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Abstract
The concept of interleukin-1 (IL-1) as a target in osteoarthritis (OA) has
been an attractive one for many years. It is a highly potent inducer of
cartilage degradation, causing the induction of mRNA and controlling the
bioavailability of disease-relevant proteases such as ADAMTS5 and
MMP13. It drives synovitis and can induce other disease-relevant genes
such as nerve growth factor, a key pain sensitiser in OA. However, the
quality of evidence for its involvement in disease is modest. Descriptive
studies have demonstrated expression of IL-1α and β in OA cartilage and
elevated levels in the synovial fluid of some patients. Agnostic
transcriptomic and genomic analyses do not identify IL-1 as a key pathway. 

 models show a conflicting role for this molecule; early studies usingIn vivo
therapeutic approaches in large animal models show a benefit, but most
murine studies fail to demonstrate protection where the ligands (IL-1α/β),
the cytokine activator (IL-1–converting enzyme), or the receptor (IL-1R)
have been knocked out. Recently, a number of large double-blind
randomised controlled clinical studies targeting IL-1 have failed.
Enthusiasm for IL-1 as a target in OA is rapidly dwindling.
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Introduction
Evidence to support a molecular role in disease is usually  
amassed from a combination of biological plausibility, demon-
stration of disease-relevant activity in vitro, descriptive studies 
in disease tissue samples and genetic analyses. The quality of  
evidence is improved when it is possible to perform functional  
validation studies in relevant animal models in which the  
molecule is knocked down (or out) or to use drugs that target 
the molecule in question. Ultimately, definitive clinical studies 
will reveal the success of one’s endeavours but with the caveat 
that you have selected your patient group appropriately and have  
sensitive and relevant outcome measures. In practice, it is hard 
to build a robust case to justify the large investment required 
to support a clinical trial and this is further complicated by  
publication bias and uncritical analysis. In this commentary, 
I review the evidence for interleukin-1 (IL-1), arguably the  
best-investigated cytokine in osteoarthritis (OA) pathogenesis, 
and take a critical look at the quality of evidence that supports its 
role in disease. This is not intended to be an exhaustive review 
of all the literature on IL-1 in OA. Rather, I have selected key  
articles that add substantially to our knowledge irrespective of 
whether they report ‘positive’ or ‘negative’ outcomes.

Interleukin-1, the history
The term ‘IL-1’ was first ascribed to a potent cytokine activity  
that was generated by activated macrophages, and shown 
to activate T cells1–3. This molecule was initially termed  
‘lymphocyte-activating factor’ but was reclassified to IL-1 in  
19794. Over the following 15 years, a number of other cell  
activities were ascribed to IL-1. These included ‘mononuclear 
cell factor’5 and ‘endogenous (or leukocytic) pyrogen’, the latter  
being able to induce fever by direct stimulation of the 
hypothalamus6,7. Immune cells were not the only focus of this  
early work. Connective tissue cells were also shown to make  
and respond to an IL-1–like activity8,9, the most striking of which 
was termed ‘catabolin’10 (Table 1).

Biological plausibility
Catabolin was initially described in co-cultures of synovium 
with articular cartilage11 and subsequently purified and char-
acterised from non-adherent porcine leukocytes (principally  
lymphocytes)10,12–14. It caused profound loss of proteoglycan  
from cartilage in vitro and in vivo which was deemed to be due 
to catabolic activity, as well as suppression of new proteoglycan 
synthesis15,16. The catabolic activity that was demonstrated in  
chondrocytes was indirect as dead cartilage was non-responsive 

to catabolin, and it was postulated that catabolin induced the  
enzymes responsible for aggrecan degradation. For a time, there 
was a consensus that this IL-1–like activity was not IL-1 as  
the isoelectric point (pI) of catabolin was acidic (4.8–5.0)  
compared with IL-1, which had a pI of between 6.5 and 7.  
Subsequent purifications by several groups in mouse, human and 
pig revealed two distinct molecular species, which have similar  
biological activities17. When these molecules were eventually 
cloned, they turned out to have only modest amino acid sequence 
homology (20%) and distinct pIs. They were termed IL-1α and 
IL-1β, reflecting the acidic and basic proteins respectively17,18. 
Both ligands bound to the same two-chain receptor (IL-1R) 
with high affinity (k

d
 = 10−10)19,20. Another molecule with some 

shared homology with IL-1α and IL-1β was discovered. This  
turned out to be the IL-1R antagonist (IL-1Ra), a natural inhibitor 
of IL-1 signalling21–23.

IL-1α and IL-1β are made as pro-proteins which lack signal  
peptides and are retained in the cytoplasm24. Unlike pro–IL-1α, 
pro–IL-1β lacks biological activity and must be processed by  
caspase 1, also known as IL-1–converting enzyme (ICE)25,26. 
Processing by caspase 1 is linked to secretion of IL-1β and this  
therefore is a requirement for its biological effects. IL-18 is  
processed in a similar fashion. These effects are dependent 
upon activation of the ‘inflammasome’ complex and indicate  
that IL-1 biological activity requires a two-hit process: induction 
of the mRNA followed by processing of the pro-molecule prior  
to secretion from the cell27.

In vitro disease-relevant activity
IL-1 was hugely influential in the discovery of the proteases 
responsible for cartilage degradation in OA. IL-1 was able to  
induce a number of known matrix metalloproteinases (MMPs) 
in vitro and suppress proteoglycan synthesis9,16,28–30 but it was  
not until the large-scale purification of medium from IL-1– 
stimulated cartilage that the first aggrecanase (a disintegrin 
with thrombospondin motif 4, or ADAMTS4) was identified31. 
By homology searching, this led to the identification of  
ADAMTS518. The role of ADAMTS5, but not ADAMTS4, in 
OA pathogenesis was subsequently shown by Glasson et al. in  
mice (2005)32,33. There are conflicting views on whether  
ADAMTS5 and ADAMTS4 are both pathogenic mediators in 
human OA21,23. Interestingly, in most species, ADAMTS5 is  
constitutively expressed and is not much regulated by IL-1 at 
the mRNA level34, even though its activity is strongly IL-1– 
regulated21. Regulation of activity is thought to be controlled by 
the re-uptake of ADAMTS5 at the cell surface by the scavenger  
receptor LRP135,36. It is worth noting that IL-1 is used as an  
exemplar in these studies and is ideally suited because of its  
potency and understood mechanisms of action. Other cytokines, 
including tumour necrosis factor (TNF)37, retinoic acid34,38 and 
oncostatin M39, also are strong inducers of cartilage catabolism  
in vitro.

Interleukin-1 regulation in human osteoarthritis 
tissues
A standard initial approach to validation of candidate molecules 
in disease almost always involves the demonstration that the  

Table 1. Cellular activities eventually attributed to IL-1.

Interleukin-1 (IL-1) synonym Role

Leukocyte-activating factor T-cell activation

Mononuclear cell factor IL-2 induction

Catabolin Cartilage degradation 
Synovitis

Endogenous pyrogen/
Leukocyte pyrogen 

Fever
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molecule is upregulated in diseased tissues. This is challenging 
in OA in particular because of difficulties in obtaining normal  
tissue as a comparator. IL-1 is highly potent and usually 
present at very low concentrations. It is not easy to detect by  
conventional enzyme-linked immunosorbent assay or even 
by higher-sensitivity assays such as the MesoScale Discovery  
platform40. However, using high-sensitivity assays, some groups 
have detected low levels (<1 pM) of IL-1 in the synovial fluid  
of some patients with OA and rarely in normal joints41. There  
are studies reporting positive immunohistochemistry for IL-1α  
and IL-1β and ICE as well as in situ hybridisation data for  
ICE in established human OA cartilage42,43. However, these  
studies compare expression levels within OA tissue and do 
not compare with normal tissue. These controls are especially  
important when we consider that IL-1 is made as a pro-enzyme 
and that intracellular staining does not correlate with secretion 
and activity. Moreover, work from our group previously showed 
that simple mechanical injury (that occurs at the time of tissue  
dissection) is a strong inducer of pro–IL-1 in normal healthy  
tissue and could easily confound the analysis44 (Table 2).

Counting the IL-1–positive cells within the synovium of  
patients with OA and rheumatoid arthritis (RA) demonstrates 
that OA synovial cells are much less likely to be positive (20%) 
than RA cells (60%)6,7,45. In several similar studies, OA tissue is  
generally regarded as the negative control, so again normal tissue 
is not included.

Molecular studies
Microarray studies potentially allow one to examine regulated 
genes in disease in an unbiased fashion. Early array studies in  
OA cartilage did not demonstrate elevation of IL-1 mRNA in OA 
compared with normal cartilage46 or in lesional compared with 
non-lesional OA tissue47. In a larger study by Aigner et al., who  
studied 4000 genes in 78 patient and control samples, IL-1 was 
downregulated in disease by around 50%48. Two recent RNA 
sequencing (RNA-Seq) analyses deserve special mention. One 
study, by Soul et al., performed RNA-Seq on the articular  
cartilage of patients undergoing knee replacement surgery and 
compared gene expression with non-disease cartilage in the 
same joint49. An unbiased analysis identified two molecularly  
distinct groups within the affected OA samples. Pathway anal-
ysis revealed over-representation of complement activation  
pathways, innate immune responses, Wnt and transforming  
growth factor beta (TGFβ) signalling. There was a notable  

absence of an inflammatory cytokine signature49. The first sin-
gle-cell RNA-Seq study in OA articular cartilage was recently 
published50. Although this study did not have normal cartilage 
as a comparator, IL-1 did not feature as a marker for one of the 
seven phenotypically distinct groups of OA chondrocytes. Nor 
was it associated with a molecular signature that predicted  
disease progression50.

Genetics
There are replicated candidate studies in which polymorphic  
variants of IL-1 have been shown to be increased in OA  
compared with a non-OA population (reviewed in 51), but IL-1 
has not come out of any of the genome-wide association studies  
which have looked agnostically across the genome either by  
mapping polymorphic variants or by whole genome sequenc-
ing. The largest of these studies, recently published by the Zeg-
gini group, identified 64 disease loci (52 of them novel) from 
over 77,000 large-joint OA cases52. Of these, four strong groups 
emerge: (1) TGFβ family members, including candidate 
genes GDF5, TGFβ1, LTBP1, LTBP3 and SMAD3; (2) TGFα, 
which has strong independent pre-clinical data to support it as 
a target53; (3) fibroblast growth factors (FGFs), in particular  
FGF18 and its receptor FGFR3; FGF18, is showing significant 
promise following intra-articular injection in clinical trial54,55 and 
(4) ALDH1A2, encoding the enzyme that synthesises retinoic 
acid, a strong genome-wide association study hit in hand OA56 
and now in knee. Again, the absence of an inflammatory cytokine  
signature is noteworthy.

Pre-clinical studies
Prior to the genetic modification era, pre-clinical OA was largely 
restricted to large animals (for example, dog and rabbit). A 
few studies looked at therapeutic targeting of IL-1 using either  
recombinant IL-1Ra (anakinra) or gene transfer of IL-1Ra. 
All of these early studies showed striking protection in rapidly  
progressive surgical models of OA when treatment was initiated 
early after surgery57–59. Similar protection was seen in rats after 
anterior cruciate ligament transection when treated early with  
recombinant intra-articular IL-1Ra60. D’Lima et al. showed 
that caspase 1 inhibition suppressed disease in rabbits after  
cruciate ligament transection when delivered three times per  
week for 9 weeks61. The latter study could be affecting molecules 
other than IL-1, such as IL-18.

The first surgical models of OA in genetically modified mice 
were performed in 2003 by Clements et al.62. In that study, partial  
meniscectomy was performed in four genetically modified  
strains: Il1b knockout, Ice knockout, Mmp3 knockout and nitric 
oxide synthase (Nos) knockout mice. None of these strains  
demonstrated reduced disease; if anything, a modest increase 
in disease was observed62. Kawaguchi’s group also reported  
(although data were not included in the article) a lack of pro-
tection in Il1a/Il1b double-knockout mice63. Our own group 
has failed to see protection in Il1r1 knockout mice (unpub-
lished data). Only one report of protection in the Il1b knockout 
mouse has been published and this was in a review article64, in 
which a 40% reduction in disease at one time point (8 weeks) 
was observed. The number of animals used in this experiment  
was not specified.

Table 2. Evidence for a role of IL-1 in osteoarthritis.

Type of evidence Quality of evidence (likely role 
in disease)

Biological plausibility High

In vitro disease-relevant activity High

Human osteoarthritis tissue 
studies

Low (not identified by agnostic 
‘-omic’ analyses)

Pre-clinical knockout studies Moderate (conflicting role in 
disease)

Human clinical studies High (little role in disease)
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Human clinical studies
One assumes that positive results in small open-label clinical  
studies65 are partly responsible for driving the decision to  
proceed to randomised controlled trials (RCTs) in OA using  
IL-1 targeting therapies. These have included, most recently, 
two large studies by Abbvie using a dual neutralising antibody  
against IL-1α and IL-1β in hand OA66 and knee OA67. Both  
studies failed to reach their primary outcome target and  
concluded lack of efficacy. Similarly, a single intra-articular  
injection of anakinra failed to show clinical efficacy at 3 months, 
the primary endpoint, in an RCT of 160 individuals with knee  
OA68. A randomised double-blind controlled study of an IL-1R  
neutralising antibody also failed to meet the primary endpoint69. 
Two small studies, one open-label and one placebo-controlled, 
demonstrated reduction in pain in individuals after knee trauma 
with IL-1Ra (anakinra). It is important to stress that whilst 
knee trauma may lead to OA over the course of 5 to 10 years in  
50% of cases70, there is no evidence that early pain after injury 
is indicative of OA or that inhibiting IL-1 early after injury can  
prevent OA developing71,72.

Co-existing crystal arthropathy
Could IL-1 still have a role in a subset of patients with OA? 
One reasonable hypothesis is that some patients’ disease may be  
complicated by crystal arthritis. Calcium pyrophosphate (CPP) 
and basic calcium phosphate (BCP) crystals are present in the  
synovial fluid of around 20 to 25% of patients with knee OA73  
and CPP in 13% of patients with small-joint (hand and wrist)  
OA74. Although the presence of crystals in the joint does 
not necessarily lead to a clinical crystal arthritis, all crystals  
(including urate, pyrophosphate and cholesterol) are potential 
activators of the inflammasome pathway, resulting in caspase 
1–dependent processing of intracellular pro–IL-175–77. In one  
study, urate levels within the synovial fluid correlated strongly 
with IL-1β (in those samples in which it was measurable) and 
IL-1841. Radiographic disease severity correlated with levels  
of IL-141. These results identify synovial fluid urate or IL-1/IL-18 
levels (or both) as potential biomarkers of disease severity. The  
jury is still out on whether IL-1 may be driving pathogen-
esis in a small subgroup of OA individuals who have an active  

crystal arthritis contributing to their structural and sympto-
matic disease78. In view of the complete lack of signal from the  
anti–IL-1 clinical trials, one has to assume that the proportion of 
such individuals within the larger OA population is small.

Conclusions
IL-1 remains the most potent inducer of cartilage degradation 
we know of and from the early days of ‘catabolin’ has been a 
top molecular candidate in OA. In recent years, IL-1 has proven 
to be a good target in diseases due to genetic defects in the  
inflammasome pathway, including some of the rare periodic 
fever syndromes, and this has been a good opportunity to vali-
date the available therapies79. IL-1 targeting is also efficacious 
and licenced for use in crystal arthritis80, although it is usually  
reserved for those with severe disease unresponsive to first-line 
treatments. Randomised clinical trials in OA are conclusively 
telling us that this is not a target in OA despite all our hopes.  
Could this have been anticipated earlier? In retrospect, the  
evidence for IL-1 from the clinical data, especially those  
acquired from agnostic whole genome and whole transcrip-
tome analyses, was weak. Results from pre-clinical studies  
were polarised in their conclusions and this calls into question 
the robustness of these data. Failure to reduce sources of bias 
e.g. through randomisation of animals, blinding experimentor 
to treatment group, or double blind scoring, are rarely 
described and probably not often performed. Studies are often  
under-powered and may examine outcomes at only one time 
point. Animal studies in particular are further confounded by a  
publication bias towards positive results81. RCTs are an  
expensive way to disprove a major role for a molecule in disease, 
but the journey nonetheless brings us closer to understanding  
OA pathogenesis.
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