
A [2]Rotaxane-Based Circularly Polarized Luminescence Switch
Arthur H. G. David, Raquel Casares, Juan M. Cuerva,* Araceli G. Campaña, and Victor Blanco*
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ABSTRACT: A rotaxane-based molecular shuttle has been
synthesized in which the switching of the position of a fluorescent
macrocycle on the thread turns “on” or “off” the circularly polarized
luminescence (CPL) of the system while maintaining similar
fluorescence profiles and quantum yields in both states. The
chiroptical activity relies on the chiral information transfer from an
ammonium salt incorporating D- or L-phenylalanine residues as
chiral stereogenic covalent units to an otherwise achiral crown ether
macrocycle bearing a luminescent 2,2′-bipyrene unit when they
interact through hydrogen bonding. Each enantiomeric thread
induces CPL responses of opposite signs on the macrocycle. Upon
addition of base, the switching of the position of the macrocycle to a
triazolium group disables the chiral information transfer to the
macrocycle, switching “off” the CPL response. The in situ switching upon several acid/base cycles is also demonstrated.

■ INTRODUCTION

Over the last three decades, the synthesis and application of
mechanically interlocked molecules (MIMs),1 like rotaxanes2

or catenanes,3 has become one of the fields in chemistry that
experienced a greater development impulsed by the contribu-
tions from an increasing number of research groups. The
interest for such structures lies not only in the interlocked
topologies they present, but also in their growing application in
the development of molecular devices and machines able to
accomplish different tasks that have grown in complexity over
years.4

The key feature that makes possible many of those
applications of rotaxanes and catenanes is the access given
by their interlocked nature to the stimuli-triggered molecular-
level control of the motion and relative position of their
different components. Thus, if we turn our attention to
rotaxanes, especially molecular shuttles in which the position of
the macrocycle between different binding sites on the thread
can be switched in response to an external stimulus of different
nature, they have found application in fields as diverse as
molecular electronics,5 catalysis,6 controlled-release,7 achieve-
ment of mechanical work or macroscopic movement,8 or
switchable gels.9 Within this context, control of luminescence
by molecular shuttles has been extensively exploited. Thereby,
many examples have been reported in which the emissive
properties of rotaxane-based molecular shuttles are influenced
or modulated in response to the application of an external
stimulus.10

Despite the extensive work devoted to the synthesis of
MIMs and the development of functional molecular machines
based on them, the introduction or the use of chirality in such
systems has remained much less explored. Taking into account

the utmost importance of chirality in chemistry and other
sciences, it is not surprising that the synthesis, study, and
applications of chiral rotaxanes and catenanes has recently
started to increasingly attract attention.11 In this sense, the
introduction of chiral stereogenic elements,12 that is, chiral
covalent stereogenic centers, chiral stereogenic axis, mechan-
ical planar chirality,13 or co-conformational covalent or planar
chirality,14 led to interesting applications based precisely on the
presence of chirality, such as asymmetric catalysis,15 chiral
anion recognition,16 or molecular information ratchets.14a,b

Unlike the interest in the switching of optical properties like
luminescence, the study of chiroptical properties has remained
rather unnoticed. It is worth highlighting that, in addition to
electronic circular dichroism (ECD), other relevant chiroptical
properties, such as vibrational circular dichroism (VCD),
optical Raman (ROA), and, more especially, circularly
polarized luminescence (CPL),17 are of interest for different
applications. CPL appears as a result of the preferential
emission of right or left circularly polarized radiation from the
chiral excited state of a molecular system.18,19 Within this
context, CPL emission by well-defined organic or organo-
metallic compounds20 has been extensively described in recent
years. Remarkably, emitted light in these systems has a new
degree of freedom at a fixed wavelength, which is of interest in
the development of new photonic materials and smart sensing
technologies.21 In particular, the control of this degree of
freedom in a dynamic way can be of relevance to encode
information in light. That is, dynamic and reversible creation
and/or switching of CPL in an emitted radiation can be
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correlated with a writing-and-erasing process. Although some
CPL switches22 have been described, new approaches to CPL-
switching are required to fully implement this appealing
property in complex devices.
MIMs have been successfully implemented in the switching

of a variety of properties even in such complex devices.
However, although chiral MIMs and the corresponding ECD
studies have been described, chiroptical switching processes
have been scarcely studied. The examples described, mainly
reported by Leigh and co-workers, are restricted to the
modulation or switching of ECD (Figure 1a).23 If we move to

CPL, it becomes clear that the study of this property in MIMs
is yet at a very early stage, being limited to one kind of system.
Thus, Inouye and co-workers reported two cyclodextrin-based
[4]rotaxanes that exhibited CPL emission. This response arises
from the excimers formed by two pyrene or perylene moieties
from two different threads within the cavity arranged by two
cyclodextrin units acting as macrocycles (Figure 1b).24 Beyond
that and to the best of our knowledge, the switching of CPL in
rotaxanes or catenanes has not yet been reported.

Therefore, it is clear that much more fundamental research is
still required to fully implement and understand the
modulation of chiroptical properties, especially CPL, in
interlocked molecules. In this context, here we report the
first example of the “on”−“off” switching of CPL in a rotaxane-
based molecular shuttle controlled by the application of an
external stimulus (Figure 1c). Remarkably, the total emission,
that is, luminescence of the fluorophore, is maintained in both
“on” and “off” CPL states.

■ RESULTS AND DISCUSSION
Concept and System Design. The design of the system

and its prospective operation are shown in Figure 2. It consists
of a [2]rotaxane formed by a crown ether macrocycle
incorporating an emissive 2,2′-bipyrene unit and a thread
bearing a secondary amine/ammonium unit derived from L/D-
phenylalanine and a triazolium ring as the binding sites for the
macrocycle, similar to that developed by Leigh and co-workers
for a switchable catalyst.15b

The proposed operation is based on two main features. On
one hand, the presence of a CPL response relies on the chiral
information transfer from the chiral secondary amine on the
thread to the otherwise easy-to-racemize macrocycle, which
incorporates the luminescent 2,2′-bipyrene as fluorophore.
This transfer of the chiral information between the
mechanically bound components of an interlocked structure
has been demonstrated to induce a chiral environment on
achiral motifs and has been exploited in applications such as
asymmetric catalysis,15a,e the induction or switching of
ECD,23,26 or the control of the helical structure of polymers.27

In this case, this chirality transfer would induce a preferential
spatial arrangement of the two rings of the 2,2′-bipyrene
moiety when the crown ether macrocycle is located around the
ammonium unit as a result of the chiral environment created
by the phenylalanine residue.28 Therefore, one of the possible
chiral conformations of the macrocycle should be preferentially
formed due to that the energetic degeneration between both R
and S enantiomeric conformations is now broken. Moreover, it
is also expected the conformational flexibility of the 2,2′-
bipyrene subunit in such supramolecular arrangement to be
hampered, yielding a neat chiral configuration. If such chiral
configuration is preserved in the excited state, a CPL response
should be observed.
On the other hand, to enable the possibility of turning “on”

or “off” the induced-CPL emission of the 2,2′-bipyrene moiety,
we chose the well-known acid/base-promoted switching
mechanism of crown ether macrocycles between secondary
amine/ammonium and triazolium salts binding sites, first
developed by Coutrot and co-workers.6b,10d,13c,29,30 Protona-
tion or deprotonation of the secondary amine should promote
the shuttling of the position of the macrocycle between the
binding sites on the thread, as previously demonstrated by
Leigh and co-workers in a similar thread.15b Thus, when the
thread is protonated, the ammonium unit is the preferred
binding site for the macrocycle, and this remains located
around it. As a result, the chirality transfer between thread and
macrocycle would be enabled, activating the CPL emission
from the 2,2′-bipyrene unit. On the contrary, upon
deprotonation of the ammonium salt to form the neutral
secondary amine, the triazolium ring binds more strongly to
the macrocycle, which shuttles toward this second station. As
the distance between the macrocyclic component and the
chiral center on the thread increases, the 2,2′-bipyrene unit

Figure 1. (a and b) Related previous work and (c) contribution of
this study.
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would be less influenced by the amino acid residue, no longer
able to generate a chirally perturbing environment31 or
chirotopic space on the fluorophore. As a result, an equal
population of conformational enantiomers of the 2,2′-
bipyrene unit could be formed again due to the absence of a
chiral environment, thus losing its CPL emission signal without
altering the fluorescence of the system. The latter is just
originated by the 2,2′-bipyrene unit of macrocycle 8 and
should be independent of the inclusion of the fluorophore
within a chiral environment. Interestingly, the exclusive switch
of CPL while keeping a similar fluorescence emission is
especially challenging, and very few examples achieving such
control have been reported to date.22e,f

As shown, the 2,2′-bipyrene plays a key role as this moiety
fulfills the two main requirements needed to ensure the success
of the design. On one hand, this group is luminescent as
required to have any CPL signal. On the other hand, the link of
the two pyrene units through the C-2 position allows the
interconversion between the conformers in the absence of any
chiral space and the induction of a preferred atropisomer when
located in a chiral environment, the requirement to have an
“on”−“off” CPL switch.
Synthesis and Characterization. To prepare the target

rotaxanes, we initially synthesized the 2,2′-bipyrene crown
ether 8 (Figure 3a), starting from 2-bromo-1-hydroxypyrene
(3),32 which was first protected as the corresponding methyl
ether to obtain pyrene derivative 4. We then tackle the key step
in the synthetic route toward the macrocycle, which was the
formation of the 2,2′-bipyrene derivative 5. This was achieved
by applying a palladium-catalyzed cross-coupling of aryllithium

derivatives and aryl bromides developed by Feringa and co-
workers that allows the dimerization of aryl bromides, even
substituted in the ortho position, in the presence of tBuLi in
good yields.33 Following this methodology, we obtained 2,2′-
bipyrene-1,1′-diol (5) after deprotection of the methyl ether
groups with BF3·SMe2. Finally, reaction of 5 with the catechol-
derived dibromide 7 using tBuOK as base and a potassium salt
as template afforded the target macrocycle 8 in 34% yield.
The 2,2′-bipyrene-containing crown ether 8 was charac-

terized by NMR and MS techniques (see the Supporting
Information). In addition, single crystals of its potassium
complex 8⊂K+ were obtained and studied by X-ray diffraction.
Although of moderate quality, the solid-state structure
confirmed the structure of the macrocycle (Figure 3b). It
showed the 2,2′-bipyrene unit with both pyrenes twisted with a
torsion angle of 59.7°. As expected, in the absence of a chiral
environment, the two possible conformational enantiomers are
present within the structure. The formation of the complex
with a K+ ion favors the crown ether to adopt a twisted
conformation around the cation that allows the coordination of
the O atoms to the K+ cation with K−O distances within
2.45−2.61 Å.
For the synthesis of rotaxanes (R)/(S)-1-H+·2PF6

−, we
followed the threading-and-capping approach (Scheme 1),25

starting from monostoppered alkyne derivatives (R)/(S)-11-
H+·PF6

−, which incorporate a chiral secondary ammonium salt
as template for the crown ether macrocycle, prepared by
reductive amination between aldehyde 10 and the primary
amine obtained by Boc-removal from (R)/(S)-9 followed by
protonation and counterion exchange. For the mechanical

Figure 2. “On”−“off” switching of the CPL emission of rotaxanes (R)/(S)-1-H+·2PF6
−25 based on the activation/deactivation of chiral information

transfer from the thread to the luminescent macrocycle controlled by the acid/base-promoted shuttling of the macrocycle position on the thread.
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bond-forming step, we used the click CuAAC reaction34

between azide 12 and alkyne (R)/(S)-11-H+·PF6
− in the

presence of macrocycle 8, affording the interlocked system
(R)/(S)-13-H+·PF6

− in 19−35%. Methylation of the resulting
triazole ring with MeI followed by counterion exchange finally
yielded target rotaxanes (R)/(S)-1-H+·2PF6

−.
It has been pointed out that one the drawbacks associated

with the presence of chirality in MIMs could be an increased
complexity of the NMR spectra of the systems obtained.11b

This is indeed the phenomena we observed. When compared
to those of macrocycle 8 and free thread 14-H+·PF6

−, the 1H
NMR spectra of rotaxanes 13-H+·PF6

− show a complex pattern
in both the aromatic and the aliphatic regions with a high
number of signals, some of them overlapped and broad, which
prevented its full analysis and assignment. This situation is not
surprising taking into account that, as a result of the
macrocycle being located near to the phenylalanine residue,
a symmetry loss induced by the chiral environment is at least
expected.35 Therefore, a complex NMR spectrum could
suggest by itself the presence of an interlocked species.

However, a careful inspection of the 1H and 2D NMR spectra
of 13-H+·PF6

− and their comparison with those of free thread
14-H+·PF6

− allowed us to locate the signal of the amide N-
methyl group, which can be used as a diagnostic signal (see
Figure 4b,c). Upon formation of the rotaxane, the hydrogen
atoms of this methyl group are shifted toward lower
frequencies (ΔδHa = −0.90 ppm, Figure 4b,c) as compared
to the protonated free thread as a result of the shielding by the
aromatic rings of the macrocycle.36 DOSY NMR experiments
also supported the interlocked nature of the system as the
signals corresponding to both the macrocycle and the axle
exhibited the same diffusion coefficient, showing that both
components diffuse as a whole (see Figure 5a). Moreover, the
identity of the rotaxane was further confirmed by electrospray
high-resolution mass spectrometry (ESI-TOF HRMS). The
mass spectra showed a major peak at m/z = 2038.9519 whose
exact mass and isotopic distribution nicely match those
corresponding to the [M − PF6

−]+ ion (see Figures S59 and
S60).
The final rotaxanes (R)/(S)-1-H+·2PF6

− were also charac-
terized on the basis of the same experimental evidence. After
methylation of the triazolium ring, most of the signals of the
1H NMR spectrum broadened, but the diagnostic resonance
for the amide N-methyl hydrogens could still be clearly
observed (see Figure 4d). This signal appears at the same
chemical shift (δHa = 2.31 ppm, Figure 4c,d) as in 13-H+·PF6

−

and is shifted upfield (ΔδHa = −0.87 ppm) when compared to
thread 2-H+·2PF6

−, showing that the macrocycle remains on
the ammonium station despite the triazole ring being
methylated, as expected due to the stronger hydrogen-bond
interactions the crown ether can establish with the secondary
ammonium motif (Figure 4d,f). As for the non-methylated
rotaxane precursor, DOSY NMR experiments were also in line
with the presence of the rotaxane with both components
forming part of a threaded system (Figure S55). ESI-TOF
HRMS further supported the proposed structure with three
main peaks in the spectra (m/z = 1026.9816, 2052.9675, and
2198.9368), which correspond to the [M − 2PF6

−]2+, [M −
H+ − 2PF6

−]+, and [M − PF6
−]+ ions. Furthermore, the exact

mass and the isotopic pattern for the peak corresponding to
the [M − H+ − 2PF6

−]+ species are in good agreement with
the theoretical data (Figure 5b and Figures S61 and S62).

Study and Switching of Chiroptical Properties. Having
synthesized and characterized rotaxanes (R)/(S)-1-H+·2PF6

−

along with the corresponding free threads and the 2,2′-
bipyrene macrocycle, we evaluated the (chiro)optical proper-
ties of the different species. The UV−vis absorption spectrum
of macrocycle 8 in CHCl3 shows a structured absorption band
between 320 and 400 nm with a maximum centered at 355 nm
(ε = 57 494 M−1 cm−1) and a small shoulder at 386 nm (ε =
1989 M−1 cm−1) as the main features. Because of the presence
of the pyrene units, this macrocycle is fluorescent when
irradiated with UV light (λexc = 355 nm) with an emission
band centered at 404 nm (QY = 0.18) (Figure S75).
Compound 8 did not show any ECD or CPL signals, as
expected for a biphenyl-type compound with a low
racemization barrier (Figures S77 and S78). On the contrary,
enantiopure free threads (R)/(S)-2-H+·2PF6

− and (R)/(S)-14-
H+·PF6

− only exhibit bands in their UV−vis spectra at lower
wavelengths (240−325 nm) as compared to macrocycle 8 and
do not show any emission as a result of the absence of any
fluorophore (Figures S79, S80, S82, and S83). Because of the
presence of L/D-phenylalanine as chiral stereogenic units in

Figure 3. (a) Synthesis of benzo-1,1′-bipyreno-26-crown-8 macro-
cycle (8). Reagents and conditions: (i) MeI, K2CO3, acetone, 0 °C to
reflux, 18 h, 83%; (ii) (1) tBuLi, Pd(dba)2, XPhos, toluene, rt, 20 h,
79%; (2) BF3·SMe2, CH2Cl2, rt, 6 h, 26%; (iii) LiBr, acetone, reflux,
O/N, 92%; (iv) tBuOK, KPF6,

nBu4NI, 0.6 mM, dioxane, rt to reflux,
24 h, 34%. (b) Front (left) and side (right) views of the stick
representation of the X-ray diffraction structure of 8⊂K+. The
coordination bonds between K and the crown ether O atoms are
shown with dashed lines. Hydrogen atoms and the PF6 counterion
have been omitted for clarity. Color coding: C, gray; O, red; K,
purple.
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their structure, the threads show ECD signals below 300 nm,
but its nonemissive behavior precludes the potential presence
of any CPL response (Figures S81 and S84).
On the other hand, rotaxanes (R)/(S)-13-H+·PF6

− and (R)/
(S)-1-H+·2PF6 display a UV−vis spectra with two main bands,
one centered at 273 nm, while the second one is located in the
320−400 nm region with a maximum centered at 355 nm (ε =
55 230 M−1 cm−1) and shows a vibronic structure, with a shape
and energy similar to those of the main absorption band of
macrocycle 8 (Figure 6a, middle, and Figures S85 and S93). As
expected, upon excitation with UV light (λexc = 355 nm), all
rotaxanes show a fluorescent emission band (λem = 404 nm,
QY = 0.19 for 13-H+·PF6

− and QY = 0.11 for 1-H+·2PF6
−),

again with a shape similar to and the same wavelength range
(380−500 nm) as that of 8, in accordance with the 2,2′-
bipyrene unit being the fluorophore responsible for the
luminescence properties (Figure 6a, middle, and Figure S85).
Nevertheless, as a result of the incorporation of both the
luminescent achiral macrocycle and any of the nonemissive
homochiral threads into a rotaxane architecture, a clear change
in the chiroptical properties is observed. Thus, all rotaxanes
show similar ECD spectra with several bands within 300−425
nm, where the absorption can be attributed mainly to the
pyrene units (Figure 6a, top, and Figures S88−S90, S95, and
S96). The phenylalanine having D- or L-configuration results in
the ECD spectra of the corresponding rotaxanes being mirror
images. Accordingly, (S)-1-H+·2PF6

− showed a negative

Cotton effect at 355 nm (|Δε| ≈ 4 M−1 cm−1, gabs = Δε/ε ≈
7 × 10−5) and a positive one at the lowest energy transition at
400 nm (|Δε| ≈ 0.5 M−1 cm−1, gabs = Δε/ε ≈ 3 × 10−4).
Moreover, upon excitation with UV light (λexc = 355 nm),

CPL responses covering the range of the emission band are
observed for the rotaxanes. CPL is usually evaluated with the
luminescence dissymmetry ratio (glum), calculated as glum = 2(IL
− IR)/(IL + IR), with IL and IR being the intensities of left and
right circularly polarized emitted light. Both (R)/(S)-13-H+·
PF6

− and (R)/(S)-1-H+·2PF6
− rotaxanes afforded |glum| values

of ∼0.5 × 10−3. These values are in agreement with previously
reported chiral binaphthyl-based systems.37 It is worth noting
that for homogeneous systems, the dissymmetry ratio glum can
be expressed theoretically in terms of the electric and magnetic
dipole transition moments μ and m, glum = 4(|μ|·|m|·cos θ)/
(|μ|2 + |m|2) ≈ 4R/D, where R and D are the rotational and
dipole strengths, respectively, for the S1-to-S0 transition.18

Consequently, weak magnetic transitions, as expected for
simple biphenyl-type emitters, joined to reasonably lumines-
cent compounds yield weak, although observable, CPL spectra
in the range of 10−4.
The enantiomeric forms gave CPL signals of opposite glum

signs, as expected for a pure CPL response (Figure 6a, bottom,
and Figures S91, S92, and S97).18 Both the glum values and the
signs are in good agreement with the corresponding values and
signs of the gabs of the lowest energy band in the corresponding
ECD spectrum (inset of Figure 6a, top, and Figure S96), being

Scheme 1. Synthesis of Rotaxanes (R)/(S)-1-H+·2PF6
−a

aReagents and conditions: (i) (1) CF3CO2H, CH2Cl2, rt, 4 h; (2) 10, Et3N, MeOH, rt, 24 h; (3) NaBH4, THF/MeOH, rt, 18 h, 32% (from (R)-9)
and 34% (from (S)-9); (ii) (1) HCl (1.0 M in Et2O), CH2Cl2, rt, 8 h; (2) KPF6, CH2Cl2/acetone/H2O, rt, 16 h, 98% (for (R)-11-H+·PF6−) and
91% (for (S)-11-H+·PF6

−); (iii) Cu(CH3CN)4PF6, TBTA, CH2Cl2, rt, 3 d, 35% (for (R)-13-H+·PF6
−) and 19% (for (S)-13-H+·PF6

−); (iv) (1)
CH3I, rt, 4 d; (2) KPF6, CH2Cl2/acetone/H2O, rt, 5 h, 68% (for (R)-1-H+·2PF6−) and 55% (for (S)-1-H+·2PF6−); (v) (1) CH3I, rt, 4 d; (2) KPF6,
CH2Cl2/acetone/H2O, rt, 18 h, 58% (for (R)-2-H+·2PF6

−) and 98% (for (S)-2-H+·2PF6
−).
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positive for the (S) enantiomers of both rotaxanes and negative
for the ones with (R) configuration on the amino acid.38 The

results obtained for the chiroptical properties are by
themselves proof of the interlocked nature of the structures
studied, taking into account that neither the ECD nor the CPL
spectra of a mixture of thread (S)-2-H+·PF6 and macrocycle 8
(ca. 1 × 10−5 M of each component) show any of the features
observed in those recorded for the corresponding rotaxane
(see Figures S106 and S107). Therefore, they can be only
explained by the chiral information transfer between the
phenylalanine unit on the thread and the 2,2′-bipyrene unit.
The different sign of the bands on the ECD and CPL spectra
upon change of the configuration of the amino acid residue,
resulting in mirror image spectra, clearly supports this chiral
induction as each of the phenylalanine configurations would
induce a different preferential atropisomer-based configuration
on the 2,2′-bipyrene moiety. Another control experiment that
highlights the importance of the interlocked structures was the
study of the chiroptical properties of an equimolar mixture of
(S)-11-H+·PF6

− and macrocycle 8 (ca. 1 × 10−5 M of each
component). Again, the CPL spectra did not show any signal,
revealing the need of an interlocked rotaxane to observe
chiroptical responses in this system (Figures S109 and S110).
This result can be attributed to the component not forming a
proportion of the supramolecular complex high enough at the
concentration used for its chiroptical properties being
observed.
After demonstrating the CPL emission of the system, we

decided to evaluate its possible “on”−“off” switching taking
advantage of the incorporated well-known shuttling mecha-
nism. In fact, addition of K2CO3 to rotaxanes (R)/(S)-1-H+·
2PF6

− with the aim of deprotonating the secondary amine unit
and forming (R)/(S)-1·PF6

− dramatically influenced their
chiroptical properties. Neither the UV−vis nor the fluores-
cence spectra experienced important changes. For the latter,
both the shape of the emission band (λmax = 401 nm) and the
corresponding quantum yield (QY = 0.11) remained
essentially unaltered (Figure 6b, middle). However, in both
the ECD and the CPL spectra, no signals corresponding to the
2,2′-bipyrene moiety could be detected, and the bands that
appeared prior to the addition of the base were no longer
present (Figure 6b, top and bottom, and Figure S100).

1H NMR spectroscopy allowed us to gain insight into the
effect of the base addition on the rotaxane. The amide N-
methyl signal shifted downfield in comparison to 1-H+·2PF6

−

(ΔδHa = 0.85 ppm) with a chemical shift (δHa = 3.16 ppm)
similar to that in free thread 2-H+·2PF6

− (Figure 4d−f).
Therefore, the NMR experiment endorses the switching of the
position of the macrocycle from the secondary amine to the
triazolium ring as a result of the deprotonation of the former
by addition of base.
Addition of CF3CO2H to (R)/(S)-1·PF6

− restored the
chiroptical properties as both the ECD and the CPL spectra
are similar to those initially measured for (R)/(S)-1-H+·2PF6

−,
again with no evident changes in the absorption or emission
spectra (Figures 6c and S101).39 Therefore, the key feature of
the system is that the CPL response can be switched “on” or
“off” by addition of acid or base without altering the
luminescence profile, yielding the first rotaxane-based CPL
switch.40

Finally, taking advantage of the interlocked architecture, we
attempted the in situ switching of the CPL response. Starting
from (S)-1-H+·2PF6

−, with a glum value of ∼0.5 × 10−3, the
CPL spectra were recorded after consecutive cycles of K2CO3
and CF3CO2H addition to control the position of the

Figure 4. Partial 1H NMR spectra (CDCl3) of (a) macrocycle 8 (500
MHz); (b) thread 14-H+·PF6− (500 MHz); (c) rotaxane 13-H+·PF6−

(500 MHz); (d) rotaxane 1-H+·2PF6
− (400 MHz); (e) rotaxane 1·

PF6
− (400 MHz); and (f) thread 2-H+·2PF6

− (400 MHz). Lettering
and color coding are defined in Figure 2.

Figure 5. (a) DOSY NMR spectra (500 MHz, CDCl3) of rotaxane
13-H+·PF6

−; and (b) HRMS (ESI+-TOF) spectrum of rotaxane 1-H+·
2PF6

−. Inset: Experimental (bottom) and calculated (top) isotopic
distributions for the peak corresponding to the ion [M − H+ −
2PF6

−]+.
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macrocycle on the thread. The data show that, for three
complete cycles, the addition of base disables the CPL
response with glum values close to 0, while the reprotonation
restores the CPL signal (Figure 7), and, in any case,
fluorescence emission remains essentially unaltered throughout
(around 10% variation).
After each cycle, some decrease in the restored CPL signal is

observed, probably due to some degradation observed in the
deprotonated “off” state. We assume that an oxidation to
amine N-oxide is taking place precluding the full restoration of
the CPL signal upon treatment with CF3CO2H. This

degradation was minimized, although unfortunately not
completely suppressed, by carrying out the experiments
under Ar atmosphere.41 In any case, the statistical tests
performed on the CPL signals of the “on” and “off” states of
each cycle show that, despite this degradation, the responses
for the “on” states are significantly higher than those of the
“off” states and can be clearly distinguished (see Supporting
Information for further details). Therefore, the CPL
“on”−“off” switching character of the presented MIM is fully
demonstrated.

■ CONCLUSIONS

Chiroptical responses, especially CPL, are attracting increasing
attention as relevant properties in the design of advanced
photonic materials or in optoelectronic or sensing applications.
In this sense, not only systems that exhibit CPL signals are
relevant, but also those in which this chiroptical response can
be modulated in a controlled fashion upon application of
external stimuli. Within this context, chiral enantiopure
rotaxane-based molecular shuttles with well-known switching
mechanisms represent a platform with an excellent potential to
be exploited in the development of such materials. This
strategy is linked to the increasing attention the chirality in
MIMs is receiving recently and represents an example of the
properties available ahead of the development of chiral
rotaxanes and catenanes.

Figure 6. ECD (ca. 1 × 10−5 M) (top), UV−vis absorption (ca. 1 × 10−5 M) (black line) and fluorescence (λexc = 355 nm) (ca. 1 × 10−5 M)
(purple line) (middle), and CPL in normalized ΔI scale (λexc = 355 nm) (ca. 1 × 10−5 M) (bottom) spectra (CHCl3) of (a) 1-H

+·2PF6
−; (b) 1·

PF6
−; and (c) 1-H+, obtained by protonation of 1·PF6

− with a solution of CF3CO2H in CHCl3. Inset (a): Partial ECD (ca. 1 × 10−4 M) spectrum
showing the lowest energy band (top) and partial UV−vis spectrum (ca. 1 × 10−4 M) showing the longest wavelength absorption (bottom).

Figure 7. In situ “off”−“on” switching of the CPL emission of (S)-1-
H+·2PF6

− after consecutive addition of base (K2CO3, red ■) and acid
(CF3CO2H, green ■).

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b07143
J. Am. Chem. Soc. 2019, 141, 18064−18074

18070

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b07143/suppl_file/ja9b07143_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b07143/suppl_file/ja9b07143_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b07143


Thus, in this work, we present the first CPL “on”−“off”
switch based on a MIM, in this case, a [2]rotaxane molecular
shuttle. The chiroptical properties of this design rely on the
chiral information transfer that occurs when a crown-ether
macrocycle bearing a luminescent 2,2′-bipyrene unit interacts
through hydrogen bonding with a secondary ammonium unit
on the thread incorporating D- or L-phenylalanine motifs. As a
result, one 2,2′-bipyrene atropisomer is preferentially formed
and a CPL signal is observed, with different sign depending on
the configuration of the chiral covalent stereogenic unit.
Enabling or disabling the chiral information transfer by
switching the position of the macrocycle on the thread by
addition of acid or base allows the “on”−“off” switching of the
CPL emission. Remarkably, the fluorescence profile or its
corresponding quantum yield did not become altered. Finally,
we demonstrate that the CPL response can be switched in situ
by subsequent addition of base and acid for several complete
cycles.
These proof-of-concept results not only reinforce the

potential of molecular machines, expanding the already wide
range of applications in which they have proved useful, but also
open a new strategy that can be explored to develop systems of
increasing efficiency and robustness that allow the selective
control and switching of CPL and perhaps other chiroptical
properties, which are called to play an important role in a new
generation of materials.
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(10) (a) Peŕez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.;
Zerbetto, F. A Generic Basis for Some Simple Light-Operated
Mechanical Molecular Machines. J. Am. Chem. Soc. 2004, 126,
12210−12211. (b) Leigh, D. A.; Morales, M. Á. F.; Peŕez, E. M.;
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(b) Lim, J. Y. C.; Marques, I.; Feĺix, V.; Beer, P. D. Enantioselective
Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. J. Am.
Chem. Soc. 2017, 139, 12228−12239. (c) Lim, J. Y. C.; Marques, I.;
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