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Abstract: β-adrenergic signaling is known to be involved in cancer progression; in particular,
beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few
data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell
lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of
β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different
in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia
and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells
(BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally,
we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX
cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that
SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for
cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic
condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance
reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new
target and β3-AR blockade as a potential approach in myeloid leukemias.

Keywords: chemoresistance; myeloid leukemia; β3-adrenoreceptor

1. Introduction

Leukemia is the term used to identify a group of different cancers involving blood and bone
marrow (BM). Myeloid malignancies are clonal disorders associated with uncontrolled proliferation
and altered differentiation of hematopoietic stem cells (HSCs) with a consequent increase in immature
myeloid cells [1,2].
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In recent years, the development of new technologies and the discovery of novel molecular
findings, have improved leukemia diagnosis. An important challenge in the treatment of myeloid
malignancies is represented by the phenomenon of resistance to antineoplastic drugs. Understanding
the cellular and molecular mechanisms associated with chemoresistance is crucial in order to improve
cancer patients’ outcome and survival.

There are two main types of chemoresistance: primary drug resistance and acquired drug
resistance. In patients with primary resistance, tumor cells appear resistant before chemotherapy;
while in patients with acquired resistance, tumor cells become resistant after antineoplastic treatment [3].
In general, drug resistance is the result of a combination of multiple factors and biological mechanisms
among which altered expression and activity of specific proteins, genetic and epigenetic changes,
deregulation of signal transduction pathways [3,4].

It is known that an abnormal expression of efflux proteins, and especially of P-glycoprotein (P-gp),
is associated with chemoresistance in myeloid neoplasms [4–6]. P-gp is an ATP-binding Cassette (ABC)
transporter encoded by the multiple drug resistance (MDR1) gene. In particular, it is a 170-kDa efflux
pump, which using ATP hydrolysis, plays an important role in the extrusion of different compounds
out of cells, including drugs and xenobiotics, with a consequent decrease in intracellular substances
accumulation. P-gp is expressed in healthy tissues but also in different types of cancer [7]. Interestingly,
P-gp overexpression in tumors, including myeloid neoplasms [4,5], enhances drugs extrusion out of
cells, reducing chemotherapy efficiency and promoting the phenomenon of resistance to multiple
antineoplastic agents [7]. For instance, an association of a high level of P-gp with a poor outcome is
known in acute myeloid leukemia (AML) [4]. Moreover, Schaich et al., reported that MDR1 expression
was an independent prognostic factor for induction therapy outcome and overall survival in AML
patients [8].

βeta-adrenergic receptors (β-ARs) are G-protein-coupled receptors involved in catecholamines-
activated signal transduction pathways. Three types of β-ARs are known: beta1-adrenoreceptors
(β1-ARs), beta2-adrenoreceptors (β2-ARs) and beta3-adrenoreceptors (β3-Ars). These receptors are
localized and expressed in distinct and specific tissues. β1-ARs are expressed abundantly in cardiac
tissue, kidney and adipose tissue; β2-ARs are localized in gastrointestinal tract, bronchi, skeletal muscle,
liver, immune and non- immune cells; finally, β3-ARs are mainly present in intestine, adipose tissue
and endothelium, moreover they are expressed in the smooth muscle cells of the detrusor muscle
in the urinary bladder [9]. Interestingly, β3-ARs expression is reported also in Chinese hamster
ovary/K1 cells [10]. β-ARs are involved in the modulation of different physiological processes, such as
metabolism and cardiovascular function, but also in human diseases, including cancer [9,11]. Indeed,
several studies have described β-ARs expression in various tumor types and especially in melanoma,
vascular tumors and lung, pancreatic, colorectal, brain, breast, ovarian, prostate, hepatic, kidney and
adrenal cancer [9,11]. Interestingly, β3-ARs expression has been reported also in human leukemia
cells [12].

β-ARs play a key role in different biological processes that are crucial in cancer biology
and they promote tumor progression [13]. In particular, β-ARs are involved in inflammation,
angiogenesis, cancer cells migration, proliferation and survival, epithelial-mesenchymal transition,
invasiveness, metastasis, apoptosis, cellular immune response and resistance to chemotherapy-induced
apoptosis [9,13]. Among the β-ARs, the β2-AR subtype has been shown to be involved in biological
processes related to cancer [14]; however, in recent years, the role of β3-AR in the regulation of
cancer-related pathways has emerging in different types of cancer, especially in melanoma [15].

Furthermore, β-ARs expression has been showed not only in cancer cells, but also in tumor
microenvironment cells, including cancer associated fibroblasts, macrophages, and endothelial
cells [11,13].

Finally, different studies suggest that β-AR blocker drugs are associated with reduction of cancer
cell proliferation, progression and metastasis improving outcome and survival [9,11]. For instance,
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β3-AR antagonist SR59230A promotes tumor cells death and reduces angiogenesis and proliferation in
melanoma [9,16].

In this study, we investigated the effect of β3-AR antagonist SR59230A, belonging to
the class of aryloxypropanolaminotetralins, on different in vitro models of myeloid leukemias.
Moreover, we analyzed the potential involvement of β3-AR in the phenomenon of chemoresistance,
which generally represents a crucial challenge in cancer treatment. Indeed, chemoresistance influences
patients’ clinical outcome promoting recurrence and metastasis and increasing mortality risk.

Here, we demonstrate in in vitro models that β3-AR is highly expressed in myeloid malignancies
and could be involved in cancer cell lines survival in particular under hypoxic conditions; in addition,
we show that SR59230A treatment in combination with doxorubicin could reduce resistance to
doxorubicin, especially in hypoxia.

2. Results

2.1. SR59230A Promoted Apoptosis of Leukemia Cell Lines Preferentially in Hypoxia

In order to investigate the effect of β3-ARs blockade on apoptosis in leukemic malignancies,
four different cell lines of myeloid leukemia were treated with β3-ARs antagonist SR59230A (Figure 1).
SR59230A effect was analyzed in K562, KCL22, HEL and HL60 cell lines, using different drug
concentrations (1 µM, 3 µM, 6 µM, 8 µM, 10 µM) in hypoxic and normoxic conditions, 24 h and 48 h
after drug treatment.

As reported in Figure 1, SR59230A increased apoptosis with a dose-dependent modality in all
cell lines with maximal effects at 8 µM and 10 µM. Moreover, an enhancement of cell lines death
was observed in hypoxia and especially after longer drug exposure, 48 h; no relevant differences
were observed between 24 h and 48 h treatment in normoxia. After 48 h of treatment most of the
cell lines treated underwent apoptosis (ranging from 80% to 95%) (Figure 1B). To better discriminate
the role played by β3-AR, we treated three different myeloid leukemia cell lines (HEL, HL60, K562)
with another β3-adrenoceptor antagonist, L748,337, and with non-selective β1/β2-AR antagonist
propranolol. Results are reported in Supplementary Figure S2A. L 748,337 inhibited all three cell lines
at both concentrations (5 µM and 10 µM), conversely, propranolol showed a less marked effect on the
inhibition of the three cell lines survival. Moreover, to discriminate the role of β3-AR in the effect
observed following SR59230A and L748,337 treatment, we used selective siRNAs for β1-, β2-, β3-ARs
(Supplementary Figure S1A). These results suggested the predominant role of β3-AR subtypes in the
regulation of cell survival in these leukemia cell lines.

2.2. β3-AR Expression Increased under Hypoxia in Myeloid Leukemia Cell Lines

It is known that β3-AR is highly expressed in different tumor tissues, including hematologic
malignancy [17]. Therefore, we investigated the β3-AR expression in myeloid leukemia cell lines used
in this analysis under normoxia and hypoxia conditions.

Notably, data revealed an increase in β3-AR expression in K562, HL60 and KCL22 cell lines after
48 h of hypoxic exposure (Figure 2A), while the HEL cell line showed a different behavior. On the
contrary, neither β1-AR or β2-AR protein expression resulted upregulated under hypoxic conditions
(Supplementary Figure S2B). Interestingly, we detected that a high percentage of β3-AR-positive cells
were also Annexin V-positive, especially in hypoxic conditions after SR59230A treatment, demonstrating
an enhancement of apoptosis in β3-AR-positive cells. Since the most of β3-AR-positive cells were
apoptotic, this suggested a selective activity of the treatment with SR59230A on leukemia cell lines
(Figure 2B).
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Figure 1. Cell death assessment in myeloid leukemia cell lines treated with SR59230A in hypoxia (1% 125 
O2) and in normoxia (21% O2). (A) Apoptosis evaluation through Annexin V and Propidium Iodide 126 
in HEL, K562, KCL22 and HL60 cell lines treated with different concentrations of SR59230A (1 μM, 3 127 
μM, 6 μM, 8 μM, 10 μM) for 24 h, in normoxia and in hypoxia; (B) apoptosis evaluation through 128 
Annexin V and Propidium Iodide in HEL, K562, KCL22 and HL60 cell lines treated with different 129 
concentrations of SR59230A (1 μM, 3 μM, 6 μM, 8 μM, 10 μM) for 48 h, in normoxia and in hypoxia. 130 
Significance was calculated by one-way ANOVA analysis followed by Bonferroni’s post-hoc test. 131 
Results are reported as mean ± SD of three independent experiments performed in duplicate. n=6 per 132 
group. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 SR vs. Ctrl normoxia; °P < 0.05, °°°P < 0.001, 133 
°°°°P < 0.0001 SR vs. Ctrl hypoxia). 134 

Figure 1. Cell death assessment in myeloid leukemia cell lines treated with SR59230A in hypoxia (1%
O2) and in normoxia (21% O2). (A) Apoptosis evaluation through Annexin V and Propidium Iodide in
HEL, K562, KCL22 and HL60 cell lines treated with different concentrations of SR59230A (1 µM, 3 µM,
6 µM, 8 µM, 10 µM) for 24 h, in normoxia and in hypoxia; (B) apoptosis evaluation through Annexin V
and Propidium Iodide in HEL, K562, KCL22 and HL60 cell lines treated with different concentrations
of SR59230A (1 µM, 3 µM, 6 µM, 8 µM, 10 µM) for 48 h, in normoxia and in hypoxia. Significance was
calculated by one-way ANOVA analysis followed by Bonferroni’s post-hoc test. Results are reported as
mean ± SD of three independent experiments performed in duplicate. n = 6 per group. (* P < 0.05,
** P < 0.01, *** P < 0.001, **** P < 0.0001 SR vs. Ctrl normoxia; ◦ P < 0.05, ◦◦◦ P < 0.001, ◦◦◦◦ P < 0.0001
SR vs. Ctrl hypoxia).
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calculated by unpaired T-test in each cell line. Results are reported as mean ± SD of four independent 151 
experiments. n = 4 per group (**P < 0.01, ****P < 0.0001 hypoxia vs. normoxia). (B) Flow cytometric 152 
analysis of HEL, K562, KCL22 and HL60 cell lines in control and SR59230A 5 μM treated cells in 153 
normoxia and hypoxia. Annexin V-positive cells gated on a β3-AR-positive cells subpopulation are 154 
showed. Significance was calculated by unpaired T-test in each cell lines. Results are reported as mean 155 
± SD of four independent experiments. n=4 per group. (**P < 0.01, ****P < 0.0001 SR hypoxia vs. SR 156 
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(BMCs) samples of healthy donors; in particular, BMCs were treated under normoxia and hypoxia 160 
conditions for 48 h.  161 

Figure 2. Evaluation of beta3-adrenoreceptor (β3-AR)-positive cells and β3-AR/Annexin V-positive
cells in myeloid leukemia cell lines under hypoxia (1% O2) and normoxia (21% O2) for 48 h.
(A) β3-AR-positive cells in HEL, K562, KCL22 and HL60 cell lines in normoxia and hypoxia; significance
was calculated by unpaired T-test in each cell line. Results are reported as mean± SD of four independent
experiments. n = 4 per group (** P < 0.01, **** P < 0.0001 hypoxia vs. normoxia). (B) Flow cytometric
analysis of HEL, K562, KCL22 and HL60 cell lines in control and SR59230A 5 µM treated cells in
normoxia and hypoxia. Annexin V-positive cells gated on a β3-AR-positive cells subpopulation are
showed. Significance was calculated by unpaired T-test in each cell lines. Results are reported as mean
± SD of four independent experiments. n = 4 per group. (** P < 0.01, **** P < 0.0001 SR hypoxia vs. SR
normoxia).

2.3. SR59230A Was not Toxic in Healthy Cell Lines

To exclude drug toxicity, we performed an analysis of SR59230A effect on bone marrow cells
(BMCs) samples of healthy donors; in particular, BMCs were treated under normoxia and hypoxia
conditions for 48 h.

As shown in Figure 3A, BMCs displayed low sensitivity to SR59230A in comparison to leukemic
cell lines, suggesting a possible involvement of β3-AR in cancer cells. Particularly, we observed
a relevant BMCs death only at high dose of SR59230A, in a range concentration between 10 and
50 µM. Moreover, the effect of SR59230A on the colony formation was analyzed in healthy cord
blood donor. The presence of SR59230A did not statistically change the number of different colonies
(Figure 3B). In the SR59230A groups, under normoxic conditions the number of colony formation
units-granulocyte, monocyte (CFU-GM) and burst forming units-erythroid (BFU-E) remained almost
stable in all concentrations used.

2.4. β3-AR Was Expressed at Low Levels in Healthy Cells

To clarify the ineffectiveness on healthy samples we analyzed the expression of β3-AR in healthy
cells such as BMCs and peripheral blood mononuclear cells (PBMCs). As reported in Figure 4A–D,



Int. J. Mol. Sci. 2020, 21, 4210 6 of 17

the expression of β3-AR is low in healthy PBMCs and BMCs. Under hypoxic condition, β3-AR
resulted slightly upregulated in PBMCs. Among the different subtypes of PBMCs, β3-AR resulted
in a greater expression in myeloid lineage (Figure 4D). Real time PCR confirmed the low level of
β3-AR in normoxia and a slight induction under hypoxic condition in PBMCs (Figure 4E); moreover,
through cytofluorimetric analysis, we observed an increase in β3-AR positive cells in BMCs under
hypoxic conditions (Figure 4F). All these results supported the hypothesis that β3-AR is strongly
upregulated in myeloid leukemia cell lines and that it could participate in maintaining cell survival in
this pathological condition. Our results showed that β3-AR expression increased in cancer, suggesting
a potential role of this protein in cancer biology.
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Figure 3. Evaluation of SR59230A effect on bone marrow cells (BMCs) and cord blood samples of
healthy donors. (A) Apoptosis evaluation in BMCs samples treated with different concentrations of
SR59230A (1 µM, 5 µM, 10 µM, 20 µM, 50 µM) in normoxia (21% O2) and hypoxia (1% O2); significance
was calculated by one-way ANOVA analysis followed by Bonferroni’s post-hoc test. Results are
reported as mean ± SD of four independent experiments. n = 4 per group. (**** P < 0.0001 SR vs.
Ctrl normoxia; ◦ P < 0.05 SR vs. Ctrl hypoxia). (B) SR59230A (5 µM, 10 µM, 20 µM) effect on colony
formation (BFU-E = burst forming units-erythroid; CFU-GM = colony formation units-granulocyte,
monocyte) in cord blood samples donor. Results are reported as mean ± SD of three independent
experiments. n = 3 per group.

2.5. K562 Doxorubicin Resistant Cell Line and SR59230A Treatment

Since SR59230A was very effective in inducing apoptosis in our experimental setting, we evaluated
whether SR59230A could sensitize the doxorubicin resistant K562/DOX cell line. SR59230A showed
half maximal inhibitory concentration (IC50) values which for K562 and K562/DOX cell lines were 15.3
and 13.1 µM, respectively. Therefore, the two lines had the same sensitivity towards the compound.
These results led us to continue the studies with two concentrations, 3 µM and 5 µM, which had an
intrinsic toxicity of around 20% (Figure 5A).
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Figure 4. Evaluation of β3-AR expression in BMCs and peripheral blood mononuclear cells (PBMCs)
of healthy samples. (A) Flow cytometric plot showing β3-AR expression on total PBMCs. (B) Flow
cytometric plot showing β3-AR expression on CD3 (T cells) positive cells. (C) Flow cytometric plot
showing β3-AR expression on CD19 (B cells) positive cells. (D) Flow cytometric plot showing β3-AR
expression on CD33 (myeloid cells) positive cells. (E) Real-time PCR showing β3-AR mRNA expression
in PBMCs in normoxia (21% O2) and hypoxia (1% O2). (F) β3-AR positive cells in BMCs under normoxia
and hypoxia, evaluated through cytofluorimetric analysis. Results are reported as mean ± SD of three
independent experiments. n = 3 per group. * P < 0.05 hypoxia vs. normoxia.
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Figure 5. Evaluation of cytotoxicity of SR59230A and SR59230A/doxorubicin combination. (A) Intrinsic
cytotoxicity of SR59230A evaluated on K562 cell line and K562/DOX cell line resistant to doxorubicin
due to P-glycoprotein (P-gp) overexpression. The table shows IC50 values obtained with SR59230A;
(B) Cytotoxicity curves of doxorubicin in the absence and in the presence of two concentrations of
SR59230A (3 µM and 5 µM) in K562/DOX cell line. Average IC50 values ± error standard of doxorubicin
and its combination with the SR59230A are reported. The table also shows the reversal fold (RF)
value calculated from the ratio between the IC50 value of doxorubicin in the absence of SR59230A
and in the combination with the compound under study. Results are reported as mean of three
independent experiments.

As shown in Figure 5B, SR59230A seemed to increase the sensitivity of the K562/DOX cell line
to doxorubicin, producing a reversal fold (RF) of 2.95 with the 3 µM concentration and of 4 with the
5 µM concentration under normoxic condition. The RF values are derived from a reduction in the IC50

values for doxorubicin which stand at 2.1 ± 0.61 µM, 0.7 ± 0.21 µM and 0.51 ± 0.1 µM for anthracycline
in the absence of SR59230A and in the presence of SR59230A (3 µM and 5 µM, respectively).

A preliminary study was conducted on the K562 cell line to investigate a putative role of the
β3-AR in multidrug resistance (MDR). According to literature [18], the hypoxic environment should
increase the expression of P-gp; therefore, the response of the K562 and K562/DOX cell lines to
hypoxic exposure was assessed. As shown in Figure 6A, K562 cell line in a hypoxic environment
moderately increased the expression of P-gp compared with the same condition in K562/DOX cell line.
K562/DOX cell line revealed higher expression of P-gp and a strong induction under hypoxic conditions.
Cytotoxicity of doxorubicin increased significantly with RF of 14.2 in K562 cell line exposed to hypoxia
(Figure 6B and Supplementary Figure S1B). Moreover, results showed that SR59230A decreased P-gp
protein expression both at 3 µM and 5 µM under hypoxic conditions (Figure 6C). Figure 6D shows
the fluorescence curves obtained with the CD243 antibody specific for P-gp; the figure shows that the
protein is overexpressed in the resistant cell line with a fluorescence ratio of 17.3.
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Figure 6. P-gp, HIF-1α and UCP2 expression, and evaluation of cytotoxicity of SR59230A and
SR59230A/doxorubicin combination. (A) Real-time PCR analysis: P-gp mRNA expression assessed
in K562 and K562/DOX cell lines under hypoxia (1% O2) and normoxia (21% O2); significance was
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calculated by one-way ANOVA analysis followed by Bonferroni’s post-hoc test. Results are reported as
mean ± SD of three independent experiments. n=3 per group. (B) Cytotoxicity curves of doxorubicin
in normoxia and hypoxia in the absence and in the presence of two concentrations of SR59230A
(3 µM and 5 µM) in K562 cell line. Results are reported as mean of three independent experiments.
(C) Western blot analysis showing P-gp expression in K562 cells treated with SR59230A at 3 µM and
5 µM under hypoxia and normoxia. Significance was calculated by one-way ANOVA analysis followed
by Bonferroni’s post-hoc test. Results are reported as mean ± SD of three independent experiments. n =

3 per group. (D) Fluorescence curves obtained with a FACScanto flow cytometer. R= ratio between the
mean fluorescence intensity of resistant cells and parental cells. K562 cells (red) and K562/DOXO cells
(blue), black curve: autofluorescence. (E) Western blot analysis showing HIF-1α and UCP2 expression
in K562 and K562/DOXO cells treated with SR59230A at 5 µM under hypoxia and relative control in
normoxia. Significance was calculated by one-way ANOVA analysis followed by Bonferroni’s post-hoc
test. Results are reported as mean ± SD of three independent experiments. n = 3 per group.

According to Calvani et al., UCP-2 is strongly expressed in various cancer types, among which
leukemia and pancreatic cancer. Moreover, UCP-2 overexpression is regulated by β3-ARs in stem
cells [15]. Furthermore, literature data showed that UCP-2 is involved also in cancer resistance,
especially in paclitaxel resistance of lung cancer, in topoisomerase I inhibitor CPT-11 resistance of colon
cancer and in gemcitabine resistance of pancreatic adenocarcinoma, non-small cell lung adenocarcinoma
and bladder carcinoma [19]. Interestingly, it has been also reported in leukemia that genipin, an UCP-2
inhibitor, sensitized drug-resistant cells to anthracyclin [20].

Therefore, in this report, we treated K562 both sensitive and resistant to doxorubicin with
SR59230A. Results showed that, in K562 resistant cell line, SR59230A inhibited the upregulation of
UCP2 observed in hypoxia compared to normoxia conditions (Figure 6E).

Moreover, we observed also that HIF-1a protein expression induced in hypoxia was reverted by
treatment with SR59230A (Figure 6E), confirming that the β3-AR could affect MDR-1 expression by
regulating the HIF-1a protein levels.

3. Discussion

Literature data showed that β-ARs blockade could be involved in prevention and treatment of
different types of tumor [21]. Preclinical and clinical efficacy of β-ARs blockade in numerous cancers,
including breast cancer, melanoma, angiosarcoma, neuroblastoma, pancreatic adenocarcinoma, ovarian
and prostate cancer, has been demonstrated [22]. For instance, Montoya et al. showed that β-ARs
antagonists may promote a reduction of tumor proliferation not only in localized breast tumors [23],
but also in advanced stages [22]. Concerning blood cancer, Lamkin et al. showed through in vivo
models that chronic stress can enhance the progression of human pre-B cell acute lymphoblastic
leukemia involving β-adrenergic signaling [12]. Nevertheless, currently the role of β-AR antagonists
in myeloid malignancies has not been clarified yet.

In order to better understand the role of β3-AR in myeloid malignancies, we focused our attention
on the effect of the β3-AR antagonist SR59230A on this type of tumor; in particular, we used K562,
KCL22, HEL and HL60 myeloid leukemia cell lines and we demonstrated that β3-AR blockade results
in reduced cancer cell lines survival by increasing apoptosis, especially under hypoxic conditions.

The finding that SR59230A enhances cell lines death supports the idea that β3-AR could influence
biological processes involved in the regulation of the balance between cell growth and apoptosis.
To confirm that β3-AR could play a crucial role in disease condition, and especially in cancer, we
analyzed BM and PBMCs samples from healthy donors as control samples. SR59230A was selective
for myeloid leukemia malignancies and non-toxic for normal cells, demonstrating that β3-AR could be
a possible marker for malignancies.

Literature data have already shown the β3-AR upregulation under hypoxia in melanoma [16];
here we demonstrated that β3-AR expression is increased in myeloid leukemia cell lines under hypoxia.
Moreover, we observed an enhancement of apoptosis in β3-AR positive cells after SR59230A treatment,
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suggesting that β3-AR could contribute to cancer cell lines survival. Our results suggest to better
investigate the efficacy of β3-AR blockers as potential drugs for myeloid leukemias treatment. β3-AR is
expressed in normal cells at low levels and more importantly is slightly induced by hypoxia compared
with hypoxic induction in cancer cell lines. The expression of β3-AR in normal cells, in particular in BM,
was reported by Méndez-Ferrer et al. showing the participation of the receptor in HSCs mobilization
from the BM [24]. In particular, the authors discovered that adrenergic hormones, known for their
involvement in bone remodeling binding β2-ARs on osteoblasts, were also involved in the activation
of β3-ARs on the surface of BM stromal cells with consequent degradation of the Sp1 transcription
factor, downregulation of the anchoring protein CXCL12 and finally HSCs mobilization from BM to
bloodstream [24,25].

Since β3-AR was slightly induced under hypoxic conditions in normal cells and hypoxia is a
feature of different pathologies, this receptor could be a putative selective marker for cancer therapy
and other pathologies involving hypoxic environment.

Furthermore, in this study we focused our attention on the potential effect of the β3-AR antagonist
SR59230A on myeloid leukemia’s resistance to doxorubicin. Indeed, cancer MDR represents a
significant clinical problem for cancer treatment, including hematological malignancies. Doxorubicin
is an antineoplastic compound frequently used in different tumor types [26]; unfortunately, myeloid
leukemia treatment often fails due to the development of resistance to doxorubicin. In general, MDR is
a complex process associated with various mechanisms, including overexpression of ABC transporters,
among which is P-gp, with consequent increase in drugs efflux [27].

Several studies evidenced the involvement of HIF1α in the regulation of MDR1 gene expression in
various tumors, including colon and liver cancer [28]. In particular, hypoxia promotes chemoresistance
by enhancing MDR1 expression in tumor cells [28]; for instance, Xie et al. reported a correlation of
HIF1α expression and MDR1/Pgp expression in laryngeal cancer Hep 2 cells [28], while Ding et al.
described this association in colon carcinoma [29]. Moreover, the relationship between HIF-1, hypoxia
and P-gp has been described also in gastric cancer, gliomas and breast carcinoma [30]. Concerning
hematologic malignancy, interestingly Muz et al. reported that hypoxia increased P-gp expression in
an in vitro model of multiple myeloma [31].

In this work we showed that the combination of β3-AR antagonist SR59230A with doxorubicin
reduced resistance to doxorubicin in K562/DOX cell line, which represents a model of a doxorubicin-
resistant cell line with higher expression of P-gp in comparison with the K562 cell line.

We showed an increase in MDR1 expression in the K562 cell line maintained in hypoxia, consistent
with the finding that hypoxia is involved in MDR [32]; we then evaluated the effect of SR59230A and
doxorubicin combination on this parental cell line under normoxic and hypoxic conditions observing
an increase in doxorubicin sensitivity in hypoxia in comparison with normoxia.

According to Comerford et al., MDR1 gene is hypoxia responsive: indeed, hypoxia promotes
transcriptional induction of MDR1 and consequently P-gp expression [18]. Finally, the resistance
reversion in K562 resistant to doxorubicin cell line treated with SR59230A suggests that SR59230A
could act targeting P-gp or could be involved in the regulation of P-gp expression. We can therefore
speculate that SR59230A may represent a novel interesting therapeutic strategy for myeloid leukemias
treatment resistant to MDR drugs.

4. Materials and Methods

4.1. Cell Lines and Culture Conditions

Four different human myeloid leukemia cell lines were cultured in our study: K562 and KCL22
(chronic myelogenous leukemia cell lines), HEL (erythroleukemia cell line), HL60 (Acute Promyelocytic
Leukemia cell line). Cell lines were obtained from ATCC. Cell lines were cultured in RPMI medium
(Gibco) supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine (200 mmol/L), 100 U/mL



Int. J. Mol. Sci. 2020, 21, 4210 12 of 17

penicillin–streptomycin. All cell lines were maintained at 37 ◦C in a 5% CO2 humidified atmosphere
incubator with 21% O2 for normoxia, and 1% O2 for hypoxia condition.

The P-gp expressing K562/DOX cell line was obtained from Prof. J. P. Marie (Hospital Hotel-Dieu,
Paris, France). This cell line was cultured in RPMI 1640 medium (GIBCO) supplemented with 10% fetal
calf serum (FCS) (GIBCO) at 37 ◦C in a humidified incubator with 5% CO2. To maintain the resistance,
every month, the resistant cell line was cultured for three days with 400 nM doxorubicin. K562/DOX
cell line overexpresses almost exclusively the membrane glycoprotein P-gp.

All cell lines were routinely tested for mycoplasma contamination.

4.2. Intrinsic Cytotoxicity

The intrinsic toxicity of the SR59230A compound was determined through MTT assay after
the exposure of parental cell line, K562, and resistant cell line, K562/DOX, to the compound in a
concentration range of 1010 M to 104 M for 72 h in a humidified atmosphere with 5% CO2. The MTT
working solution was then added and plates were further incubated for 3 h. Following incubation
cells, formazan crystals were inspected microscopically. The supernatant was then carefully removed
by slow aspiration and the formazan crystals were dissolved in 150 µL of Dimethyl Sulfoxide (DMSO).
The absorbance of the solution was then read on an automated plate reader at a wavelength of 570 nm.
The percentage of growth compared to the untreated control was transformed into dose–response
curves with the GraphPad Prism 5 program and calculated the IC50 values. Toxicity test was repeated
three times.

4.3. Doxorubicin Toxicity

The doxorubicin toxicity was evaluated in absence and in the presence of the SR59230A compound
tested at 3 µM and 5 µM concentrations. Cells (104 cells/well) were seeded, in exponential growth
phase, and solutions of doxorubicin, or a solution of doxorubicin in combination with the compound,
were added to the wells repeated in quadruplicate. Then the plates were incubated at 37 ◦C for 72 h in
a humidified atmosphere with 5% CO2. The MTT test was applied as described for intrinsic toxicity
and the ability of the SR59230A compound to increase cytotoxicity of doxorubicin was expressed by
the RF values obtained as the ratio between the doxorubicin IC50 values on K562/DOX cell line in the
absence and in the presence of the compound. The same procedure was adopted for the evaluation
after 48 h of the reversal activity of resistance in hypoxic environment with 1% O2. The cell line was
adapted to O2 decrease for 24 h. At 48 h, a sample of control cells maintained at 21% O2 or 1% O2 was
collected for the molecular analysis by PCR. Toxicity test was repeated three times.

4.4. Reverse Transcription RT-PCR

The expression levels of MDR1 were analyzed through quantitative PCR (qRT-PCR) using a
RotorGene 3000 (Qiagen, Germany) instrument. Primers were purchased from IDT (Germany).
An amount of 500 ng of total RNA was retro-transcribed using iScript (Bio-Rad, USA) and
amplified with specific primers: MDR1, Fw CAGCTATTCGAAGAGTGGGCACAAAC and Rv
GCCTCTGCATCAGCTGGACTGTTG. PCR amplification was carried out by SsoAdvancedTM
Universal SYBR®Green Supermix (Bio-Rad, USA) according to manual instruction. In the present
analysis 18s rRNA was confirmed to be stable and was used as the normalizer Fw CGGCTACCAC
ATCCAAGGAA and Rv GTTATTTTTCGTCACTACCTCCCCGGG. The RT-qPCR was performed using
the following procedure: 98 ◦C for 2 min, 40 cycles of 98 ◦C for 5 s, 60 ◦C for 10 s. The program was
set to reveal the melting curve of each amplicon from 60 to 95 ◦C with a read every 0.5 ◦C. For the
ADRB3 gene the following primers were used: RefSeq Accession No. NC_000008.10, NG_011936.1,
NT_167187.1; unique assay ID qHsaCED0047996 (Biorad).
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4.5. BM and Culture Conditions

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Pediatric Ethics Committee of Regione Toscana (Project identification code “Beta 3
2019 #235/2019”).

Peripheral Blood (PB) samples of BM blood were collected according to clinical management.
BM aspirates were collected from health donors that provided a written informed consent. BMCs were
isolated and expanded usingαMEM supplemented with 10% heat inactivated FBS, penicillin-streptomycin,
4-(2-hydro-xyethyl)-1-piperazineethanesulfonic acid (HEPES), sodium pyruvate (all from Invitrogen,
Mississauga, Ontario, Canada), and 5 ng/mL basic fibroblast growth factor (bFGF or FGF2;
from Humanzyme, MedicorpInc., Montreal, Quebec, Canada). BMCs were incubated under standard
conditions (at 37 ◦C in a humidified incubator with 5% CO2) at 21% O2 or 1% O2.

4.6. Flow Cytometric Analysis and Apoptosis Evaluation

K562, KCL22, HEL and HL60 cell lines were cultured in 24-well plates (50,000/well) in a hypoxic or
normoxic incubator. In order to evaluate SR59230A toxicity, all cell lines were treated with increasing
concentration of SR59230A (1 µM, 3 µM, 6 µM, 8 µM, 10 µM) for 24 h and 48 h.

SR59230A (1 µM, 5 µM, 10 µM, 20 µM, 50 µM) effects on apoptosis were evaluated on BMCs
cultured in 24-well plates (50,000/well) in hypoxic (1%) or normoxic (21%) conditions. For the evaluation
of β1-, β2-, and β3-adrenoreceptor expression level, K562, HEL and HL60 cell lines were cultured
under normoxic and hypoxic conditions for 24 h, and then stained with the anti-β1 (ORB 129489 (PE)),
anti-β2 (ORB 15065 (FITC)) (Biorbyt, Caambridge, GB) and anti-β3-AR antibodies. The anti-β3-AR
antibody (ab140713) used for cytofluorimetric analysis was obtained from ABCAM and conjugated
with the R-Phycoerythrin Conjugation Kit (ab102918, ABCAM). Expression levels were obtained by
using a MACSQuant Analyzer 10 flow cytometry.

Apoptosis was analyzed using FITC Annexin V Apoptosis Detection Kit with Propidium Iodide
according to the manufacture’s protocol. The cell lines were washed twice with cold BioLegend’s Cell
Staining Buffer and were resuspend in Annexin V Binding Buffer. FITC Annexin V and Propidium
Iodide solution were added to cell suspension and further incubated for 15 min at room temperature
in the dark; afterwards Annexin V Binding Buffer was added, the cell lines were analyzed by flow
cytometry and data were analyzed with Flowlogic Software. Flow cytometry experiments were
repeated 3 times.

4.7. Colony Formation Assay

Cord blood cells were obtained from health donors. For the colony formation assay, 100,000/mL
of mononucleated cells was plated in p35 mm dishes in Methocult (GF H4434, Voden) and treated with
SR59230A (1 µM, 5 µM, 10 µM, 20 µM, 50 µM). After 14 days, the number of BFU-E and CFU-GM
were counted.

4.8. Western Blot Analysis

After cells lysis and quantification, 20 µg of total proteins was loaded on SDS-PAGE followed
by WB analysis. PVDF membranes were treated with blocking solution for 1 h at room temperature
and then they were incubated overnight at 4 ◦C with gentle shaking with the following primary
antibodies: anti-human HIF-1a #610959 (BD Transduction Laboratories), anti-MDR-1 (E1Y7S) #13978
(Cell Signaling Technology), anti-UCP2 (G-6) sc-390189 and anti-β-Actin (C4) sc-47778 (Santa Cruz
Biotechnology). The next day membranes were incubated with specific secondary antibodies for 1 h at
room temperature. Chemiluminescent protein revelation was performed using Clarity Western ECL
Substrate (Biorad) and the images were acquired through the Chemidoc Imaging System (Biorad®).
The Western blot experiments were repeated three times and to verify the application of equal amounts
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of protein, the intensity of the corresponding protein bands of interest was normalized based on that of
the β-actin band for each sample.

4.9. Statistical Analysis

Statistical analysis was performed using the GraphPad Prism 6.0 (GraphPad Software, San Diego,
CA). Values are presented as mean ± SD. Differences with P < 0.05 were considered significant.

To assess normal distribution and homoscedasticity for each quantitative outcome in each group
Kolmogorov–Smirnov’s test and Bartlett’s Test was used, respectively. In order to evaluate difference
in quantitative outcomes between groups, according to normality and homoscedasticity tests results,
ANOVA and posthoc t-test with Bonferroni correction for multiple comparison were used. Posthoc
test was performed only if ANOVA analyses were statistically significant.

5. Conclusions

In summary, this work offers a new interesting perspective on myeloid leukemias treatment;
in particular our data highlight β3-AR as an attractive target to reduce cancer cell survival in myeloid
malignancies (Figure 7). Moreover, β3-AR antagonists in combination with MDR chemotherapeutic
drugs, could represent a novel strategy to fight and overcome chemoresistance improving clinical
outcome and survival of patients affected by myeloid leukemias. However, this work reported
preliminary data that need validation through further experimental tests.
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and Propranolol in hypoxia and normoxia. β-ARs blockers effects on HEL, K562 and HL60 leukemia cell lines.
Apoptosis evaluation through Annexin V in HEL, K562 and HL60 cell lines treated with different concentration
of L748,337 (5 µM, 10 µM) and Propranolol (5 µM, 10 µM) for 48 h, in normoxia (21% O2) and in hypoxia (1%
O2); Significance was calculated by one-way ANOVA analysis followed by Bonferroni’s post-hoc test. Results are
reported as mean ± SD of three independent experiments. n = 3 per group. (* P < 0.05, ** P < 0.01, *** P < 0.001
L748 or Prop vs. Ctrl Normoxia; ◦ P < 0.05, ◦◦ P < 0.01, ◦◦◦ P < 0.001, ◦◦◦◦ P < 0.0001 L748 or Prop vs. Ctrl Hypoxia).
(B) β1- β2- and β3-ARs protein expression in myeloid leukemia cell lines in hypoxia and normoxia. Evaluation of
β1-AR and β2-AR positive cells in HEL, K562 and HL60 leukemia cell lines in normoxia and hypoxia.
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Abbreviations

HSCs Hematopoietic Stem Cells
P-gp P-glycoprotein
ABC ATP-binding Cassette
MDR1 Multiple Drug Resistance gene
AML Acute Myeloid Leukemia
β-ARs beta-Adrenergic receptors
β1-ARs beta1-adrenoreceptors
β2-ARs beta2-adrenoreceptors
β3-AR beta3-adrenoreceptor
BMCs Bone Marrow Cells
PBMCs Peripheral Blood Mononuclear Cells
RF Reversal Fold
FBS Fetal Bovine Serum
FCS Fetal Calf Serum
DMSO Dimethyl Sulfoxide
HEPES 4-(2-hydro-xyethyl)-1-piperazineethanesulfonic acid
bFGF basic Fibroblast Growth Factor
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