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We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer’s disease
(AD).TheMRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals
are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result
of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-
validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and
a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the
screening for AD.

1. Introduction

Alzheimer’s disease (AD) is a progressive and degenera-
tive disease that affects brain cells, and its early diagnosis
has been essential for appropriate intervention by health
professionals. Noninvasive in vivo neuroimaging techniques
such as magnetic resonance imaging (MRI) and positron
emission tomography (PET) are commonly used to diagnose
and monitor the progression of the disease and the effect
of treatment. In this regard, the problem of developing
computer aided diagnosis (CAD) tools to distinguish images
with AD from those of normal brains has been extensively
addressed in the past years [1–12]. A review of a recent work
follows.

Magnin et al. [1] used the relative weight of gray matter
versus white matter and cerebrospinal fluid in 90 regions
of interests (ROI) as features classified with SVM. Based
on the bootstrap method, the SVM obtained 94.5% average
classification accuracy in the classification of 16 AD and 22
control (healthy) subjects, with a mean specificity of 96.6%
and a mean sensitivity of 91.5%. Ramı́rez et al. [2] proposed a
classification system for AD based on the partial least square
(PLS) regression model for feature extraction (identification

of discriminative voxels) and the random forest (RF) clas-
sifier. The PLS-RF system yielded accuracy, sensitivity, and
specificity values of 96.9%, 100%, and 92.7%, respectively,
after classifying 41 normal and 56 AD images using the leave-
one-out cross-validation method. Salas-Gonzalez et al. [3]
used Welch’s 𝑡-test to identify voxels that provide higher
difference between normal and AD images. The identified
voxels formed the main features to classify, and a SVM
with linear kernel reached 96.2% accuracy in distinguishing
41 normal and 38 AD images using leave-one-out cross-
validation method; the sensitivity and the specificity were
about 96%. Chincarini et al. [4] sampled the brain with seven
relatively small volumes that were filtered to give intensity
and textural MRI-based features. Each filtered region was
analyzed with a random forest classifier to extract relevant
features, which were subsequently processed with a support
vector machine. The system performance was evaluated on
the classification of 144 AD patients and 189 controls. Using
receiver operating curve (ROC) analysis for 144 AD patients
and 189 controls, and 20-fold cross-validation, the result was
0.97 area under curve (AUC) for discriminating the AD
images from the normal ones, with 89% sensitivity and 94%
specificity. Chen et al. [5] used large-scale network (LSN)
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analysis to classify subjects with Alzheimer’s disease and
normal subjects. The Pearson product moment correlation
coefficients were used to assess the connectivity between ROI
in the brain. Classification of the AD group (20 subjects) and
the non-AD group (20 subjects) using leave-one-out cross-
validation led to 87% AUC, 85% sensitivity, and 80% speci-
ficity. Graña et al. [6] used fractional anisotropy of diffusion
tensor imaging (DTI) data to obtain information about the
magnitude of the water diffusion process at each voxel. Based
on leave-one-out cross-validation method, the linear kernel
SVM achieved overall accuracy of 100% for the classification
of 25 healthy controls and 20 AD images. Wolz et al.
[7] used the hippocampal volume (HV), cortical thickness
(CTH), tensor-based morphometry (TBM), and features
extracted from manifold-based learning (MBL) framework
to discriminate healthy controls (231 subjects) from subjects
withAD (198 subjects). Five percent of the evaluation subjects
were kept for testing and the remaining 95% were used
for training. The SVM achieved 86% correct classification
rate, 94% sensitivity, and 78% specificity. Zhang et al. [8]
proposed amultimodal data fusion and classificationmethod
based on features extracted from structural MRI, functional
imaging (FDG-PET), and cerebrospinal fluid (CSF). The
three modalities were, respectively, used to measure brain
atrophy and to quantify hypometabolism and specific pro-
teins linked to AD. Consequently, 93 volumetric features
were extracted from 93 ROI automatically labeled by an atlas
warping algorithm. The linear SVM was used to evaluate
the classification accuracy using 10-fold cross-validation.The
result of classifying 51 AD and 52 normal controls yielded
classification accuracy of 93.2%, with a sensitivity of 93%
and a specificity of 93.3%. Daliri [9] used the scale-invariant
feature transforms (SIFT) to extract features fromMR images
that were clustered using the 𝐾-means algorithm. Fisher’s
discriminant ratio was used for ranking clustered features,
and genetic algorithms performed feature subset selection.
The validation data consisted of the MRIs from 98 normal
subjects and from 100 subjects with AD. The SVM achieved
86% correct classification rate using leave-one-out cross-
validation method. Gray et al. [10] combined cross-sectional
and longitudinal FDG-PET information for classification.
Particularly, the whole brain was segmented into 83 anatom-
ically defined regions from which intensities and changes
in signal intensity over the follow-up period were extracted.
The SVM achieved a classification accuracy of 88% for 200
patients with Alzheimer’s disease and 200 healthy controls
using fivefold cross-validation protocol. Li et al. [11] used
longitudinal changes of cortical thickness to characterize AD
pathology. In particular, three categories of features were
extracted from each subject, including static cortical thick-
ness, cortex thinning dynamics, and the correlation between
the longitudinal thickness changes of different regions of
interest (ROI) in brain image. Based on leave-one-out cross-
validation method, the SVM distinguished 37 AD patients
from 40 NC with an accuracy of 96.1%.

In a recent work, we proposed a fractal-based processing
methodology to detect AD in brain MRI [12]. The system
does not require image reduction or segmentation, and it
relies on a simple three-step algorithm. First, the brain MRI

is transformed into a one-dimensional (1D) signal by row
concatenation. Then, a three-component feature vector is
extracted from the 1D signal to characterize its local and
global fractal features as expressed by Hurst’s exponent and
the two results from the detrended fluctuation analysis (DFA)
[13] of the cumulated 1D signal: the scaling exponent and the
total detrended fluctuation energy (Hurst’s exponent allows
the evaluation of how a signal is self-affine, i.e., can be made
self-similar by an affine transformation for a given level of
detail (a self-similar image is one whose whole is similar to
its parts); DFA is a generalization that can also detect long-
range power-law correlations in seemingly nonstationary
signals [13]. In particular, it can determine local trends in
the signal and measure its level of persistence). In the last
step, the obtained feature vector is classified by a SVM
with polynomial kernel. The validation with 10 normal brain
MRI and 13 corresponding to AD led to 100% classification
accuracy by a SVM with quadratic kernel. The obtained
results suggested that the use of fractals to characterize
the MRI of normal patients and ones with AD held the
promise of equal or better classification accuracy than the
best alternative approach while being simpler to implement.

The perfect classification accuracy reported in [12] was
encouraging. However, it was achieved with a small set of
MRI for validation. In addition, the average processing time
to extract the fractal features took over 400 seconds. This
paper follows up the work in [12] with a faster algorithm
and a bigger database for validation. First, the features
extraction processing time is reduced considerably by using
multiscale analysis (MSA) [14] as alternative for Hurst’s and
DFA exponent estimation. Indeed, the approach reported
by Lahmiri and Boukadoum in [12] determines the sought
exponents by running polynomial regressions on multiple
boxes or intervals of the 1D signal; on the other hand, MSA
uses the generalized Hurst’s exponent method [14], which
determines the scaling properties of the signal by computing
the 𝑞th-order moments of the distribution of the signal’s
increments [14]. This method combines the sensitivity to
any type of signal dependence with a high computational
efficiency due to its simple algorithm [14]. As each scale
𝑞 allows the estimation of a Hurst’s exponent, varying this
value allows obtaining the multifractals of the signal in a
straightforward way.

An additional contribution of this work is the use of
a relatively larger database for validation in comparison to
[12]. Finally, our approach does not require a predetermined
region of interest as done in [1, 5, 8, 10] and avoids extracting a
large number of features to characterize the image in different
modalities as done in [3, 4, 6–9, 11]. Instead, the multifractal
analysis is performed on the whole brain MR image, and
the extracted fractals are used to distinguish AD images
from normal ones by the support vector machine. The SVM
is a pattern recognition technique based on the statistical
learning theory that finds the optimal nonlinear hyperplane
that minimizes the expected classification error [15]. It was
successfully applied in previous works [1, 3, 6, 8–12].

The balance of this paper is as follows. Section 2 presents
the multiscale analysis used to obtain the generalized
Hurst’s exponents used to characterize brain MR images and
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the SVM used for classification. In Section 3, we describe the
obtained classification performance in terms of the accuracy
rate, sensibility, and sensitivity. Finally, our conclusions are
drawn in Section 4.

2. Material and Methods

2.1. Image Database. A collection of 93 axial, T2-weighted
MR brain images of 256 × 256 size were downloaded from
the Harvard Medical School webpage [16]. The set included
51 images of normal (healthy) brains and 42 of abnormal
(unhealthy) brains affected by AD. We notice that there
is no indication in the database regarding the AD stage.
Figure 1 shows examples of healthy and AD images used in
the experiments.

2.2. Multiscaling Analysis. Consider a signal 𝑆(𝑡) defined at
discrete time intervals 𝑡 = V, 2V, . . . , 𝑇 over a period 𝑇 that
is an integer multiple of V. The 𝑞th-order moments of the
distribution that characterize the statistical evolution of 𝑆(𝑡)
are defined as follows [17]:

𝐾𝑞 (𝑑) =
⟨‖𝑆 (𝑡 + 𝑑) − 𝑆 (𝑡)‖

𝑞
⟩

⟨|𝑆 (𝑡)|
𝑞
⟩

, (1)

where 𝑑 ∈ [V, 𝑑max] is a time interval and 𝑑max is its predeter-
mined upper limit. The generalized Hurst’s exponent𝐻(𝑞) is
defined from the scaling behavior of 𝐾𝑞(𝑑) according to the
following empirical relation [17]:

𝐾𝑞 (𝑑) ∝ (
𝑑

V
)

𝑞𝐻(𝑞)

. (2)

If 𝐾𝑞(𝑑) and 𝑑 satisfy a linear relationship for a given order
𝑞 in log-log scale, Hurst’s exponent 𝐻(𝑞) can be estimated
by running a linear regression of log(𝐾𝑞(𝑑)) versus log(𝑑).
The generalized Hurst’s exponent 𝐻(𝑞) describes the long-
memory dependence or persistence in the signal 𝑆(𝑡). The
multiscaling structure of signal 𝑆(𝑡) is related to different
orders 𝑞 of the exponent𝐻(𝑞). In general, when𝐻(𝑞) > 0.5,
the signal fluctuations related to the order 𝑞 are persistent.
When 𝐻(𝑞) < 0.5, the signal fluctuations related to order
𝑞 are antipersistent. Finally, the signal fluctuations are those
of a random walk if 𝐻(𝑞) = 0.5 [17]. Notice that 𝐻(𝑞 = 2)

corresponds to the classic Hurst’s exponent [14].
In this paper, the range of 𝑞 is arbitrarily fixed to the

interval from 1 to 6. Higher moments could also have been
considered as will be discussed in Section 4.

The original MRI is transformed into a one-dimensional
(1D) signal by row concatenation. Then, Hurst’s exponents
𝐻(𝑞) for 𝑞 = 1, . . . , 6 are estimated by applying the MSA
algorithm.The resulting six-component feature vector forms
the input of the SVM classifier to perform the identification
of AD images.

2.3. The Support Vector Machine Classifier. Introduced by
Vapnik [15], the support vector machine (SVM) classifier
is based on statistical learning theory. It implements the
principle of structural risk minimization and has excellent

generalization ability as a result, even when the data sample
is small. The SVM performs a classification tasks by con-
structing an optimal separating hyperplane that maximizes
the margin between the two nearest data points belonging
to two separate classes. Given a training set {(𝑥𝑖, 𝑦𝑖), 𝑖 =

1, 2, . . . , 𝑚}, where the input 𝑥𝑖 ∈ 𝑅
𝑑 and class labels 𝑦𝑖 ∈

{+1, −1}, the separation hyperplane for a linearly separable
binary classification problem is given by

𝑓 (𝑥) = ⟨𝑤 ⋅ 𝑥⟩ + 𝑏, (3)

where 𝑤 is a weight vector and 𝑏 is a bias. The optimal
separation hyperplane is found by solving the following
optimization problem:

Minimize
𝑤,𝑏,𝜉

1

2
⟨𝑤 ⋅ 𝑤⟩ + 𝐶

𝑚

∑

𝑖=1

𝜉𝑖 (4)

subject to

𝑦𝑖 (⟨𝑤 ⋅ 𝑥𝑖⟩ + 𝑏) + 𝜉𝑖 − 1 ≥ 0, 𝜉𝑖 ≥ 0, (5)

where 𝐶 is a penalty parameter that controls the tradeoff
between the complexity of the decision function and the
number of misclassified training examples and 𝜉 is a positive
slack variable.Theprevious optimizationmodel can be solved
by introducing Lagrange multipliers and using the Karush-
Kuhn-Tucker theorem of optimization to obtain the solution
as

𝑤 =

𝑚

∑

𝑖=1

𝛼𝑖𝑦𝑖𝑥𝑖. (6)

The 𝑥𝑖 values corresponding to positive Lagrange multipliers
𝛼𝑖 are called support vectors, and they define the decision
boundary. The 𝑥𝑖 values corresponding to zero 𝛼𝑖 are irrele-
vant. Once the optimal values of 𝛼, 𝛼∗ are found, the optimal
hyperplane parameters 𝑤∗ and 𝑏∗ are determined. Then, the
discriminant function of the SVM for a linearly separable
binary classification problem is given by

𝑔 (𝑥) = sign(
𝑚

∑

𝑖=1

𝑦𝑖𝛼
∗

𝑖
⟨𝑥𝑖 ⋅ 𝑥⟩ + 𝑏

∗
) . (7)

In the nonlinearly separable case, the SVM classifier nonlin-
early maps the training points to a high dimensional feature
space using a kernel function Φ, where linear separation can
be possible. The scalar product ⟨Φ(𝑥𝑖) ⋅ Φ(𝑥𝑗)⟩ is computed
by Mercer kernel function 𝐾 as 𝐾(𝑥𝑖, 𝑥𝑗) = ⟨Φ(𝑥𝑖) ⋅ Φ(𝑥𝑗)⟩.
Then, the nonlinear SVM classifier has the following form:

𝑔 (𝑥) = sign(
𝑚

∑

𝑖=1

𝑦𝑖𝛼
∗

𝑖
𝐾⟨𝑥, 𝑥𝑖⟩ + 𝑏

∗
) . (8)

In this study, a polynomial kernel of degree 2 was used for
the SVM. As a global kernel, it allows data points that are far
away from each other to also have an influence on the kernel
values. The general polynomial kernel is given by

𝐾(𝑥, 𝑥𝑖) = ((𝑥𝑖 ⋅ 𝑥) + 1)
𝑑
, (9)
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(a) (b)

Figure 1: Healthy image (a) and AD image (b) in grayscale.
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Figure 2: AD diagnosis system.

where 𝑑 is the order of the polynomial to be used. In this
study, it was varied from 2 to 4. Higher orders were ignored
because of a higher computational burdenwith no substantial
gain in classification accuracy from our experience.

2.4. Validation. The design of the automated AD diagnosis
system is shown in Figure 2.

The validation experiments were conducted using the
leave-one-out cross-validation method. Then, the average
and standard deviation of the correct classification rate
(CCR), sensitivity, and specificity were computed to evaluate
the performance of the classifier. The three performance
measures are defined as follows:

CCR =
Classified Samples

Total Number of Samples
,

Sensitivity =
Correctly Classified Positive Samples

True Positive Samples
,

Specificity =
Correctly Classified Negative Samples

True Negative Samples
,

(10)

where positive samples and negative samples refer to AD and
normal images, respectively.

3. Results

Before processing, the grayscale images as shown in Figure 1
are converted to double color format to perform MSA (see
examples in Figure 3). Figure 4 shows the obtained behavior
of𝐾𝑞(𝑑) as a function of 𝑑 (see, (2)) for the images of healthy
patients and those with AD and for 𝑞 varying from 1 to 6,
whereas 𝑑 varies from 1 to 19. Figure 5 provides the same
information on a log-log scale. Figure 4 reveals that, for the
images of normal brains, 𝐾𝑞(𝑑) quickly reaches horizontal
saturation for 𝑞 = 1, 2, 3; this is not so for the AD images
where 𝐾𝑞(𝑑) increases monotonically for all 𝑑. In addition,
themagnitude of𝐾𝑞(𝑑) for a healthy image is in general larger
than that of an AD image. In summary, Hurst’s exponents
appear to be different at each scale for the two types of brain
MRIs.

As mentioned previously, the order of the polynomial
kernel used in the SVM was varied from 2 to 4. The best
classification performance was obtained with a fourth-order
kernel, for which the correct classification rate, sensitivity,
and specificity were 99.18% ± 0.0083, 100%, and 98.20% ±

0.0182, respectively. A visual analysis of the AD images
revealed that seventeen of them looked markedly different
from the example in Figure 1 (Figure 6 shows three of them).
Removing them from the validation database led to 100%
classification accuracy by the SVM.
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Figure 3: Healthy image (a) and AD image (b) in double color format.
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Figure 4: Multiscale analysis results of healthy image (a) and AD (b).

Finally, the MSA running time was 5.64 seconds, and
the overall image processing time was about 8 seconds on
a 3.30GHz Core i5-2500 CPU using MATLAB 2012a codes,
leading to an execution speed improvement of nearly two
orders of magnitude in comparison to Hurst’s exponent and
DFA.

4. Discussion and Conclusion

The overall classification accuracy obtained in this work was
99.18% ± 0.01. However, excluding some atypical AD images
led to 100% correct classification rate. This suggests that a
multi-SVM approach, where one or more classifier handles

the misclassified images by the first SVM, might lead to
perfect classification accuracy in all situations. We intend to
investigate this possibility.

Our approach for AD detection outperformed most of
the studies found in the literature, where the reported clas-
sification accuracy was between 86% and 96.9% [1–5, 7–13].
One exception is the work of [6] where perfect classification
accuracy is reported. However, it is achieved with a database
on only 45 MR images (25 healthy controls and 20 AD
images), and the number of features used was higher than
1000 in comparison to the six used by our approach. We
limited the number of features to six somewhat arbitrarily,
andwe have not investigated the effect ofmore or less features
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Figure 5: Multiscale analysis results on log-log scale of healthy image (a) and AD (b).

Figure 6: Examples of excluded AD images in the second experiment.

on the performance of the classifier. Future work should also
investigate this.

In summary, multiscale analysis-based Hurst’s exponents
were used for the classification of healthy brain images
versus AD by a SVM with fourth-order kernel. The obtained
results show the potential of using multiscale fractal analysis
to differentiate healthy brain images from ones affected by
Alzheimer’s disease. The MSA algorithm took 5.64 seconds
to analyze a brain MRI while the detrended fluctuation
analysis (DFA) took 400 seconds in our previous work [12].
In addition, a larger database is used for validation.

Finally, although we have obtained better result than the
literature in general, it is difficult to draw definite conclusions
since we used a different image database. In future work,
we will explore a benchmark image depository such as
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. Furthermore, we will investigate the effectiveness of
MSA to classify AD images versusmild cognitive impairment
(MCI). Indeed, the ability to correctly classify the AD and
MCI images based on MSA Hurst’s exponents might shed

light on the ability to predict the conversion fromMCI to AD,
which is of clinical interest.
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