV-2 variants, including the Omicron variant. These are intricately
interrelated, and it is particularly important to reveal the precise mechanism underlying
the association between COVID-19 and diabetes as well as to dissolve the vicious circle of
hyperinflammation and hyperglycemia. The incidence and etiology of new-onset diabetes
remain to be fully elucidated, and the diabetogenic properties of SARS-CoV-2 depending
on the variants is a subject for future investigation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11030400/s1, Table S1: Overview of the risk for COVID-19-
related mortality according to the glycemic control status before hospitalization; Table S2: Overview of
the risk for adverse clinical outcomes of COVID-19 according to the blood glucose levels at admission;
Table S3: Overview of the risk for adverse clinical outcomes of COVID-19 according to the glycemic
control during hospitalization.
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