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Abstract

Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc) to many antibiotics and the production of a broad
range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF) patients, are very
difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As
Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these
infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect
against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT) was used to study the transport of
positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively
charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres
interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively
charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin
encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion
of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive
forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further
investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation
efficiency of tobramycin in these liposomes.
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Introduction

Cystic fibrosis (CF) is the most prevalent hereditary disease in

the Caucasian population and is caused by mutations in both cftr

alleles encoding a chloride channel [1]. The absence of a

functional chloride channel (CFTR channel) results in the

secretion of thick, viscous mucus in several organs, including the

lungs and the gastrointestinal tract [2]. The presence of thick

mucus in the lungs impairs the mucociliary clearance, rendering

CF patients more susceptible to lung infections. These lung

infections are not sufficiently cleared and rapidly evolve in chronic

infections, the main cause of morbidity and mortality in CF

patients [3]. The most significant pathogen colonizing the CF

lungs is Pseudomonas aeruginosa. Over time, approximately 80% of

the CF population becomes infected with this pathogen [4].

Compared to P. aeruginosa, Burkholderia cepacia complex (Bcc)

infections only account for a small percentage of the respiratory

infections within the CF population. However, they are often

associated with rapid deterioration of the lung function and

increased mortality [5]. The capacity of Bcc species to cause

invasive disease and their high level of intrinsic antibiotic

resistance make them particularly difficult to eradicate. Through

the production of different exopolymeric substances (EPS)

additional protection is provided against antibiotics and host

immune components [6]. As there is still no optimal treatment

regimen for Bcc infections in CF patients [7], these pathogens

continue to be highly problematic [8] emphasizing the urgent need

for effective antibiotic therapies. As for P. aeruginosa, the production

of EPS by Bcc strains is essential for the formation of thick and

mature biofilms [9]. These EPS, including polysaccharides and

extracellular DNA (eDNA), can delay the penetration of an

antibiotic through the biofilm [10]. By the encapsulation of the

antibiotic in a liposomal carrier, interactions between the

antibiotic and EPS could be avoided, resulting in an improved

anti-biofilm effect. In addition, liposome-encapsulated antibiotics

are protected from degradation by antibiotic-inactivating enzymes

(like b-lactamases) which can accumulate in the biofilm matrix

[11]. Another important factor contributing to antibiotic resistance

in several Gram-negative bacteria, including P. aeruginosa and Bcc

species, is their low outer membrane permeability [12–14]. The

uptake of antibiotics encapsulated in neutral liposomes is not

affected by this outer membrane barrier as this can occur through

direct fusion of the liposome with the bacterial membrane [15]. It

has been shown that subinhibitory concentrations of tobramycin

encapsulated in neutral liposomes displays a high bactericidal

activity against planktonic cultures of several bacterial species,

including P. aeruginosa and B. cenocepacia [16–18], probably due to

an enhanced uptake of the antibiotic. Besides the improved
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transport through the biofilm and a better uptake in the cell,

liposomes could provide selective delivery to the target site by

incorporating specific ligands to the liposome surface. Currently,

several liposome based drugs have been approved for clinical use

and various others are in clinical trials [19]. Arikace, a neutral

liposomal amikacin formulation, currently undergoes phase III

clinical trials for the treatment of lung infections [19,20]. It is the

first liposomal drug being investigated for aerosol delivery.

In the present study, we investigated whether the bactericidal

effect of tobramycin against Bcc biofilms could be increased by

encapsulating the antibiotic in liposomes. Therefore, we analyzed

the behavior of positively and negatively charged nanoparticles in

Bcc biofilms by means of single particle tracking (SPT) as a model

for liposomal transport. According to our observations, negatively

charged particles were directed towards cell clusters, while

positively charged particles became immobilized by interactions

with fiber-like structures (likely eDNA) in the biofilm matrix. Based

on these results, tobramycin encapsulated in anionic liposomes

could be promising in terms of targeted drug delivery. We

consequently evaluated the activity of neutral (reference) and

anionic liposomal tobramycin formulations against Bcc biofilms.

Materials and Methods

Strains
We used 5 Bcc strains in the present study: B. cenocepacia LMG

16656 and LMG 18829, B. cepacia LMG 1222, B. multivorans LMG

18825 and B. dolosa LMG 18943. All Bcc strains were obtained

from the BCCM/LMG Bacteria Collection (Ghent, Belgium) or

were kindly provided by Dr. P. Vandamme (Ghent University,

Belgium). The bacteria were stored in Microbank tubes (Prolab

Diagnostics, Richmond Hill, ON, Canada) at 280uC and

transferred twice on Mueller Hinton (MH) (Lab M, Heywood,

UK) agar plates before use in any experiment.

Lipids
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cho-

lesterol were obtained from Sigma-Aldrich (St. Louis, MO, USA)

and stored at 220uC. 1,2-dioleoyl-sn-glycero-3-phosphocholine

(DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol sodi-

um salt (DPPG), were obtained from Corden Pharma Interna-

tional (Plankstadt, Germany) and stored at 220uC. Lipids were

dissolved in chloroform and stock solutions were stored between

2–8uC.

Nanoparticles
Yellow-green (lex:505/lem:515) fluorescent carboxylate-modi-

fied polystyrene FluoSpheres of 0.2 mm diameter were purchased

from Invitrogen (Carlsbad, CA, USA). Positively charged nano-

spheres were prepared from the carboxylate-modified FluoSpheres

by modification with N,N-dimethylethylenediamine (DMEDA)

(Sigma-Aldrich) as described previously [21]. The size and zeta-

potential of the positively charged nanospheres were measured in

HEPES (pH 7.3, 20 mM) using the Zetasizer Nano-ZS (Malvern,

Worcestershire, UK).

Single Particle Tracking Setup
All SPT measurements were performed on a custom-built laser

wide-field fluorescence microscope setup as described previously

[22]. Briefly, two solid-state lasers, a 100 mW Calypso 491 nm

(Cobolt, Solna, Sweden) and a 100 mW Spectra Physics Excelsior

642 nm (CA, USA), were used to excite the fluorophores in

samples mounted on a TE2000-E (Nikon BeLux, Brussels,

Belgium) inverted microscope equipped with a Plan Apo VC

10061.4 NA oil immersion objective lens (Nikon). A diffuser in the

illumination path ensured even illumination of the sample. An

acousto-optical tunable filter (AOTF) was used to modulate the

intensity of the laser beams. The AOTF was synchronized to the

EMCCD camera (Cascade II:512; Roper Scientific, Tucson, AZ,

USA) in order to limit photobleaching during imaging. Videos of

the moving nanoparticles were acquired with the NIS Elements

software package (Nikon).

Analysis of SPT Data
Analysis of the videos was performed off-line using software

developed by Braeckmans et al. [23]. First, the particles were

localized in all frames of the SPT movie. A selection of ‘‘real’’

particles was made according to user-defined criteria, including

size, contrast relative to the local background and sphericity.

Subsequently, individual trajectories of the nanospheres were

calculated using a nearest neighbor algorithm. The positions of

nanospheres that are closest to each other were connected in

subsequent image frames, taking into consideration the maximum

distance a particle can reasonably move from one frame to

another. The trajectories were further analyzed based on mean

square displacement (MSD) analysis. The MSD was calculated for

every available time lag (t), i.e. the multiples of time between two

subsequent images in an SPT movie.

A weighted least squares fitting was performed of

MSD~Ctaz4s2

to the MSD vs. t curves, yielding for each trajectory the parameters

Gamma (C), alpha (a) and sigma (s). Gamma is the so-called

transport coefficient, alpha the anomalous exponent and sigma a

parameter taking into account the limited precision with which a

particle can be localized. The parameter of interest was alpha,

which contains information on the mode of motion. For free

diffusion, a equals 1 while a ,1 and a .1 represent sub- and

super-diffusion, respectively. By analyzing the MSD versus t plots

of many trajectories, a distribution of a values was obtained. In

addition, the apparent diffusion coefficient, Da, was calculated

corresponding to the first time lag according to:

Da~MSD= 4tð Þ

The distribution of Da values was further processed using a

maximum entropy method (MEM) which improves the resolution

and at the same time smoothes the curve by only retaining the

features that are statistically warranted by the data [22].

SPT Measurements in Biofilms
Bcc biofilms were cultured in uncoated 35 mm glass bottom

culture dishes (MatTek, Ashland, MA, USA). The dishes were

inoculated with 2 mL of a standardized bacterial suspension (,108

CFU/mL in MH broth) in the presence or absence of 10 mg/mL

dornase alfa (Pulmozyme, Genentech, SF, USA) and were

incubated at 37uC. After 4 h, the supernatant, containing non-

adhered cells, was removed and adhered cells were carefully

washed with physiological saline (0.9% w/v NaCl) (PS). Subse-

quently, 2 mL of fresh MH broth (with or without 10 mg/mL

dornase alfa) was added and the dishes were incubated for another

20 h at 37uC. After 24 h of biofilm formation, the supernatant was

removed and biofilms were gently washed with PS. Biofilm cells

were stained by adding 1 mL of a Syto 59 (Invitrogen) solution

Transport in Bcc Biofilms
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(5 mM in PS). After 15 min of incubation at room temperature,

protected from light, the biofilm was washed twice with PS. The

nanoparticle stock suspensions were sonicated for 10 min before

dilution in PS (,0.002% solids). One mL of this particle

suspension was added to the biofilms, right before recording

movies. Movies of 5 s with a temporal resolution of 39.2 ms (time

between two subsequent images, time lag) and an image

acquisition time of 3 ms were recorded. Dual color image

acquisition allowed easy navigation within the biofilm. Between

25 and 30 movies on different locations in the biofilm were

recorded. Each experiment was carried out in triplicate at room

temperature.

Liposome Preparation
Liposomes were prepared by a dehydration-rehydration method

as described previously [24]. In brief, for the preparation of

neutral liposomes, 50 mmol of DPPC and 25 mmol of cholesterol

were dissolved in 1 mL of chloroform in a round-bottomed flask.

For the anionic liposomes, 53 mmol of DOPC and 6.6 mmol of

DPPG were dissolved in 1 mL of chloroform. The round-

bottomed flask was connected to a rotary evaporator to dry the

lipid film under controlled vacuum at 50uC. The lipid film was

rehydrated with 2 mL of a sucrose solution in distilled water (1:1,

w/w, sucrose to lipid). Sucrose is needed to stabilize the liposomes

during freeze drying. Lipid suspensions were vortexed to form

multilamellar vesicles and then sonicated for 5 min in an

ultrasonic bath (Branson 3510), followed by two additional cycles

of vortexing and sonication. The resulting suspension was then

mixed with 1 mL (40 mg/mL) of tobramycin in PS. The mixture

was frozen (220uC) and immediately freeze dried. After freeze

drying, the powdered formulations were stored at 4uC until use.

For rehydration, 200 mL of distilled water at 50uC was added. The

suspension was vortexed and incubated for 30 min at 50uC. These
steps were repeated with 200 mL phosphate-buffered saline (PBS,

pH 5.9). After incubation at 50uC, 1.6 mL of PBS was added, the

mixture was vortexed and incubated for another 30 min at 50uC.
Non-encapsulated tobramycin was removed following three

rounds of PBS wash (183006g, 15 min at 4uC) and the pellet

was resuspended in 2 mL PS. The size and zeta-potential of the

liposomes were measured in HEPES (pH 7.3, 20 mM) using the

Zetasizer Nano-ZS (Malvern, Worcestershire, UK).

Quantification of the Amount of Encapsulated
Tobramycin
The concentration of liposome encapsulated tobramycin was

measured by agar diffusion, using a laboratory strain of Bacillus

subtilis (ATCC 6633) as indicator organism. B. subtilis ATCC 6633

spore suspensions were prepared as described in the European

Pharmacopoeia [25]. In brief, B. subtilis was grown at 35–37uC for

7 days on Antibiotic medium 1 (AM1) supplemented with

0.001 g/L manganese sulphate. After at least 7 days, the growth,

which mainly consisted of spores, was washed off using sterile

water. The obtained suspension was heated at 70uC for 30 min

and diluted to give an appropriate concentration of spores (107–

108 per mL). The spore suspensions were stored at 4uC until use.

We used this suspension to prepare a 1% suspension of spores

(4 mL/400 mL) in warm (47.5uC) AM 11 agar. The agar was

poured into a sterile glass plate and was left to solidify for 15 min

at room temperature. To lyse the liposomes, 0.2% Triton X-100

was added to the liposomal solutions. This level of Triton X-100

had no effect on the performance of the assay (data not shown).

Wells of 5 mm diameter were punched in the agar and filled with

200 mL of standard tobramycin solutions or with the sample. The

plate was covered with a steel lid and incubated for 20 hours at

35uC after 4 h of pre-diffusion at 4uC. We subsequently measured

the inhibition zones and the average of 4 measurements was used

for data analysis. A standard curve of known concentrations of free

tobramycin (0.03125–1 mg/mL) was constructed and was utilized

to calculate the amount of encapsulated tobramycin that was

released after Triton X-100 treatment.

Determination of the MIC of Tobramycin
MICs were determined in duplicate according to the EUCAST

broth microdilution protocol using unsupplemented MH broth. In

brief, bacterial suspensions were standardized at ,56105 CFU/

mL before inoculation of a flat-bottomed 96-well plate filled with

100 mL of tobramycin serial dilutions in MH. The range of

tobramycin concentrations used was from 2 to 1024 mg/L. Plates

were incubated at 37uC for 20 h and the optical density was

determined at 590 nm using a multilabel microtitre plate reader

(Envision, Perkin Elmer LAS, Waltham, MA, USA). The MIC is

the lowest antibiotic concentration for which a similar optical

density was observed in the inoculated and blank wells.

Activity of Liposome Encapsulated Tobramycin Against
Bcc Biofilms
Biofilms were cultured in round-bottomed 96-well plates. An

inoculum was prepared by suspending bacteria from a pure

culture on MH agar in MH broth. The inoculum was

standardized at ,108 CFU/mL and the wells of the microtitre

plate were filled with 100 mL of this suspension. Plates were

incubated at 37uC without shaking. After 4 h, the supernatant,

containing planktonic cells, was aspirated from the wells. Adhered

cells were carefully washed with 100 mL of PS and 100 mL of fresh

sterile MH broth was added. Plates were incubated for an

additional 20 h at 37uC. After 24 h of biofilm formation, biofilms

were washed with 100 mL of PS before treatment with free

tobramycin (final concentrations of 140 mg/mL or 4XMIC of

tobramycin in PS) or liposome encapsulated tobramycin (final

concentrations of 140 mg/mL or 4XMIC of tobramycin in PS).

After 24 h of treatment at 37uC, cell numbers were determined by

plate counting.

Results

Properties of Nanoparticles and Liposomes
The average sizes and average zeta-potentials of nanospheres

and liposomes used in the present study are shown in Table 1. For

the liposomes, the concentrations of encapsulated tobramycin (i.e.

the concentration that is released after breaking up all liposomes in

the solution with Triton X-100) are also shown in Table 1.

Transport of Negatively Charged Nanoparticles in Bcc
Biofilms
The mobility of carboxylate-modified polystyrene nanospheres

(0.2 mm) added to Bcc biofilms was studied by analyzing individual

trajectories of the nanospheres in the biofilm. The distribution of a
values and Da coefficients of the carboxylate-modified nanospheres

is shown in Figure 1. Average a and Da values for all conditions are

shown in Table 2. For all strains investigated, negatively charged

particles display subdiffusion (0,a,1 ) when added to the biofilm.

This most pronounced subdiffusion is observed in B. cenocepacia

LMG 16656 and B. cenocepacia LMG 18829 biofilms and to a lesser

extent in B. multivorans LMG 18825 and B. cepacia LMG 1222

biofilms. This is also reflected in the Da distributions where an

immobilized fraction is observed in both B. cenocepacia LMG 16656

and B. cenocepacia LMG 18829 biofilms. This anomalous diffusion
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indicates that the negatively charged particles strongly interact

with the biofilms. In addition, the particles diffuse slowly in the

biofilm as their apparent diffusion coefficients are much lower

than those in water (Dw=1.96 mm2/s (26)). The highest diffusion

rates were observed in a B. cepacia LMG 1222 biofilm (average

Da=0.42 mm2/s) while the lowest were observed in a B. multivorans

LMG 18825 biofilm (average Da=0.15 mm2/s). The mobility of

the negatively charged nanospheres in both B. cenocepacia LMG

16656 and LMG 18829 biofilms is similar, yielding average

diffusion coefficients of 0.26 and 0.28, respectively.

Transport of Positively Charged Nanoparticles in Bcc
Biofilms
The mobility of DMEDA-modified polystyrene nanospheres

(0.2 mm) in different Bcc biofilms was also studied (Figure 2).

Positively charged nanospheres displayed subdiffusion in all Bcc

biofilms grown in the absence of dornase alfa. Alfa values for B.

cepacia LMG 1222 show a bimodal distribution, with part of the

particles displaying free diffusion. Anomalous subdiffusion was

most pronounced in B. cenocepacia LMG 18829 (mean a=0.23). In

contrast, a values closest to 1 were obtained in B. multivorans LMG

18825 and B. cepacia LMG 1222 biofilms, with mean a values of

0.65 and 0.62, respectively. This correlates with the highest

Table 1. Characteristics of the nanospheres and liposomes used in the present study (n = 3).

Particle
Average size
(nm) (6SD)

Average zeta-potential
(mV) (6SD)

Total lipsomal tobramycin concentration
(mg/mL) (6SD)

Carboxylate-modified nanosphere 224.0 (60.7) 248.4 (60.7) /

DMEDA-modified nanosphere 231.9 (61.2) 30.4 (60.6) /

DPPC/cholesterol liposomes
(2/1, molar ratio)

426.3 (626.4) 20.5 (60.1) 141 (635)

DOPC/DPPG liposomes
(8/1, molar ratio)

228.5 (634.9) 222.3 (60.5) 1128(616)

doi:10.1371/journal.pone.0079220.t001

Figure 1. Mobility of 0.2 mm carboxylate-modified nanospheres in Bcc biofilms.
doi:10.1371/journal.pone.0079220.g001
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average apparent diffusion coefficient (average Da=0.44) in B.

multivorans LMG 18825 biofilms. Although the average diffusion

coefficient in B. cepacia LMG 1222 is much smaller, the distribution

is clearly bimodal, with two groups of particles behaving

differently. The peak of the faster moving population represents

particles with an apparent diffusion coefficient of 0.41 mm2/s. Still,

positively charged nanospheres diffuse much more slowly in the

Bcc biofilms than in water (Dw=1.88 mm2/s [26]). The hindered

transport of positively charged particles in Bcc biofilms could be

due to interaction with negatively charged matrix components. It

was previously observed that cationic nanospheres interacted with

fiber-like structures in Bcc biofilms, greatly impairing their

mobility and this was confirmed in the present study (Movie S1

and Movie S2). As these fiber-like structures are likely eDNA, the

experiments with DMEDA-modified nanospheres were repeated

in biofilms grown in the presence of dornase alfa (10 mg/mL)

(Figure 2). The most pronounced effect of dornase alfa on the

mobility of positively charged nanospheres was observed in B.

cepacia LMG 1222 and B. cenocepacia LMG 18829 biofilms for

which average diffusion coefficients approximately doubled, from

0.27 to 0.45 mm2/s and from 0.23 to 0.54 mm2/s, respectively. In

addition the a distributions of the positively charged nanospheres

displayed a shift to higher values, although this shift was less

pronounced in B. cenocepacia LMG 16656 and B. multivorans LMG

18825 (Figure 2).

Activity of Liposome Encapsulated Tobramycin Against
Bcc Biofilms
We tested the activity of both neutral and negatively charged

liposomes containing tobramycin against Bcc biofilms (Figure 3).

When added at a final concentration of 140 mg/mL (Figure 3a),

free tobramycin showed modest activity against B. cenocepacia LMG

18829, B. multivorans LMG 18825 and B. dolosa LMG 18943 and

strong activity against B. cepacia LMG 1222. This is in agreement

with the MIC values observed. The MIC for B. cepacia LMG 1222

is low (32 mg/mL) while these for B. cenocepacia LMG 18829, B.

multivorans LMG 18825 and B. dolosa LMG 18943 were only

slightly below (128 mg/mL) the tobramycin concentration tested

(140 mg/mL). Finally, the MIC of tobramycin for B. cenocepacia

LMG 16656 (256 mg/mL) is considerably above the concentration

used in this experiment, explaining the lack of bactericidal activity

(Figure 3A). Both neutral and negatively charged liposomes

containing 140 mg/mL of tobramycin (< 4XMIC) showed a

bactericidal effect against B. cepacia LMG 1222 biofilms but no

increased bactericidal activity compared to free tobramycin was

observed. In B. multivorans LMG 18825 biofilms, neutral liposomes

containing 140 mg/mL tobramycin (< MIC) showed the same

activity as free tobramycin. Previous research from our group has

indicated that tobramycin at concentrations of 4XMIC yielded a

substantial bactericidal effect against Bcc biofilms [27]. Increasing

the liposomal tobramycin concentration to 4XMIC was only

possible for the negatively charged liposomes as the maximum

achievable concentration of encapsulated tobramycin in neutral

liposomes was 140 mg/mL. However, at this increased tobramycin

concentration, negatively charged liposomal tobramycin formula-

tions only showed bactericidal activity against B. cepacia LMG

1222 (Figure 3B).

Discussion

In the present study we investigated the transport of negatively

and positively charged nanospheres in Bcc biofilms. The transport

of nanospheres can be used as a model to predict the transport of

antibiotic-containing liposomes. Liposomes are made up of

phospholipids and can act as biodegradable delivery systems.

Antibiotics encapsulated in liposomes have lower toxicity and

higher bioactivity and bioavailability [18,28]. It has already been

demonstrated that liposomal antibiotic formulations show in-

creased bactericidal activity against biofilms compared to free

antibiotics [29,30]. However, a first condition is that efficient

transport of liposomes in the biofilm matrix takes place. Therefore,

as a first step in developing a drug-delivery system with activity

against Bcc biofilms, we studied the transport of model

nanospheres in these biofilms. In a previous study we have shown

that PEGylated neutral nanospheres displayed normal (unob-

structed) diffusion in B. multivorans LMG 18825 biofilms and that

Table 2. Average apparent diffusion coefficients, both in Bcc biofilms and in water [26], and average a values of the nanospheres
in Bcc biofilms.

Biofilm Condition Particle Av Da (mm2/s) (6SD) Av a Av Dw (mm2/s) (6SD)

B. cenocepacia LMG 16656 Control Carboxylate-modified 0.26 (60.29) 0.43 1.96 (60.02)

Control DMEDA-modified 0.29 (60.21) 0.39 1.88 (60.09)

Dornase a DMEDA-modified 0.37 (60.44) 0.44

B. cenocepacia LMG 18829 Control Carboxylate-modified 0.28 (60.36) 0.48 1.96 (60.02)

Control DMEDA-modified 0.23 (60.30) 0.23 1.88 (60.09)

Dornase a DMEDA-modified 0.54 (60.30) 0.49

B. cepacia LMG 1222 Control Carboxylate-modified 0.42 (60.25) 0.81 1.96 (60.02)

Control DMEDA-modified 0.27 (60.28) 0.62 1.88 (60.09)

Dornase a DMEDA-modified 0.45 (60.26) 0.97

B. multivorans LMG 18825 Control Carboxylate-modified 0.15 (60.11) 0.77 1.96 (60.02)

Control DMEDA-modified 0.38 (60.20) 0.65 1.88 (60.09)

Dornase a DMEDA-modified 0.42 (60.30) 0.67

B. dolosa LMG 18943 Control Carboxylate-modified 0.32 (60.36) 0.57 1.96 (60.02)

Control DMEDA-modified 0.25 (60.30) 0.35 1.88 (60.09)

Dornase a DMEDA-modified 0.19 (60.30) 0.53

doi:10.1371/journal.pone.0079220.t002
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these particles diffuse in the biofilm at similar rates as in water

[26]. This was in contrast to the mobility of carboxylate- and

DMEDA-modified nanopsheres in a B. multivorans LMG 18825

biofilm which was found to be strongly impeded [26]. In the

present work we expanded the panel of Bcc strains to study the

diffusion in biofilms of both carboxylate- and DMEDA-modified

nanospheres. The negatively charged nanospheres moved 5 to 13

times more slowly in all Bcc biofilms tested compared to in water.

In all biofilms, a fraction of relatively immobile negatively charged

particles, characterized by Da values close to zero, was observed.

This immobilization is probably caused by electrostatic interac-

tions between positively charged components of the biofilm and

the negatively charged nanospheres, which correlates with the

average a ,1 values observed for these particles, indicating

anomalous subdiffusion. It was previously observed that positively

charged particles are immobilized on fiber-like structures, which

were hypothesized to be eDNA [26]. Here we investigated this

further by studying the transport of DMEDA-modified nano-

spheres in biofilms grown in the presence of dornase alfa. In

general it was found that dornase alfa treatment reduced the

extent of anomalous diffusion and improved the diffusion rate,

supporting the view that positively charged particles can get

trapped by binding to eDNA in the biofilm matrix. As DMEDA-

modified nanospheres interact with eDNA, the application of

positively charged liposomes as antibiotic carrier systems can only

be considered in combination with e.g. dornase alfa. However, as

previous research has indicated that the use of dornase alfa could

be contraindicated in CF patients infected with B. cenocepacia [31],

we did not test the effect of tobramycin encapsulated in positively

charged liposomes. Instead, the effect of tobramycin encapsulated

in negatively charged liposomes was compared to that of

tobramycin encapsulated in neutral liposomes. Neutral liposomal

formulations were tested as a reference as these appear, at first

sight, less interesting to treat Bcc biofilm infections based on the

mobility of neutral nanospheres which showed no enrichment in

B. multivorans LMG 18825 biofilms. In contrast, enrichement of

carboxylate-modified nanospheres at sites close to the bacteria has

been observed [26]. Therefore, if anionic liposomes behave

similarly in Bcc biofilms as anionic nanospheres, tobramycin

could potentially be targeted near the cell clusters when

encapsulated in anionic liposomes, resulting in an increased anti-

biofilm effect. At free tobramycin concentrations equal to 4XMIC,

a substantial bactericidal effect against all Bcc biofilms was

observed. Unfortunately, this anti-biofilm effect could not be

increased by encapsulating tobramycin in either neutral or anionic

liposomes. As the surface of Bcc cells is negatively charged it could

be that the fusion of anionic liposomes with the bacterial cells is

limited by repulsive forces at close proximity. The bactericidal

activity of tobramycin encapsulated in neutral liposomes at

concentrations of 4XMIC could only be tested against B. cepacia

LMG 1222 as this strain showed the lowest MIC (32 mg/mL) and

not more than 140 mg/mL of tobramycin could be encapsulated

in these neutral liposomes. The neutral liposomal tobramycin

formulation did not show an increased bactericidal effect

Figure 2. Mobility of 0.2 mm DMEDA- modified nanospheres in Bcc biofilms.
doi:10.1371/journal.pone.0079220.g002
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compared to that of free tobramycin. Although the observed

relatively unobstructed motion of neutral particles in B. multivorans

LMG 18825 biofilms suggests no penetration difficulties for

neutral liposomes in the biofilm, we did not observe a substantial

anti-biofilm effect. However, the effect of the neutral liposomal

tobramycin at a concentration of 140 mg/mL was not decreased

compared to the effect of free tobramycin in B. multivorans LMG

18825 biofilms, indicating that the encapsulated tobramycin does

enter the cell. Possible explanations for the lack of an anti-biofilm

effect of neutral formulations of liposomal tobramycin in B.

cenocepacia LMG 16656, B. cenocepacia LMG 18829 and B. dolosa

LMG 18943 are that a hydrophilic EPS layer in close proximity to

the biofilm cells protects them from fusion with the liposomal

carrier system. Alternatively, it could be that the transport of

nanospheres is not a good model for the transport of liposomes in

Bcc biofilms, especially for the neutral liposomes which are twice

the size of the nanospheres. Smaller sized neutral liposomes with

equal tobramycin encapsulation efficiency would allow to inves-

tigate this further but the low encapsulation efficiency of

tobramycin into neutral liposomes [24] makes this impossible at

present.

Conclusions

Both positively- and negatively charged nanospheres show slow

subdiffusion in Bcc biofilms. While positively charged nanospheres

likely interact with eDNA, negatively charged nanospheres

probably bind to positively charged matrix components. As

previous research from a collaborating research group has

indicated an enrichment of negatively charged nanospheres close

Figure 3. Activity of free and liposomal tobramycin against Bcc biofilms.
doi:10.1371/journal.pone.0079220.g003
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to biofilm clusters, anionic liposomes could possibly serve as

antibiotic delivery systems with high potential for treatment of Bcc

biofilm infections. However, anionic liposomal formulations with

tobramycin concentrations of 4XMIC only displayed bactericidal

activity against B. cepacia LMG 1222 biofilms. In contrast, free

tobramycin at this concentration showed high bactericidal activity

against all Bcc biofilms tested. The fusion of the negatively charged

liposome with the negatively charged bacterial membrane is likely

limited by electrostatic repulsive forces at close proximity.

Although we observed unobstructed diffusion of neutral nano-

spheres, the use of a neutral liposomal tobramycin formulation did

not result in an increased anti-biofilm effect compared to free

tobramycin. Additional research for the development of an

optimal tobramycin carrier to treat Bcc biofilm infections is

needed.
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