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Longshot enables accurate variant calling in diploid
genomes from single-molecule long read
sequencing
Peter Edge1 & Vikas Bansal2*

Whole-genome sequencing using sequencing technologies such as Illumina enables the

accurate detection of small-scale variants but provides limited information about haplotypes

and variants in repetitive regions of the human genome. Single-molecule sequencing (SMS)

technologies such as Pacific Biosciences and Oxford Nanopore generate long reads that can

potentially address the limitations of short-read sequencing. However, the high error rate of

SMS reads makes it challenging to detect small-scale variants in diploid genomes. We

introduce a variant calling method, Longshot, which leverages the haplotype information

present in SMS reads to accurately detect and phase single-nucleotide variants (SNVs) in

diploid genomes. We demonstrate that Longshot achieves very high accuracy for SNV

detection using whole-genome Pacific Biosciences data, outperforms existing variant calling

methods, and enables variant detection in duplicated regions of the genome that cannot be

mapped using short reads.
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The availability of second-generation DNA sequencing
technologies such as Illumina short reads has made the
resequencing of human genomes routine1. Both single-

nucleotide variants (SNVs), the most abundant form of variation
in the human genome, and small indel variants can be reliably
detected using whole-genome Illumina sequencing using
sequence coverage of 30–40×2,3. Nevertheless, sequencing human
genomes using short-read sequencing technologies has many
limitations. First, humans are diploid organisms with two copies
(maternal and paternal) of each autosomal chromosome. Hap-
lotypes, or the sequence of alleles that occur on an individual
chromosome, can be computationally assembled from whole-
genome sequencing (WGS) using overlaps between reads that
span multiple heterozygous variants4–6. However, due to the
low rate of heterozygosity of human genomes7, Illumina reads
derived from paired-end sequencing of short fragment libraries
(200–500 bp in length) typically cover only a single variant site
and do not provide long-range haplotype information. Second,
~3:6% of the genome consists of long and highly similar dupli-
cated sequences where short reads cannot be uniquely mapped
and hence SNVs cannot be detected. These regions overlap
hundreds of coding genes, including many disease-associated
genes such as PMS2 and STRC8.

Third-generation single-molecule sequencing (SMS) technolo-
gies such as Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) generate long sequence reads; average read
lengths for the PacBio single-molecule real-time (SMRT) tech-
nology are 10–30 kb9. These long reads have the potential to
overcome many of the limitations of short-read sequencing
technologies including haplotyping and detection of structural
variation. Indeed, SMS data have been successfully used for de
novo assembly of human genomes10,11, identifying complex
structural variation12 and haplotype assembly of human
genomes10,13. However, compared with short-read sequencing
technologies such as Illumina, the per-base accuracy of SMS reads
is low with an error rate exceeding 10% (primarily due to
insertion/deletion errors)9. This high error rate makes the
detection of small sequence variants such as SNVs, particularly
heterozygous variants, difficult.

With the decreasing cost of SMS technologies and their
increasing use for sequencing human genomes, accurate short
variant calling methods for long-read SMS data can be valuable in
many ways. Current benchmarks for variant calling in human
genomes, developed by the the Genome in a Bottle (GIAB)
Consortium14,15, are based on short-read sequence data and
cover �90.8% of the reference human genome sequence. These
high-confidence variant calls are immensely valuable for devel-
oping new variant calling methods and sequencing technologies.
However, these variant call sets are biased towards regions of the
genome that are easy-to-call using short reads16. Accurate SNV
calling using long-read SMS data can provide independent vali-
dation of short-read SNV calls leading to reduction in false
positives and increased understanding of systematic errors and
artifacts. Furthermore, SNV calling using SMS reads can enable
the generation of high-confidence variant calls in repetitive
regions of the genome that include segmental duplications. The
ability to call variants in repetitive regions that are inaccessible to
short-read sequencing technologies can also advance the use of
SMS technologies for detection of disease-causing mutations in
duplicated genes via whole-genome or targeted sequencing17.

Haplotype-resolved SNV detection from SMS reads can also
enable the discovery of other types of human genetic variation,
such as structural variants (SVs) via separation of reads using
haplotypes. Huddleston et al.18 used an assembly-based approach,
SMRT-SV, to identify thousands of SVs from whole-genome
PacBio data of two haploid genomes, 89% of which were not

reported by the 1000 Genomes Project19. However, the sensitivity
of SV detection using SMRT-SV was only 41% in diploid gen-
omes. Chaisson et al.20 performed dense whole-genome haplo-
typing of a human genome using multiple sequencing
technologies, and were able to call SVs successfully on each group
of haplotype-separated SMS reads.

Variant calling tools such as GATK HaplotyperCaller21 and
FreeBayes22 developed for short-read data analysis are not well-
suited for SNV detection using PacBio data for two reasons as
follows: (i) short reads have low error rates (<0:5%) and these
methods do not model the high indel error rate of SMS reads,
which makes it difficult to distinguish true SNVs from errors, and
(ii) these methods analyze reads in short windows (typically a few
hundred bases) and are not designed to leverage the haplotype
information present in SMS reads. This haplotype information
can be invaluable in distinguishing true variants from errors, as
observations of a true variant segregate with the reads originating
from the haplotype on which it occurs, whereas sequencing errors
are unlikely to segregate. Recently, several methods for variant
calling from long reads and deep-learning-based variant calling
methods have been developed23–25. However, the accuracy of
these methods for SNV calling on SMS data is currently much
lower than that using Illumina WGS24,25.

We describe a diploid SNV calling method, Longshot, which
harnesses long SMS reads to jointly perform SNV detection and
haplotyping. For this, it uses our read-based haplotype phasing
method HapCUT213. To overcome the high error rate of SMS
reads, it utilizes a pair-Hidden Markov Model (pair-HMM) to
average over the uncertainty in the local alignments and estimate
accurate base quality values that can be used for calculating
genotype likelihoods. We benchmarked Longshot using simulated
data and whole-genome SMS data for multiple human individuals
sequenced using the PacBio SMRT and Oxford Nanopore
sequencing technologies14,15,26. LongShot achieves very high
accuracy for SNV detection (precision � 0:992 and recall � 0:96)
on PacBio SMS datasets and outperforms current variant calling
methods in accuracy and run time. We find that Longshot can
also call SNVs with high accuracy using whole-genome Oxford
Nanopore data.

Results
Overview of the method. Alignments of SMS reads suffer from
reference bias, which can cause an SNV allele to be obscured by
gaps (insertions and deletions) in the alignments (Supplementary
Fig. 1). Nevertheless, a true SNV is likely to have at least a few
correctly aligned reads with the alternate allele. The first step in
the Longshot algorithm identifies potential SNV sites using a
standard pileup-based genotyping calculation27 (Fig. 1a). A low
variant quality threshold is used to select SNVs to minimize false
negatives. Next, for each candidate SNV, we determine the most
likely allele for each read covering the SNV and the corre-
sponding estimate of the quality of the allele call (Fig. 1b). This
allelotyping is done by local realignment of a segment of the read
to short haplotype sequences (one for each of the two alleles at a
biallelic SNV site). In low-complexity regions of the genome (e.g.,
homopolymers), there is significant ambiguity in the placement of
gaps for SMS reads and many alignments are equally likely28.
Therefore, we use the forward algorithm on a sequence alignment
pair-HMM29 to perform the local realignment by averaging all
possible local alignments of a read to a given haplotype.

After estimating the allele call and quality value for each read
overlapping an SNV site, we estimate phased genotypes for all
SNVs simultaneously using a haplotype-based likelihood model
(see Methods). SMS reads typically cover multiple heterozygous
sites and this haplotype information is useful, as an SNV on a
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haplotype is expected to segregate with reads from the same
haplotype (although random sequencing errors are not). In
Longshot, heterozygous SNVs are assembled into haplotypes
using HapCUT2 and a local update procedure is used to estimate
the most likely phased genotype for each SNV given the current
haplotypes for all other SNVs (Fig. 1c). This procedure is repeated
for a few iterations until the likelihood stops improving. Finally,
the variants are filtered for maximum read coverage, excessive
variant density, and minimum Genotype Quality (GQ) score,
where the GQ score is estimated using the phased genotype likeli
hoods.

Accurate SNV calling using simulated data. First, we used
simulations to assess the accuracy of SNV calling using Longshot
and also compared the precision and recall with short-read var-
iant calling. We simulated a diploid genome by adding SNVs to
the reference human genome and simulated paired-end Illumina
reads and PacBio SMS reads from this genome (maximum cov-
erage of 60 ×). Subsequently, we aligned the reads to the reference
genome using BWA-MEM30 (Illumina) and BLASR31(PacBio),
and called SNVs using FreeBayes and Longshot, respectively.
Across the entire genome, the precision was consistently high
(≥0.9999) at all read coverages (20–60×) for both short read and
SMS read-based SNV calling (Supplementary Fig. 2). Short reads
achieved greater recall than SMS reads at lower coverage (≤30×),
whereas SMS reads had marginally greater recall at higher cov-
erage (≥40×). SMS reads are expected to have better mappability
in repetitive regions of the genome compared with Illumina reads,
particularly in long segmental duplications with high sequence
identity. Indeed, the recall for SMS reads in segmental duplica-
tions with high sequence similarity (≥95%, 127.5 Mb of DNA
sequence) was significantly higher (0:86 at 40 ´ coverage) com-
pared with that using short reads (0:57 at 40 ´ coverage) and
increased with increasing coverage (Supplementary Fig. 2).

We also compared the precision/recall of SNV calling using
BLASR with several long-read mapping tools: NGMLR32, BWA-
MEM30, and MINIMAP233. All tools showed high precision and
recall when considering SNVs across the whole genome, but
BLASR had significantly higher recall (maximum of 0:88) than all
other aligners (0:72 using Minimap2) in segmental duplications

(Supplementary Fig. 2). Therefore, we utilized BLASR for the
analysis of real datasets.

We used the simulated datasets to estimate the theoretical
fraction of the genome that is callable with SMS long reads
compared with short reads at 60 ´ coverage. We found that SMS
reads were able to span 99:4% of the genome (non-N bases on
chromosomes 1–22 with at least 30× coverage and at least 90% of
reads well-mapped at each position (Supplementary Fig. 3)). In
comparison, Illumina reads covered 96:3% of the genome under
these same criteria, a difference of 3:1%.

Accurate SNV calling using whole-genome PacBio data. We
used Longshot to call SNVs using whole-genome human PacBio
data for four human genomes from GIAB consortium14. Speci-
fically, we used WGS data for the NA12878 individual (45 ×) and
a mother–father–child trio of Ashkenazi ancestry (NA24385 at
64 ×, NA24149 at 29 ×, and NA24143 at 27 ×). For each dataset, a
GQ threshold that was linearly proportional to the median read
depth was used for filtering variants (see Methods). For com-
parison, we also called SNVs using Illumina short-read WGS data
(∼30 × coverage) for each individual.

Longshot identified 3.51 to 3.65 million SNVs per genome (on
chromosomes 1–22 only) and required 35 h on average to process
∼28× whole-genome data on a single core (Supplementary Table
1). To assess the precision and recall of SNV calling, we utilized
the GIAB high-confidence variant call set for each individual14,15.
The comparison of SNV calls was limited to GIAB high-
confidence regions for each genome15. The precision and recall
for NA12878 were 0:9942 and 0:9592, respectively, at 30 ´
coverage and the recall improved to 0:9734 at 45 ´ coverage. The
precision and recall, and the precision-recall curves (Supplemen-
tary Fig. 4) were highly consistent across the four genomes at
27–30 coverage (Fig. 2a,b), demonstrating the robustness of our
method. To assess the improvement in precision/recall as a
function of sequence coverage, we sub-sampled data for the AJ
son individual (NA24385), who was sequenced to 64 ´ coverage.
The recall improved steadily from 0.9608 (28×) to 09798 (64×),
whereas the precision only changed moderately with increasing
coverage (0:9930 to 0:9936). The precision and recall for SNV
calling using SMS reads was slightly lower than Illumina-based
variant calling (Fig. 2). Nevertheless, the ability of Longshot to
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consistently achieve high recall (only 2–3% lower than Illumina
WGS for the same depth of coverage), while achieving a low false
discovery rate (FDR; average= 0:7%) was remarkable given the
significantly high error rate of SMS reads (�10%) compared with
Illumina reads.

In contrast with simulated data, the precision of of Longshot
on real SMS reads was slightly lower than short-read variant
calling. To determine the source of false-positive calls, we
analyzed whether such calls were enriched in specific sequence
contexts or overlapped with indels. For the NA12878 dataset
(Supplementary Table 2), we observed that the vast majority
(71:4%) of false-positive SNVs are located within 5 bp of a true
indel. These false-positive SNVs are called, as the current
implementation of Longshot does not consider indels as potential
variants. Filtering SNV calls located near known indels (using the
Mills+ 1000 Genomes Gold Standard Indels set from the GATK
resource bundle21), reduced the number of false positives by
34–45% for the four GIAB genomes (Supplementary Table 3),
while only slightly decreasing the recall. Analysis of false-negative
SNVs showed that 19:5% of the false-negative SNVs occurred
inside homopolymer sequences of length 5 or greater, which is
3:4 ´ the expected value. This follows naturally from the fact that
these regions have low information content; insertion and
deletion errors could plausibly lie anywhere along the length of
a homopolymer. Therefore, allele calls inside homopolymers

receive lower quality scores from the pair-HMM realignment,
which reduces the power to call SNVs in such regions.

To compare Longshot’s accuracy on SMS data with other
methods, we considered existing variant calling methods for
short-read data including GATK and FreeBayes. However, the
GATK HC tool did not generate variant calls on the NA12878
PacBio dataset, consistent with previous evaluations of these
methods on SMS data24. Recently, a deep-learning-based method
for variant calling has been developed that can process both
Illumina and SMS long-read data24. Although we were unable to
perform a direct comparison with DeepVariant due to unavail-
ability of trained models for PacBio continuous long read (CLR)
data, comparison of the reported precision and recall for
DeepVariant on the NA12878 dataset (aligned with the same
tool) showed that Longshot had better precision than DeepVar-
iant, while the recall was similar (Supplementary Table 4). At a
GQ cutoff of 36, Longshot had the same recall as DeepVariant but
higher precision (0.9939 vs. 0.9819).

We directly compared the accuracy of Longshot with a deep-
learning-based method Clairvoyante34 and WhatsHap25, using
whole-genome SMS data for four individual genomes. We used
reads aligned with the NGMLR aligner32 for evaluation, as
Clairvoyante provides trained models for this aligner (see
Supplementary Methods for details). For WhatsHap, we used
the potential variants identified in step 1 of Longshot as input, as
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the current version of this tool (version 0.18) does not support
potential variant identification. On the NA12878 dataset, the
precision and recall for Longshot were higher than both
Clairvoyante and WhatsHap (Table 1). In particular, Longshot
achieved very high precision or a low FDR of 0.5%. In
comparison, the FDR for Clairvoyante was threefold higher,
1:6%. Comparison of the precision-recall curves for three
methods on the NA12878 dataset showed that Longshot outper-
forms both competing methods for all precision values >0:98
(Supplementary Fig. 5). Similarly, analysis of variant calls for two
other GIAB genomes (NA24143 and NA24149) showed that
Longshot had the best precision and recall among the three
methods (1). On the high-coverage NA24385, Clairvoyante’s
recall and precision were marginally better than Longshot
(0.3–0.4% higher). Nevertheless, the precision (0.994) and recall
(0.980) for Longshot on this dataset using the BLASR alignments
were better than Clairvoyante (0.990 and 0.969, respectively).
Longshot was also the most computationally efficient of three
methods in terms of run time (1). For the NA12878 dataset, the
maximum memory usage for Longshot was 5.5 GB compared
with 6.2 and 12.7 GB for WhatsHap and Clairvoyante,
respectively.

The phased genotyping or haplotype assembly step of Longshot
distinguishes it from state-of-the-art variant callers for short-read
data21,22 and recent deep-learning-based methods for variant
calling24,34. We investigated the importance of the phased
genotyping for the accuracy of Longshot by running it on the
NA12878 PacBio dataset (downsampled to 30 ´ coverage)
without phased genotyping (essentially skipping step 3 of the
algorithm). We found that skipping the phased genotyping
reduced Longshot’s recall significantly from 0.959 to 0.905 (GQ
threshold of 30), while the precision remained virtually
unchanged (Supplementary Fig. 6).

Accuracy of Longshot haplotypes. Next, we assessed the accu-
racy and completeness of haplotype assembly using Longshot for
two GIAB individuals, NA12878 and NA24385, by comparison
with gold-standard haplotypes for these individuals inferred using
pedigree data (see Methods). The median read lengths for these
two datasets were 3587 and 7235 bp, respectively. The Longshot
haplotypes for NA12878 had an N50 length of 217:4 kb (with
respect to the phased portion of the genome) and were very

accurate, with a combined switch error rate of 0:05% (Fig. 2c,d).
Similarly, the haplotypes for NA24385 (30 ´ coverage) had an
N50 length of 299:9 kb and a combined switch error rate equal to
0:04%. In comparison, haplotypes assembled using short reads
had a N50 length <2 kb for both genomes (Fig. 2d). We also used
HapCUT2 and WhatsHap to assemble haplotypes for NA12878
and NA24385 using SMS reads and SNVs identified using � 30 ´
coverage Illumina sequencing13. We found that the haplotype
accuracy and completeness were comparable between the three
methods, whereas HapCUT2 had the lowest switch and mismatch
error rates (Supplementary Fig. 7). Separation of SMS reads using
SNV haplotypes can enable discovery of non-SNV variants such
as indels and SVs using methods such as SMRT-SV11, which
work well on haploid genomes. For the NA12878 dataset (chro-
mosome 1 only), 51.1% of reads (weighted by length) could be
assigned to a haplotype with high confidence. The ability to assign
reads to haplotypes was dependent on read length: the haplotype-
assigned reads had a median length of 4:3 kb, whereas the
unassigned reads had a median length of 2:6 kb only.

SNV calling using Oxford Nanopore reads. Recently, reads from
Oxford Nanopore Technologies’ (ONT) MinION sequencer were
used to assemble a human genome26. Nanopore reads have a
similar error profile to PacBio SMRT reads; however, the total
per-base error rate of ONT reads is reported to be higher than for
PacBio SMRT35 and the errors are dependent on sequence con-
text36. We applied the Longshot algorithm to call SNVs using a
whole-genome Oxford Nanopore dataset for a human individual
(NA12878, 37 ´ coverage). We observed that the candidate set of
SNVs considered by Longshot contained a significant fraction of
false positives due to the context-specific errors in Nanopore
reads. To amelioriate this, we implemented a simple filter to
remove potential SNVs for which the allele observations show a
significant strand bias (Fisher’s exact test p-value < 0.01), prior to
haplotype assembly. On the latest version of this ONT dataset,
LongShot achieved a precision equal to 0:991 and recall value
equal to 0:933 at a GQ threshold of 65 for SNV calling (see
Supplementary Fig. 8 for a precision-recall curve). For compar-
ison, we called variants using Nanopolish, a software tool for
signal-level analysis of Oxford Nanopore data36. Nanopolish
required more than 43 h to call variants on chromosome 20 using
4 cores and achieved a best F1 score of 0:93 (Supplementary Fig.
8). In contrast, Longshot had a best F1 score of 0:967 and took
only 5 h and 13 min for variant calling (using a single core). In
addition, the accuracy of Longshot on Oxford Nanopore data was
better than the reported accuracy of other methods (Supple-
mentary Table 4).

Analysis of SNV calls in repetitive regions. As demonstrated
with simulations, the recall of variant calling using SMS reads in
segmental duplications with high sequence similarity (�95%,
Fig. 2) is significantly higher (0.86) compared with short reads
(0.57). These regions correspond to 102:8Mb of the genome
(excluding the sex chromosomes). However, 97:7% of these
regions are excluded from the GIAB high-confidence variants,
making it challenging to assess the accuracy of SNV calling using
real SMS data. We compared SNV calls in segmental duplications
for the NA12878 genome made using short-read Illumina data
(33 × coverage) and SMS reads (30 × coverage). In segmental
duplications with ≥95% similarity, 180; 889 SNVs were called
using SMS reads, 55.0% more than those using Illumina reads
(Table 2). The fewer calls using Illumina reads likely reflect the
inability to map in segmental duplications. For example, Illumina
reads cannot be mapped uniquely in a significant portion of the
STRC gene, resulting in 52.3% fewer variants called compared

Table 1 Comparison of accuracy for variant calling methods
on whole-genome SMS data

Genome Read Method Precision Recall Runtime

Coverage (h)

Longshot 0:995 0:968 23:31
NA12878 44 WhatsHap 0:972 0:975 27:47

Clairvoyante 0:984 0:957 21:44 (×4)
Longshot 0:987 0:965 41:55

NA24385 62 WhatsHap 0:976 0:974 32:09
Clairvoyante 0:990 0:969 22:25 (×4)
Longshot 0:981 0:927 20:03

NA24385 27 WhatsHap 0:959 0:941 22:54
Clairvoyante 0:960 0:927 21:09 (×4)
Longshot 0:993 0:941 18:51

NA24143 27 WhatsHap 0:962 0:949 22:06
Clairvoyante 0:960 0:920 21:42 (×4)
Longshot 0:993 0:924 16:59

NA24149 23 WhatsHap 0:959 0:934 20:30
Clairvoyante 0:938 0:904 23:59 (×4)

All methods were run on BAM files generated using the NGMLR aligner, and precision and recall
values were calculated using the GIAB high-confidence variant calls. The runtime listed is the
total walltime to process all chromosomes individually. Clairvoyante supports multi-threading
and was run using four threads per chromosome
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with SMS reads (Fig. 3). We found that in total, 1.66Mb of the
bases in segmental duplications with ≥95% similarity overlap with
coding exons and 90.3% of these bases were well-mapped in the
45 ´ PacBio dataset (each position having at least 20 ´ coverage
and ≥90% of reads aligned to the position having MAPQ ≥30).
The difference was more stark in segmental duplications with
≥99% similarity: 78; 851 SNVs were called with SMS reads
compared with only 18; 684 with Illumina reads (4.2-fold dif-
ference). The Transition/Transversion (Ts/Tv) ratio for the SNVs
called only using SMS reads in these regions was 1.99, slightly
lower than the ratio for the SNV calls in GIAB confident regions
(∼2.1). This is consistent with the expectation that the Ts/Tv ratio
is usually ∼2.0–2.1 for SNVs across the whole genome37. In
contrast, the Ts/Tv ratio for Illumina-only calls in segmental
duplications with ≥99% similarity was 1:55, much lower than the
expected value (Table 2).

Next, we assessed the Mendelian consistency of SNV calls for
the mother–father–child trio of Ashkenazi ancestry from the
GIAB project. To minimize discordance due to false negative
calls, only sites with at least 20 ´ read coverage in every
individual were considered. SMS calls in the high-confidence
GIAB regions had higher concordancy (98:88%) compared with
calls outside GIAB confident regions (96:17%). Within segmental
duplications (≥95% similarity), 4:99% of the SNVs in the child
were discordant with Mendelian inheritance. Many of the
discordant SNVs were clustered in contiguous blocks, indicating
that they are the result of mismatched reads or structural
variation in one or more individuals.

Finally, we compared Longshot SNV calls for NA12878 to the
Platinum Genomes small variant call set for this genome that
have been generated using Illumina WGS and validated using
haplotype inheritance on a 17-member pedigree38. In GIAB high-
confidence regions, 95.2% of the PG SNVs were also called by
Longshot. The PG calls cover a significant fraction of the genome
(330.7 Mb) that is excluded from the GIAB high-confidence calls.
In these regions, only 79.6% of the PG SNVs were shared with
Longshot and 74,641 SNVs were unique to the PG calls
(Supplementary Fig. 10). The low concordance in regions outside
the GIAB high-confidence regions highlights the challenge of
accurate variant calling in these regions. Longshot’s ability to call
SNVs accurately using SMS reads provides an orthogonal
validation for SNVs called using short reads. In-depth analysis
of variant calls made using short-read and SMS data in these
regions can enable the expansion of confidently called regions for
reference human genomes.

Discussion
Our results demonstrate that highly accurate detection of SNVs is
feasible even from long-read sequence data with high error rates.
Combined with recent work demonstrating the ability to detect
and genotype SVs from SMRT-seq data, our results indicate that
long-read sequencing can be used to accurately detect all forms of
genetic variation in human genomes. Recently, Li et al.16 wrote
that “although PacBio assembly is accurate at the base-pair level
for haploid genomes, it is currently not accurate enough to
confidently call heterozygotes in diploid mammalian genomes.”
We have demonstrated that heterozygous SNVs can be called
accurately in diploid genomes, by combining sensitive allelotyp-
ing of reads at SNV sites with haplotype-informed genotyping.
Our method has a very low FDR (0:5–0:8%) across multiple
whole-genome PacBio datasets that is two- to fourfold lower than
other variant calling methods. Furthermore, we find that the FDR
can be reduced further to 0:3% by filtering out known common
indels.

We have also demonstrated that SMS reads can be used to call
SNVs in segmental duplications and other regions of the genome
with low short-read mappability. However, correctly mapping
PacBio reads in highly similar segmental duplications remains a
challenge. As Supplementary Fig. 2 shows, there is a wide var-
iance in the ability of SMS read mappers to map reads in seg-
mental duplications. This is likely due to the mappers having
different strategies for dealing with highly similar mappings that
are differentiated by a small number of paralog-specific variants.
Despite BLASR performing relatively well using simulated reads,
many of the discordant SNVs observed between the AJ trio in
segmental duplications appeared to be caused by the presence of
multiple mismapped reads. SMS read mapping methods with
specific optimizations for segmental duplications could improve
the ability to call variants in segmental duplications33.

The GIAB and Platinum Genomes variant sets used to assess
variant-calling accuracy in this study were generated using short-
read datasets, are therefore biased in favor of short-read tech-
nologies16, and exclude regions where long reads are likely to
have better precision and recall. Therefore, in an unbiased
genome-wide comparison, Longshot may achieve even better
accuracy than short-read variant calling methods. Furthermore,
some of the false-positive calls by Longshot may actually corre-
spond to false negatives in the GIAB high-confidence call sets. A
recent graph-based read alignment approach identified thousands
of variants that were absent in the GIAB call sets39. In the
NA12878 genome, Longshot identified 5900 SNVs that are

Table 2 Comparison of PacBio and Illumina SNV calls for NA12878

Genome Inside GIAB Outside GIAB Segmental Dup. Segmental Dup.

(1–22) Confident Confident (≥95% similar) (≥99% similar)

Region size 2.8 Gb 2.4 Gb 330.7Mb 102.8Mb 47.5Mb
# SNVs 3,518,530 3,002,660 515,870 180,889 78,851

PacBio Ts/Tv 2.08 2.14 1.75 1.95 1.99
# SNVs 3,563,787 3,065,573 498,214 116,649 18,684

Illumina Ts/Tv 2.03 2.1 1.66 1.84 1.79
# SNVs 254,428 63,848 190,580 103,621 69,705

Unique to PacBio Ts/Tv 1.63 1.83 1.57 1.9 1.99
# SNVs 299,733 126,763 172,970 39,409 9538

Unique to Illumina Ts/Tv 1.3 1.26 1.33 1.53 1.55
Shared # SNVs 3,264,078 2,938,812 325,266 77,241 9146
Illumina & PacBio Ts/Tv 2.12 2.15 1.85 2.01 2.04

Variants were called using short reads (33× coverage) with FreeBayes and using SMS long reads (30× coverage) with Longshot. The number of variants called by each technology, the number of variants
shared between the two technologies, and the corresponding transition/transversion (Ts/Tv) ratios are shown for the whole genome and various subsets of the genome including GIAB high-confidence
regions and segmental duplications with high sequence identity
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located in GIAB high-confidence regions and do not overlap
indels present in the GIAB variant calls. Many of these variants
are located in variant-dense genomic regions that are problematic
for mapping using short reads but should be callable using long
single-molecule reads. Further analysis of these variants will be
helpful in improving the recall of gold-standard variant call sets
for human genomes.

Longshot offers the ability to assemble haplotypes without
prior knowledge of SNVs and leverage the haplotypes to separate
SMS reads by haplotype. This opens up a wide range of

possibilities for SMS read analysis, given that many SMS analysis
tools work much better on haploid samples. For example, the
haplotype-separated reads could be used to call SVs with greater
sensitivity using a tool such as SMRT-SV11. A similar approach
was recently used to profile structural variation genome-wide
after extensive haplotype assembly with multiple sequencing
technologies and computational separation of the SMS reads by
haplotype20. Currently, Longshot uses the read pileups to identify
candidate SNVs and the vast majority (∼72%) of false-positive
SNVs identified with Longshot correspond to misclassified indel

chr15

p12

890 kb

Illumina, 32x coverage

Illumina SNVs

PacBio haplotype 1 reads,
45x coverage

PacBio haplotype 2 reads,
45x coverage

PacBio SNVs

RefSeq genes
CKMT1B STRC

43,892 kb 43,894 kb 43,896 kb 43,898 kb 43,900 kb 43,902 kb 43,904 kb 43,906 kb 43,908 kb 43,910 kb 43,912 kb

p11.2 q11.1 q12 q14 q15.2 q21.2

22 kb

q22.1 q22.32 q24.2 q25.2 q26.1 q26.3

Fig. 3 Accurate variant calling using SMS reads and Longshot in the duplicated gene STRC. An Integrated Genomics Viewer (IGV) view of mapped reads
shows that a long segment of the gene (circled in black) has low coverage using uniquely mapped Illumina reads due to the presence of a long segmental
duplication with high sequence similarity (> 99:8%) that spans the entire gene. PacBio reads (separated by haplotype using Longshot phased SNVs) have
consistent coverage of mapped reads across the entire gene, allowing Longshot to call 42 SNVs of which 20 are shared with short reads, and 22 are unique
to Longshot
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variants. Using a genomic consensus of haplotype-separated reads
should improve the accuracy of variant calling using Longshot.

LongShot was also able to call SNVs with high accuracy from
Oxford Nanopore long-read data without any modification to the
likelihood model. Although the precision and recall was lower
than PacBio reads at a similar coverage, this is expected due to the
higher error rate of Nanopore reads. Continued improvements in
the sequencing technology and the raw basecalling, and the use of
context-specific error models for local realignment are expected
to further improve the accuracy of variant calling using
Nanopore reads.

In this study, we focused on the detection and phasing of SNVs
alone, as accurate calling of short indels using SMS reads is
challenging due to the high insertion/deletion error rate. A
recently developed deep-learning-based variant caller24 had low
precision (0.589) and recall (0.12) for short indel calling on
PacBio WGS data. In comparison with CLR reads, PacBio circular
consensus sequencing (CCS) produces reads with greater accu-
racy by sequencing multiple times around the same DNA tem-
plate. Recent improvements have enabled the generation of highly
accurate long reads (10–15 kb read lengths and error rates <1%)
using CCS40. We expect that using Longshot with these low-error
reads will improve the accuracy of SNV calling and also enable
accurate short indel calling. As the cost of SMS technologies
continues to decrease, these technologies are likely to see wide-
spread use in human disease studies in the near future. In par-
ticular, whole-genome SMS can enable the detection of disease-
associated SVs and variants in repetitive regions of the genome
that cannot be identified using standard Illumina WGS41–43.
Tools such as LongShot will be valuable for realizing the potential
of SMS technologies for the comprehensive detection of all forms
of genetic variation in such studies.

Methods
Identification of candidate SNVs. The first step in the Longshot algorithm is to
identify positions in the genome that may contain an SNV. Potential SNVs are
identified from the pileup of aligned reads by performing a genotype likelihood
calculation similar to Samtools or other NGS variant calling methods3 (see Sup-
plementary Methods). The prior probabilities for genotypes are defined using a
slight modification of the approach of Li et al.44 (see Supplementary Methods).
SNV sites for which the posterior probability of a non-reference genotype is >0:01
are considered as candidate SNVs for the next step of the algorithm. The sites are
also filtered for mininum read coverage (6 by default), minimum alternate allele
count and fraction (3 and 0.125 by default).

Local realignment using pair-HMMs. For an SMS read that overlaps a candidate
biallelic SNV site with two alleles “ref” and “alt,” we want to determine which allele
is the most likely observation (allele call) and also assign a probability of error to
this observation (quality value). To accomplish this, we perform local realignment
of a short sequence from the read to the reference and to the alternate sequence
(with the SNV allele added, see Fig. 1b). This local realignment is performed using
a pair-HMM29. The parameters for the HMM are estimated directly from the
aligned reads prior to realignment (see Supplementary Methods).

It is sufficient to perform the local realignment within a short window covering
the SNV site. This window is defined using the nearest non-repetitive anchor
sequences of length k (default k ¼ 6), to the left and right of the SNV where the
read sequence matches the reference sequence perfectly (see Supplementary
Methods). Once the window W is identified, we use the forward algorithm to
calculate pref ¼ PðreadðWÞ j refðWÞÞ and palt ¼ PðreadðWÞ j altðWÞÞ where
readðWÞ is the sequence of the read in the window W defined by the two anchors.
We select the allele amax 2 fref ; altg for which the probability is higher, as the

observed allele, and use phred 1� pamax
prefþpalt

� �
as the allele quality score.

When multiple candidate SNVs are located in close proximity, we define the
window to include all such SNVs and use a generalization of the calculation
described above to determine alleles and estimate base-quality values (see
Supplementary Methods). For computational efficiency, a banded version of the
forward algorithm is used. This reduces the complexity to OðmbÞ where b is the
width of the band and m is the length of the window (50–200 bp). Allele
observations with phred-scaled quality score below a threshold (7:0 by default)
are discarded. This reduces the effective read depth for SMS reads (Supplementary
Fig. 9).

In order to remove false variants resulting from strand-specific sequencing
errors, we filter potential SNVs whose allele observations are over-represented in
reads from one strand. For each potential SNV, we build a contingency table of the
counts of the reference and alternate allele on reads from the forward strand and
reverse strand, respectively. Variants for which the Fisher’s exact test p-value (two-
tailed) is <0:01 are not considered for haplotype-informed genotyping.

Haplotype-informed genotyping. Longshot achieves accurate variant calling
using SMS reads by performing phased genotyping for all candidate SNVs jointly.
Given a set of candidate SNVs V and the allele calls (and quality values) for each
read r 2 R, we aim to maximize the likelihood pðRjHÞ where H is a pair of
haplotypes (H1;H2) over the variant set V . Longshot optimizes the likelihood
function using an iterative approach that uses (i) the HapCUT2 algorithm13 to
estimate the most likely pair of haplotypes for variants with heterozygous geno-
types and (ii) local updates to estimate the most likely phased genotype for each
variant given the current haplotype pair (Fig. 1c).

Assuming independence between reads, the likelihood function pðRjHÞ can we
written as13:

pðRjHÞ ¼
Y
r

pðrjHÞ ¼
Y
r

pðrjH1Þ þ pðrjH2Þ
2

pðrjH1Þ for any read r can be calculated using the pair-HMM probabilities for each
(read, variant) pair. Let G be the set of possible phased genotypes for a biallelic
variant: f0j0; 0j1; 1j0; 1j1g (homozygous reference, the two heterozygous states,
and homozygous alternate). Let H refer to the current estimate of the most likely
haplotype pair and Hi;g refer to the haplotype pair H with the ith SNV altered to
have the phased genotype g. Given H, we can calculate the posterior probability for
the phased genotype g as follows:

pðH½i� ¼ gjR;HÞ ¼ pðgÞpðRjHi;gÞP
g′2Gpðg′ÞpðRjHi;g′Þ ð1Þ

The optimization starts with the initial set of variants identified from the pileup-
based likelihood calculation and the unphased genotypes for each variant estimated
using the local realignment. The iterative phase of the Longshot algorithm consists
of the following steps:

For i ¼ 1¼ k

1. L ¼ pðRjHÞ
2. Let V ′ be the set of heterozygous SNVs in V
3. HðV ′Þ ¼ HapCUT2ðR;V ′Þ
4. Repeat:

(a) For each variant v 2 V : update H½v� using Eq. (1)
(b) If no genotype was updated in (a), BREAK

5. L′ ¼ pðRjHÞ
6. If logðL′Þ�logðLÞ

logðLÞ <Δ: BREAK

In Step 3, HapCUT2 is used to phase the current set of heterozygous variants.
Then, the haplotype scaffold is used to refine the genotypes of each variant in Step
4. This serves to remove false heterozygous variants and identify new heterozygous
variants that can be phased by HapCUT2 in the next iteration. Steps 1–5 are
repeated until the relative log-likelihood of the data between consecutive iterations
is smaller than Δ (default ¼ 1 ´ 10�5).

Variant filtering. The raw variant calls were subjected to three types of filters to
reduce false positives. SNVs were first filtered according to the GQ estimated by the
variant caller. The GQ cutoff was fixed at 50 for short reads. For Longshot, we used
a variable GQ cutoff (matched to the median read coverage) for filtering variants.
This was done to reduce the number of false SNVs due to true indel variants that
have high GQ. For simulations, which do not have indel variants, we used a fixed
GQ cutoff of 50.

To filter false SNVs due to copy number amplifications, a maximum read depth
filter similar to what has been used previously for short-read-based variant calling
was used45. Variants with read depth >d þ 5

ffiffiffi
d

p
, where d is the median read depth

across the entire dataset were filtered out. We also observed that for SMS reads,
many false-positive SNVs occur nearby each other in dense clusters. These dense
clusters may result from systematically mismapped reads due to missing sequence
in the reference genome or are indicative of structural variations such as copy
number variants (CNVs). We used a simple density filter (>10 SNVs in a window
of 500 bp) to filter out such false variants for variants called with Longshot. For the
AJ trio, variants in the Delly exclusion regions (available from https://github.com/
tobiasrausch/delly/blob/master/excludeTemplates/human.hg38.excl.tsv) were also
filtered out for the analysis of Mendelian consistency.

Simulations. We simulated a diploid genome using the reference human genome
sequence with heterozygous SNVs (rate= 0:001) and homozygous SNVs (rate
= 0:0005) (see Supplementary Methods for details). Paired-end 100 bp reads were
generated from the simulated genome with a substitution error rate of 0:00146. The
short reads were aligned to the human reference (hs37d5) using BWA-MEM and
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variants were called using FreeBayes22. Similarly, we used SimLoRD47 to generate
PacBio SMS reads (median length= 7.5 kb) from the simulated genome using the
default error rates of 0:11 for insertion, 0:04 for deletion, and 0:01 for substitu-
tion47. The -mp 1 option was used to force each read to only have a single
sequencing pass, so that the error profile of the reads resembles PacBio CLRs
(lower accuracy) as opposed to circular consensus reads (greater accuracy). We
aligned the SMS reads to the human reference (hs37d5) using the long-read
alignment tools BLASR (v5.3.2, options –nproc 16 –bestn 1 –bam),
MiniMap2 (v2.11-r797, options -t 16 -ax map-pb), BWA-MEM
(v0.7.17, options -x pacbio -t 16 -T 0), and NGMLR (v0.2.7, options
-t 16 -x pacbio).

Whole-genome sequencing data. The 45 ´ coverage PacBio SMRT reads for
NA12878, aligned to the hs37d5 reference genome using BLASR, were obtained
from the GIAB consortium48. PacBio read data for the AJ trio was also obtained
from the GIAB ftp site and aligned to the hg38 reference genome using BLASR31,
using the same parameters used for aligning the simulated reads. Oxford Nanopore
reads for NA12878 were obtained from the Nanopore WGS Consortium26 and
aligned to hg38 using minimap2. Illumina WGS data for NA12878 and the AJ Trio
(NA24385, NA24143, and NA24149), sequenced on the HiSeq 2500 (30 ´ and 60 ´
coverage, respectively, 148 bp paired-end reads), was obtained from the GIAB. The
60 ´ coverage datasets were downsampled to half coverage. The reads were
downloaded in BAM format aligned to as hs37d5 using bwa-mem (NA12878) and
hg38 using NovoAlign (AJ trio). Variant calling on Illumina WGS data was per-
formed using FreeBayes22 (v1.0.2-33-gdbb6160) with –standard-fil-
ters and –genotype-qualities turned on). BED files for segmental
duplications and repeat elements in the human genome were obtained from the
UCSC table browser49.

Assessment of variant calling and phasing accuracy. High-confidence variant
call sets generated by the GIAB project were used for assessing accuracy of SNV
calling15,48. For NA12878, SNVs were compared against the GrCh37 (for Illumina
and PacBio) or GrCh38 (for Oxford Nanopore) version of the GIAB high-
confidence call set (release v3.3.2). For the AJ trio, SNVs were compared against the
GrCh38 version of the GIAB high-confidence call set (release v3.3.2). For com-
paring the accuracy of Longshot with Clairvoyante and WhatsHap, the GrCh37
version of the calls were used (release v3.3.2). For each individual, the comparison
of SNV calls was limited to high-confidence regions (provided in a bed file).
Precision and Recall were calculated using RTGtools (v3.9.1) vcfeval.

For NA12878, we compared the accuracy of the Longshot haplotypes using the
Platinum Genomes haplotypes for the same individual as ground truth. For
NA24385, we generated high-quality haplotypes from a consensus of the GIAB
trio-based phased genotypes and 10× Genomics phased variant calls and used the
resulting haplotypes for assessment of haplotyping accuracy. The haplotypes were
compared at all unfiltered SNVs that were called heterozygous in both the
assembled haplotypes and the ground truth. The errors were tabulated in terms of
the total combined rate of switch and mismatch errors, also known as long-switch
and short-switch errors, respectively13,50. The N50 metric—defined as the length N
in base pairs such that half of the phased portion of the genome is in haplotype
blocks of length N or greater—was used to measure the completeness of haplotype
blocks.

For the AJ trio, Mendelian consistency of the SNV calls was assessed using
RTGtools51. For this, SAMtools27 and BEDtools52 were used to obtain a set of
regions that have high coverage (>20×) of well-mapped SMS reads (MAPQ > 30
and filter -F 3844 applied) in all three individuals. These regions were further
intersected with a bed file for the region being investigated (either GIAB confident
regions, outside GIAB confident regions, or 95% similar segmental duplications).
The individual VCF (variant call format) files for the trio were merged into a single
VCF and filtered so that all records have a GQ > 50.

Server configuration. All experiments in this study were performed on CentOS
6.6 with Intel Xeon CPU E5-2670 0 @ 2.60 GHz, with jobs managed by a Torque/
PBS system.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The PacBio and Illumina sequence datasets and variant calls used in this study are
publicly available from the GIAB ftp site: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/. The
sub-folders for each individual are as follows:
NA12878: data/NA12878/NA12878_PacBio_MtSinai, release/NA12878_HG001/

NISTv3.3.2/GRCh37/, data/NA12878/NIST_NA12878_HG001_HiSeq_300x
NA24385: data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST,

release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3.2/GRCh38, data/
AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946
NA24149: data/AshkenazimTrio/HG003_NA24149_father/PacBio_MtSinai_NIST/,

release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3.2/GRCh38, data/

AshkenazimTrio/HG003_NA24149_father/NIST_HiSeq_HG003_Homogeneity-
12389378

NA24143: /data/AshkenazimTrio/HG003_NA24143_mother/PacBio_MtSinai_NIST,
release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3.2/GRCh38, data/
AshkenazimTrio/HG004_NA24143_mother/NIST_HiSeq_HG004_Homogeneity-
14572558

For the direct comparison between methods, BAMs aligned using NGMLR from the
Clairvoyante study were used34. The BAMs were obtained from http://www.bio8.cs.hku.
hk/clairvoyante/bamUsed/.

The Oxford Nanopore sequence dataset is publicly available from the Nanopore WGS
Consortium: https://github.com/nanopore-wgs-consortium/NA12878/blob/master/
Genome.md. The NA12878 genome was sequenced using the Oxford Nanopore MinION
with version R9.4 of the chemistry on 39 flowcells. We used the rel6 version of the base
calls (called using ONT Guppy basecalling software version 2.3.8+ 498297c). All other
relevant data are available upon request. The source data underlying Supplementary Fig.
9 is provided as a Source Data file.

Code availability
Longshot is implemented in the Rust programming language, uses the rust-bio and rust-
htslib libraries53, and the HapCUT2 C code13. It is freely available for download at
https://github.com/pjedge/longshot. It is also available on Bioconda54. A Snakemake
workflow55 for automatically generating all of the results of the paper is available at
https://github.com/pjedge/longshot_study.
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