
Guanqun Meng is a PhD student in Epidemiology and Biostatistics at the Department of Population and Quantitative Health Sciences in Case Western Reserve
University, School of Medicine. He is interested in -omics signal deconvolution methods in mixed high-throughput data.
Wen Tang is a biostatistician in the Department of Population and Quantitative Health Sciences at Case Western Reserve University, School of Medicine. She is
interested in applied biostatistics and bioinformatics methods in team-science project research.
Emina Huang is the executive vice-chair of research and professor of surgery at the Department of Surgery in University of Texas Southwestern Medical Center.
Her research interest is on inflammatory bowel disease and colorectal cancer genesis.
Ziyi Li is an assistant professor in the University of Texas MD Anderson Cancer Center. Her research focuses on developing statistical and machine learning
methods and apply them to genomics, epigenetics and computational biology.
Hao Feng is an assistant professor in the Department of Population and Quantitative Health Sciences at Case Western Reserve University, School of Medicine. His
main research interest is to develop statistical methods and computational tools for high-throughput bioinformatics data.
Received: August 16, 2022. Revised: October 8, 2022. Accepted: October 29, 2022
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(1), 1–13

https://doi.org/10.1093/bib/bbac516

Review

A comprehensive assessment of cell type-specific
differential expression methods in bulk data
Guanqun Meng, Wen Tang, Emina Huang, Ziyi Li and Hao Feng

Corresponding author. Hao Feng, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA,
E-mail: hxf155@case.edu

Abstract

Accounting for cell type compositions has been very successful at analyzing high-throughput data from heterogeneous tissues.
Differential gene expression analysis at cell type level is becoming increasingly popular, yielding biomarker discovery in a finer
granularity within a particular cell type. Although several computational methods have been developed to identify cell type-specific
differentially expressed genes (csDEG) from RNA-seq data, a systematic evaluation is yet to be performed. Here, we thoroughly
benchmark six recently published methods: CellDMC, CARseq, TOAST, LRCDE, CeDAR and TCA, together with two classical methods,
csSAM and DESeq2, for a comprehensive comparison. We aim to systematically evaluate the performance of popular csDEG detection
methods and provide guidance to researchers. In simulation studies, we benchmark available methods under various scenarios of
baseline expression levels, sample sizes, cell type compositions, expression level alterations, technical noises and biological dispersions.
Real data analyses of three large datasets on inflammatory bowel disease, lung cancer and autism provide evaluation in both the
gene level and the pathway level. We find that csDEG calling is strongly affected by effect size, baseline expression level and cell type
compositions. Results imply that csDEG discovery is a challenging task itself, with room to improvements on handling low signal-to-
noise ratio and low expression genes.
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Introduction
Identifying differentially expressed genes (DEG) in bulk RNA-seq
data is often the primary task in clinical studies where researchers
want to find gene expression alterations associated with pheno-
types of interest, such as neurodegenerative and neuropsychiatric
disorders [1–7], virus infection [8–10], inflammation [11, 12], aging
[13, 14], smoking history [15, 16] and many more. In these studies,
the real clinical samples for sequencing often contain a mixture
of different cell types. For example, blood samples have a mixture
of B cells, memory T cells, CD4 T helper cells, natural killer cells,
dendritic cells and others [17]. The real clinical RNA-seq signal
is, in fact, a mosaic of at least several pure cell types. The bulk
RNA-seq signals, as a result, are the weighted average of signals
from multiple pure cell types. The weights, naturally, are the
proportions of the associated cell types.

With the cell types mixture process described above, it is easy to
identify two potential causes that yield DE genes in observed bulk
data: cell composition change or cell type expression level change.
For example, gene expression alterations in lung cancer before
and after immunotherapy do not necessarily indicate the tumor’s

transcriptome change; instead, it reflects an increased content
of tumor-infiltrating lymphocytes [18]. As another example, the
proportion of cytotoxic CD8+ T cells would decrease in late-stage
melanoma samples [19]. Therefore, in Differential Expression (DE)
analysis, the mixing proportions can confound the phenotype
of interest. Traditional DE detection methods, in general, fail to
consider the cell mixture problem. Properly accounting for cell
type mixture in DE gene detection became an active research
domain in the last several years.

Several computational methods were recently developed to
take sample mixture proportions into modeling, to identify cell
type-specific DEG (csDEG). Relevant methods include CARseq [20],
TOAST [21], CeDAR [22], CellDMC [23], LRCDE [24], TCA [25], csSAM
[26], HIRE [27] and DESeq2 [28]. A schematic overview is shown in
Figure 1. In general, these methods can take bulk RNA-seq data
as the input, together with cell type mixing proportions given or
estimated and produce csDEG results as the output.

The methods described above are also reflections of the evolv-
ing methodology. csSAM, which was developed in 2010, is a pio-
neer in csDEG calling. It adopted a linear regression model and

http://creativecommons.org/licenses/by-nc/4.0/
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Figure 1. An overview of the csDEG detection experiment. Patient’s samples are taken from biopsies and sequenced. Cell type compositions can be
estimated by reference-free or reference-based deconvolution methods. With cell type proportions, bulk RNA-seq data, and samples’ information as
inputs, csDEG detection can be performed using several computational methods listed in the green box.

deconvoluted samples to test for csDEG using permutations. It
was designed for gene expression microarray data initially. csSAM
generated a limited set of distinct false discovery rate (FDR) values
across the entire genome, due to the permutation design. It had
low flexibility as it only focused on case–control comparisons and
unable to take covariates. In 2014, DESeq2 was proposed. As one
of the world-renowned DE detection methods, DESeq2 adopted
a Negative Binomial distribution to model RNA-seq data, while
allowing a generalized experimental design. Although DESeq2
was not designed for csDEG detection, it could achieve this goal by
incorporating the cell type proportions as interaction covariates
in the model. It is hereby included in our review as a represen-
tation of canonical DE algorithms that can also deliver csDEG
results. LRCDE (2016) adopted a similar linear regression model
to contrast expression coefficients from different phenotypes of
interest. It represented another successful implementation of
regression modeling. We see an upscaling in methodology devel-
opment since 2018. CellDMC (2018) was designed for the cell
type-specific analysis for DNA methylation data; nevertheless, its
general framework is applicable to csDEG calling. In 2019, three
algorithms, TCA, TOAST and HIRE were developed to deconvo-
lute heterogeneous samples and identify csDEG. The modeling
framework for TOAST was flexible, allowing users to incorporate
additional covariates. TCA utilized tensor to deconvolve two-
dimensional data into three-dimensional signals. HIRE targeted
methylation data and applied a two-layer hierarchical model
that captured the effects of the multiplicative cell composition
on phenotype outcomes. With methylation data and covariates
provided, HIRE directly output subject-level cell compositions,
baseline methylation profiles and phenotype effects. Therefore,
users do not need to provide cell type proportion information
solved by external methods. In 2021, CARseq was proposed to use
negative binomial distribution in csDEG analysis. It is a statisti-
cally rigorous approach because of a precise choice of distribu-
tion assumption and a sound modeling framework in RNA-seq
count data. The trade-off is a long computing time caused by the
iterative weighted least squares (IWLS) algorithm in parameter
estimations. In 2022, CeDAR was developed to further incorpo-
rate csDEG correlation structures through a hierarchical tree. It
demonstrated the advantage of using the information stored in

the tree structure to improve the csDEG calling process. As a
reference for benchmark comparisons, Table 1 summarizes these
methods in a chronological order.

We expect the csDEG detection, across the spectrum of
research areas, will be widely adopted and continue to thrive.
Therefore, a systematic review of currently available methods
is in demand. Recently, efforts have been made to evaluate
the sensitivities of some methods [29]. Despite being inclusive
in its evaluation, the current research was conducted in a
confined environment using only microarray real data, without
simulation studies. Various aspects have not been thoroughly
investigated, specifically for bulk RNA-seq data. Therefore, given
the multifaceted aspects of csDEG calling and the existing
wide adoption of bulk RNA-seq count data, a systematic and
comprehensive review of the currently available methods will
serve the immediate need of researchers who want to adopt such
methods.

In this article, we systematically assessed all eight methods
in RNA-seq experiments for csDEG detection performance.
We designed a rigorous two-step simulation experiment to
thoroughly assess their performances under various parameter
choices. We benchmarked these methods under different
scenarios, including various baseline expression levels, sample
sizes, cell type compositions, expression level alterations and
technical/biological dispersions. In real data analysis, we investi-
gated their performances on three large bulk RNA-seq datasets
on inflammatory bowel disease, lung cancer and autism studies.
We summarized major factors affecting csDEG detection and
inspected their performance stratified by expression levels. We
paid particular attentions to methods’ conservativeness in real
data analyses and identified novel and classic pathways using
consensus csDEG lists.

Data generative model and simulation
Given the multifaceted sources of randomness in cell type mix-
tures and sequencing steps, we designed a flexible and compre-
hensive simulation scheme as shown in Figure 2. The pipeline
comprises three parts: (A) reference panel generation, (B) cell type
proportion simulation and (C) weighted average and observed
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Figure 2. Bulk RNA-seq data simulation from mixtures of cell types. (A) Cell type profiles are generated from a multivariate log-normal distribution, with
parameters estimated from pure cell line RNA-seq data. (B) Cell type proportions are generated from Dirichlet distribution, with parameters estimated
from a collection of 16 well-labeled scRNA-seq datasets. (C) Gamma-Poisson compound is adopted to generate observed RNA-seq data, with dispersion
embedded. (D) Simulated data mimic the real data well, reflected through the gene expression means and dispersion distributions.

expression simulation. These three steps are elucidated in the
subsections below.

We use g to denote the gene index, with g from 1 to G. We use i
as the sample index, with i from 1 to N. G and N represent the total
number of genes and the total number of samples, respectively.
Suppose the number of underlying cell types is K, indexed by k
from 1 to K. Cell type-specific gene expression for each gene is
denoted by xg = (xg1, ..., xgK)T. The sample-specific cell type mixing
proportions is a vector denoted by θ i = (θ1i, θ2i..., θKi)

T. Naturally, it
has the constraint

∑
k θki = 1, and θki ≥ 0 for all k and i. For a

specific gene g and a specific sample i, the observed bulk RNA-
seq gene expression value, denoted by Ygi, is a weighted sum of
elements in xg, with weights given by θ i

Cell type expression profiles generation. We use a parametric
model to generate pure cell type-specific gene expression profiles,
with parameters estimated from real data. Here, we obtained a
real RNA-seq dataset (GEO: GSE60424) [30], which includes six
pure immune cell types (neutrophils, monocytes, B-cells, CD4 T
cells, CD8 T cells and natural killer cells). Using the negative
binomial modeling framework estimators provided by PROPER
[31], we estimated the mean and dispersion for each gene at each
cell type, for a total of P = 1540 genes. For each gene, denoted
as p from 1 to P, the mean and dispersion estimations (in log
scale) are μ̂p = (μ̂p1 , ..., μ̂pK )

T and φ̂p = (φ̂p1 , ..., φ̂pK )
T. Real data

have shown the associations of gene expression means and the
dispersion of the same gene across different cell types. Therefore,
properly accounting for such associations is not a trivial task.
We adopt multivariate normal distribution (MVN) on μ̂p and φ̂p, to
account for the correlations among multiple cell types. In other
words, we have μ̂p ∼ MVN(m, �m) and φ̂p ∼ MVN(d, �d). The
maximum likelihood estimation (MLE) is then applied to get esti-
mated m̂, d̂, �̂m, and �̂d. These parameters are adopted to simulate
the underlying gene expression parameters for each simulated
gene across all cell types:

μg,K×1 ∼ MVN(m̂, �̂m)

φg,K×1 ∼ MVN(d̂, �̂d),

where μg,K×1 and φg,K×1 are the simulated mean and dispersion
parameters for one gene g. Then, the steps above are iterated for
G times to obtain the mean (M) and dispersion (�) matrices for all
genes and all cell types:

MG×K = [μ1, μ1, ..., μG]T; �G×K = [φ1, φ2, ..., φG]T.

In our simulations, we set G = 30 000 and K = 6. Now we have two
matrices of cell type-specific underlying gene expression param-
eters, MG×K and �G×K. A re-parameterized Gamma Distribution as
shown below is to simulate the cell type-specific reference panel
XG×K.

XG×K ∼ �{shape = 1
exp(�G×K)

,

scale = exp(MG×K) · exp(�G×K)}

The biological dispersion is embedded in this Gamma step
because it reflects the underlying variation of the group-level
(case/control) reference panels. Additionally, the shape and scale
parameters are transformed to reflect the mean and disper-
sion of its corresponding negative binomial distribution when it
compounds with Poisson distribution (proof in Supplementary
Section 1).

We assume cases and controls have different means but an
identical dispersion. 5% of total genes are randomly selected to
be differentially expressed, with half of the csDEG being upregu-
lated and the remaining half being downregulated. The Log-Fold-
Changes (LFCs) for csDEG are randomly drawn from N(μLFC, σ 2

LFC)

and N(−μLFC, σ 2
LFC). We let μLFC and σLFC take values from 0.5 to 4

and 0.1 to 1, respectively, to benchmark these methods’ perfor-
mance under various scenarios.

Cell type mixture proportions generation. We leverage on well-
labeled, annotated real single-cell RNA-seq (scRNA-seq) data to
best mimic cell type proportions in simulation. Sixteen annotated
real scRNA-seq datasets are obtained, and cell labels from these



Review of csDEG identification methods | 5

studies are extracted (details in Supplementary Section 1.3). Cell
types with very few cells are filtered out. We categorize cell
labels and generate large pools of cell labels. Next, we can obtain
the samples through bootstrap resampling. Dirichlet Distribution is
adopted to estimate the Dirichlet parameter α based on the boot-
strapped samples. The cell type proportions are then simulated as
follows:

θ i ∼ Dir(α).

In practice, we obtained two sets of parameters αC and αD, respec-
tively, for controls and cases to imitate the heterogeneity in pro-
portions from different groups.

Observed RNA-seq count data generation. As outlined earlier,
the observed expression level Yi is a weighted average of pure cell
type profiles. Therefore, we have:

wi = XG×Kθ i

Yi|wi ∼ Poisson(wi).

Here, both Dirichlet and Poisson steps reflect the random errors
between individuals. Based on the mean expression wi, a Poisson
distribution is adopted to simulate the observed RNA-seq count
data. It also reflects the technical noise from the sequencing
experiment, a different error source from biological dispersion
introduced earlier by Gamma distribution.

In summary, this multi-step simulation design completes the
compound structure equivalent to a negative binomial distribu-
tion (Supplementary Section 1). It has following advantages over
using a negative binomial directly. First, the Gamma distribution
captures the biological variations for the underlying true gene
expression levels. Second, the Dirichlet distribution controls the
variations on cell type proportions. Third, the weighted average of
the underlying expression levels from Gamma distribution, eval-
uated by the weights generated from the Dirichlet step, naturally
mimics the cell type mixture process. Fourth, the Poisson distribu-
tion captures the technical variations related to the randomness
in the sequencing experiments. Overall, the benefit of this multi-
step simulation design is to customize both the biological and
technical noises, in addition to other parameters, for a better
investigation on various aspects in csDEG identifications.

Overall snapshot
Given the estimated cell type proportions from real data, simula-
tions are conducted to evaluate csDEG detection accuracy. We use
the true discovery rate (TDR) as a main evaluation metric, which
is defined as the percentage of true csDEG among significant
top genes called by the algorithm. A high TDR is equivalent to
a high precision. This reflects the practical consideration that
researchers focus on the top identified genes; therefore, the accu-
racy among them matters the most. Canonical metrics, includ-
ing receiver operating characteristic (ROC) curve, sensitivity and
specificity, are also adopted.

We first conduct a baseline simulation study under a two-
group comparison design, with a sample size N=100 for case and
control groups, respectively. We set the proportion of DE genes
at 5%, with Log Fold Change (LFC) mean and SD set to 1.5 and
0.2, respectively. There are 30 000 genes across six cell types
simulated, repeated for a total of 20 times. Given the proportions
solved by CIBERSORTx [32], they are treated as known values for
a fair comparison and fed into all methods.

Figure 3A shows the averaged TDR results at one cell type
and aggregated over all six cell types, respectively. Here, TOAST,
CellDMC, TCA and CARseq have the highest TDR across different
cell types. Especially, CellDMC and TOAST have almost identical
performance. CeDAR is mostly comparable to TOAST and CARseq
among the first several hundred top genes, but slightly reduced
afterwards. The two traditional approaches, DESeq2 and csSAM
show the lowest accuracy consistently. This is also within our
expectation because they are either not designed to handle csDEG
detection or adopt modeling for microarray data only. The sen-
sitivity and type I error rate (also called False Positive rate, FPR,
which equals 1-specificity), averaged across six cell types, are
shown in Figure 3B. TCA provides the highest sensitivity, as well
as a low sensitivity variability, across 20 simulations. It is followed
by DEseq2 and CeDAR. In contrast, LRCDE shows a low sensitivity
and inflated type I error rate. Figure 3C shows the relative loca-
tions of averaged sensitivity and FPR across simulations. The first-
tier choice of method, favoring those with high sensitivity and
low FPR, should contain the cluster of methods located near the
upper left.

Similar conclusion can be drawn at additional simulations
conducted at an exhaustive combinations of the number of genes
at 10 000, 20 000, 30 000 and 40 000 and the number of cell types
at 4, 5, 6, 7 and 8 (Supplementary Section 8.1 and 8.2).

Sample size and effect size of csDE
We next investigate the impacts of sample sizes and effect sizes
on csDEG calling accuracy. The effect size is measured by the
magnitude of LFC. Simulations are conducted under exhaustive
combinations of sample sizes in 20, 50, 70, 100, and 200 per group
and LFCs in 0.5, 1, 2, 3 and 4. These scenarios span common
experimental conditions for sample sizes and effect sizes. TDR
trends are shown in Figure 4 as a heatmap. All methods tend to
perform well among very top-ranking genes identified (i.e. top
500). There is a decreasing trend in precision as we move down
the top-ranking cutoffs. Under small effect size (i.e. LFC = 0.5), all
methods tend to have poor precision even at large sample size.
Larger sample sizes only improve TDR marginally. This suggests
that the effect size plays a vital role in the csDEG detection
problem: for those genes with moderate changes, deconvolution
and detecting csDEG could be a challenging task itself. Increasing
sample size can boost statistical power but its impact on precision
is moderate. Meanwhile, we see a dramatic increase in TDR as
the LFC increases. This improvement is evident, even at a small
sample size. Overall, TOAST, CellDMC, TCA and CARseq exhibit
favorable and stable performance in TDR.

Stratified expression
Previous study indicated a discrepancy in DE genes’ detection
at different gene expression ranges and library sizes [31]. There-
fore, we stratify the genes by their expression values to inves-
tigate the methods’ performances at each stratum. A total of
nine gene expression strata are obtained: [0,10), [10,20), [20,40),
[40, 80), [80,160), [160, 320), [320, 640), [640,1280), [1280, +∞).
Figure 5A shows the mean sensitivities across simulations of all
eight methods at different strata, at various sample sizes and
LFCs, and Figure 5B shows a stratum-specific boxplots sensitivity
over 20 simulations. We generally observe poor sensitivity at low
expression strata, especially for genes with expression values <20.
When moving to higher strata, sensitivity increases and variability
shrinks considerably. Almost all methods are sensitive to gene
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Figure 3. Comparisons of csDEG detection accuracy. (A) True discovery rate (TDR) is shown along the identified top-ranking genes in cell type six (left).
The average TDR (right) is the aggregated results across six cell types. TDR is defined as the proportion of true csDEG, among all top-ranking genes, at a
given cutoff. (B): Model-specific sensitivity and type I error rates averaged across six cell types. (C): Averaged type I error versus sensitivity for all eight
models. N=20 simulations are conducted in each setting.

expression changes at high baseline expression levels. The benefit
of sample size increase is not that profound among genes with
low expression values (strata 1 and 2). This is because when
the expression level is low (given the sequencing depth, only
a handful of reads from a gene are sequenced), the technical
noise shadows the real biological difference. In such situations, we
are unlikely to have high probabilities of detecting csDEG while
controlling for multiple testing. Two conclusions can be drawn
here regarding sequencing depths and sample sizes: first, csDEG
detection is more challenging than traditional DE analysis, and a
larger sample size is preferred; second, a deep sequencing depth
will contribute profoundly to genes on the boundary of discovery.

Cell type proportions
Our next benchmark investigates the impact of cell type pro-
portions on csDEG detections. We select cell type proportions
between 5%, 15%, 30% and 60%, to reflect the scenarios from a
very minor cell type to a dominating one. Fixing the sample size
per group at 100 and the LFC distribution mean to 1, we conduct 20
simulations and obtain the average performance. Figure 6 shows

the TDR as the cell type proportion increases, broken down by
strata. As the proportion increase, we see a gradual improvement
in performance across all methods. For those genes with high
expression levels, having a marginal increase in proportion can
contribute to the improvement considerably. On the other hand,
for those genes with low expression levels (strata 1 and 2), the
improvement in TDR is not as substantial as in other high-
expression genes (strata 6 and above). This resonates with the
previous results from stratified expression, showing the difficul-
ties for genes with intrinsically low expression values. Besides the
cell type proportion mean values, the power would decrease if the
cell type proportions variations decrease, while holding the mean
constant (Supplementary Section 7).

DE heterogeneity
We next investigate the impact of gene expression level alterations’
heterogeneity on the csDEG detection accuracy. This set of
simulations aim to assess if and how the variance of LFC’s
distribution across all genes would play a role. Similar to the
scenarios above, we generate LFC and modify the baseline
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Figure 4. Heatmap showing TDR values at various combinations of sample sizes and LFCs combinations in simulation. The color bar on the left indicates
the LFC, ranging from 0.5, 1, 2, 3 and 4. The numbers on the right side indicate the sample size per group, ranging from 20, 50, 70, 100 and 200. The color
bar on the top indicates the cutoff for top-ranking genes at 500, 1000 and 1500.

expression level to create csDEG, but at various levels of the LFC’s
SD, ranging in 0.2, 0.4, 0.6, 0.8 and 1. A larger LFC’s SD will lead
to increased heterogeneity in simulated LFC distribution. The
heatmap of TDR shows the simulation results in Supplementary
Section 3.3. When the heterogeneity increases, we observe slightly
reduced performance in TDR across all methods, although
changes are minor to ignorable in general. Among them, LRCDE
is most sensitive to DE heterogeneity. The remaining methods are
relatively robust to various DE heterogeneity levels.

Running time
We benchmark the runtime for each method under the same
computing environment. A total of 20 simulations are conducted,
and the runtimes are averaged. As shown in Figure 7, TOAST has
the fastest computational speed among all, due to a parallel back-
end computing implementation and linear modeling structure.
Most other methods can be completed within several minutes in a
general personal computer environment. Generally, linear model-
based methods such as TOAST, CellDMC and csSAM are fast. In
contrast, CARseq would consume a significantly longer time due
to its iterative algorithm.

Real data analysis
We apply csDEG calling methods on three large real datasets. The
first dataset is the ileal transcriptome in pediatric inflammatory

bowel disease (IBD) (GEO: GSE57945) [33, 34]. This dataset includes
a cohort of 359 treatment-naïve pediatric patients with Crohn’s
disease (CD, n = 213), ulcerative colitis (UC, n = 60) and healthy
controls (n = 41). The ileal biopsies are obtained from colono-
scopies diagnosis. This study focuses on the DE in UC patients and
healthy controls younger than 17 years old. The second dataset is
the bulk RNA-seq data in a large autism spectrum disorder (ASD)
study [35, 36]. The study includes 251 samples of frontal/temporal
cortex and cerebellum brain regions. Samples are from 48 ASD
subjects versus 49 controls. Our analysis focuses on the cortex
region, which contains 43 controls and 40 cases after filtering. The
third dataset is the bulk RNA-seq data from The Cancer Genome
Atlas Lung Adenocarcinoma (TCGA-LUAD). The outcomes are
stages of pathologic cancer, which are further categorized into a
binary variable, stage-I (n = 330) versus stage-II/III/IV (n = 271)
status. In all analyses, we obtain the model-specific, as well
as overlapping/consensus csDEG, and highlight the similarities
and differences in pathways with extensive literature reviews.
Maximum and minimal pairwise consensus csDEG for each cell
type and across cell types, together with top relevant pathways,
are shown in Supplementary Section 10.1–10.3, respectively, for
UC, ASD and LUAD study. In the following, we first focus on the
results from IBD study.

We apply the reference-free cell type deconvolution method,
deconf [37], on the IBD dataset. Six different cell types are
assumed for the deconvolution process. For each method, csDEG
are identified based on sorted FDR values, and 5% of 28 052 total



8 | Meng et al.

Figure 5. Sensitivity stratified by gene expression values. Nine strata are adopted: [0,10), [10,20), [20,40), [40, 80), [80,160), [160, 320), [320, 640), [640,1280),
[1280, +∞) for strata 1-9, respectively. (A) Simulations at sample size N=20, 50, 100 and 200; and effect size LFC at 0.5 and 2. (B) Boxplots of sensitivities
of 20 simulations, across cell types at each stratum, for sample size per group at N=100 and LFC following N(2, 0.2).

Figure 6. Heatmap of csDEG detection TDR values at various cell type proportions, with expression stratified. Cell type proportions studied: 5%, 15%,
30% and 60%, reflected through the top color bar of the color panels. Nine expression strata, labeled below each panel, have the same range as in
Figure 5.

genes are identified as differentially expressed. The Venn diagram
in Figure 8A shows the overlapping of identified csDEG across
five methods. Although few genes are identified by all methods, a
considerable amount of the identified genes are shared across
at least two methods. For pairwise comparison, the maximal
and minimal overlapping pairs are illustrated in Figure 8B and
Figure 8C. Here, TOAST and LRCDE share the highest number
of consensus csDEG (N = 671), whereas CARseq and DESeq2

have the lowest (N = 63). The consensus genes, respectively, for
each scenario, are taken into Kyoto Encyclopedia of Genes and
Genomes (KEGG) [38–40] pathway analysis, through Enrichr [41–
43]. Top ranking IBD-relevant pathways are shown in the table of
Figure 8D.

Although the exact pathology of IBD remains unclear, immune
system impairment is one of the leading causes. Key pathways
are identified from consensus csDEG identified from more than
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Figure 7. Runtime for all eight benchmarked methods under a general
experimental scenario. A total of N=20 simulations are conducted, and
runtimes are averaged. Computing environment: single node CPU with
64G RAM.

one methods. T-helper 17 (Th17), T-helper 1 (Th1) and T-helper 2
(Th2) are exhibited as the top-ranking pathways. These various
CD4 T-cell subsets have been shown to play crucial roles in the
pathogenesis of IBD, where Th1 has a role in Crohn’s disease
and Th2 has a role in UC [44]. Th17 is associated with IBD
immunopathogenesisand autoinflammatory responses [45]. The
current therapy is also directly targeted against Th1/Th17 cells
differentiation in the intestinal mucosal inflammation, and the
treatment has shown encouraging results [46–49]. In addition,
chemokine signaling pathways are identified by both CARseq and
DEseq2. Chemokines and their receptors inside gastrointestinal
mucosal are important in regulating immune responses, mucosal
homeostasis/inflammation, pathophysiological inflammation,
physiological balance and colon cancer progressions [50,51].
CXCL8 chemokines, as well as CXCL1/CXCL2, as crucial pro-
inflammatory factors, are elevated in UC pathogenesis [52]. Based
on these recent findings, a novel IBD therapeutic approach is
designed to target the chemokine family proteins [53].

We also identify classic pathways that have been adopted in UC
treatment. For example, the JAK-STAT signaling pathway, which
indicates the Janus kinase/signal transducer and activator (JAK-
STAT) pathways, has been involved in many human disorders’
pathogenesis. It is the target for a therapeutical agent, Tofacitinib,
to treat severe UC [54,55]. The identified pathway of NAD+, Nicoti-
namide adenine dinucleotide, is a critical coenzyme for redox
reactions, which are central to energy metabolism and metabolic
homeostasis; thus, it is essential for multiple cellular activities
[56]. NAD+ is critical for maintaining gut homeostasis in IBD
patients [57,58]. Additional important pathways related to UC are
covered in Supplementary Section 10.1.1.

Real data results also provide information for assessing
whether a method is conservative or liberal. Model-specific csDEG
levels are displayed in Figure 8F. Here, the model-specific csDEG
level is defined as the ratio of the model-specific csDEG number
over the number of consensus csDEG across multiple methods.
Using this metric, a liberal method would have a higher value
than the conservative one. DESeq2 yields more csDEG than
others, whereas CellDMC and TOAST are relatively conservative.
In general, for large-scale biomarker exploratory, liberal methods
such as DESeq2, csSAM and TCA will produce more biomarkers
for downstream analyses and wet-lab validations, though at the
risk of inflated false positives. In contrast, conservative methods
such as LRCDE, CellDMC and TOAST potentially have outstanding
precision with a discount on sensitivity. Here for results related
to significant genes overlapping and uniqueness, we used top 5%

as the cutoff to define significance. Similar conclusion, despite
the minor changes in the order of methods, can be drawn by
using a fixed FDR cutoff (Supplementary Section 10.1.8). Figure 8E
shows the pairwise scatterplots of FDR values for common csDEG.
The location of the scatter, relative to the diagonal line, can
reflect the distribution of FDRs in comparison. CeDAR is relatively
more aggressive than CellDMC, whereas TOAST and CellDMC
have comparable performances due to the similar linear model
framework.

The analysis for ASD dataset involves the cell type deconvolu-
tion based on a reference-based methods, ICeD-T [59]. Similarly, a
binary outcome variable indicating controls and cases is created,
and csDEG are identified (details in Supplementary Section 10.2).
Our csDEG results support that neurodegenerations, neuronal
cell loss and proinflammatory cytokines are strongly reflected
in ASD patients [60,61]. Also, dysregulated neurotrophin signal-
ings, brain-derived neurotrophic factor and their interactions with
abnormal immune systems contribute to the development of
ASD [62,63]. Several studies also suggest that a potent liver X
receptor (LXR) agonist, TO901317, is a potential therapeutical
strategy for ASD in relieving the difficulties in social interactions
and restricted behaviors [64,65]. Our pathway analyses from con-
sensus genes align with such findings.

For the third real data analysis on lung cancer, we adopt
TIMER2.0 [66] to calculate cell proportions. This deconvolution
algorithm requires standardized Transcripts Per Million inputs,
and six immune cell types are B cell, T cell CD4, T cell CD8,
neutrophil, macrophage and myeloid dendritic. From our pathway
analyses results, we are able to provide supporting evidence to
the previous discovery that extracellular RNAs (exRNAs) could
facilitate NETs and induce lung cancer oncogenesis [67]. Supple-
mentary Section 10.3 contains additional results from nutritional
and dietary perspective interpretations, for consensus csDEG
identified.

In both UC and ASD datasets analyses, TOAST and LRCDE
share the highest number of consensus csDEGs, and CARseq and
DESeq2 share the lowest number of consensus csDEGs. In UC
and LUAD analysis settings, we observe that CellDMC and TOAST
are more conservative than CeDAR. Across all three datasets, we
also notice that csSAM and DESeq2 identify more model-specific
csDEGs than other models. They are likely to produce inflated
FPRs, when combining the observation with simulation findings.
On the contrary, TOAST and CellDMC are more conservative. TCA,
CeDAR and CARseq are at moderate levels of uncovering model-
specific csDEG.

Discussion
We systematically evaluate several novel and classic methods to
identify csDEG. As the data analysis granularity of DE analysis
shifts from bulk to cell type level, these methods are gaining pop-
ularity and being widely adopted. Our investigation of their perfor-
mances, under various simulation settings, provides researchers
tangible guidance for method selection.

We design a rigorous two-step data generation framework in
simulation, which helps us control the level of various parame-
ters, including sample sizes, effect sizes, effect size heterogeneity,
cell type numbers, cell type abundances and csDEG abundances.
In the context of stratified gene expression, we investigate all
methods and report their performances. Primary metrics include
TDR, ROC, sensitivity, specificity, FPR and runtime, with particular
emphasis on TDR. This underscores the utility of top-ranking
biomarkers in the clinical research setting.
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Figure 8. Real data analysis for a set of IBD RNA-seq dataset (GEO: GSE57945). (A) Venn diagram showing the overlapped csDEG from CARseq, DESeq2,
TOAST, TCA and LRCDE. (B) and (C) illustrate the maximal and minimal pairwise overlapping csDEG among all the methods. (D) Relevant pathways
identified by the significant and overlapped csDEG in (B) and (C). (E) Scatterplots of computed FDR values across two pairwise comparisons. Correlation
coefficients are shown in red color. (F) For each method, the model-specific csDEG level is shown. The higher value indicates a more liberal model. The
model-specific csDEG level is defined as the ratio between model-specific csDE genes number and consensus-called genes number. (G) shows model
accuracies based on pseudo-bulk RNA-seq data derived from a real single-cell dataset. The left panel shows the TDR of the top-ranking genes and the
right panel shows sensitivities across strata.

Based on the baseline simulation and TDR metric, we notice
that across all six cell types, TOAST, CellDMC and CARseq provide
the highest accuracy. CellDMC and TOAST have almost identical
performance in terms of TDR (Figure 3) and FDR correlations
(Figure 8), because both adopt a linear regression framework.
Although CARseq has slightly lower TDR, its statistical model is
rigorous and reflects the most sophisticated modeling in count
data. Classic methods like DESeq2 and csSAM, although can
be customized to solve this problem, are not as good as those
recently developed ones. LRCDE shows unstable performances
across the top selected genes partly due to its liberal behavior
(Supplementary Figure 83, LRCDE is removed due to its over-sized
scale).

From the sample size and effect size perspectives, a small effect
size plays a strong and detrimental effect on csDEG calling. We
conclude that the csDEG calling is more challenging than the
classic DE problem in bulk data, even with a newly developed
models. There is barely any model that has an ideal performance
(TDR < 30%) under a small effect size (LFC = 0.5). At a reasonably
large effect size, CARseq, TOAST, CellDMC and TCA are in the
tier-1 group in testing accuracy (reflected by TDR) and should be

considered favorably by researchers. Those top-ranking identified
genes have higher chances of being true positives.

The gene expression level is an underlying confounding factor
for the model performance, so we have stratified it in our study.
For most methods, there is a clear increasing trend in csDEG
calling sensitivity as we move from a low stratum (low expression)
to a high stratum (high expression). The intuition is that detecting
csDEG is a relatively easy task for highly expressed genes. LRCDE
is an aggressive model that tends to generate extremely small FDR
values, which lead to elevated false-positive rates despite boosted
sensitivities. It is also the reason for its acceptable sensitivities
even at low expression strata (<80) and small LFC. Sensitivity is
also more susceptible to changes in sample size at higher expres-
sion strata for all models except LRCDE. For TOAST, CellDMC,
CARseq, TCA and DESeq2, the sensitivity is more reactive to
effect sizes at lower expression strata and large sample sizes.
Therefore, when both sample sizes and expression values are low,
we typically have insufficient power to detect true csDEG. In this
case, technical sequencing noises dominate true signals, making
it a challenging task to accomplish. Thus, we recommend deeper
sequencing depths to rescue those low expression genes and more
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attentions to these identified biomarkers with high expression
values.

Through the investigations of cell type proportions, we found
that cell type proportions are positively associated with models’
performances. This association is substantial, especially for genes
with moderate to high expression values. Genes in low strata are
resilient to such change, likely due to the dominance of noise.
For all models, especially TOAST, CellDMC, TCA, CARseq and
CeDAR, TDR can be considerably improved by cell type abundance
increase at a high gene expression stratum, than the same propor-
tion increase at a low gene expression stratum. In contrast, LRCDE
has a subpar performance, even at increased cell type proportion
settings.

It is worth noting that the csDEG calling is a challenging task,
whose accuracy can be hampered by several key factors. First,
small effect size at cell type resolution would negatively impact
testing accuracy. For example, at small effect size (LFC = 0.5),
models would all suffer from reduced precision (∼20% TDR at 500
top discovered genes). It is likely that the technical noise would
overwhelm the biological variation and lead to less favorable
accuracy. Second, available models for csDEG detection are most
suitable for moderate to high expression genes. Genes in the low
strata, even if they have high effect size (LFC = 2), would suffer
from low sensitivity issues. Researchers will encounter insuffi-
cient power for low expression genes; therefore, a high sequencing
depth is recommended. Additionally, a higher sequencing depth
can partly alleviate the small effect size problem described earlier.
For example, the sensitivity would reach ∼60% for most models at
a high strata (e.x. strata 6–9). Third, current models do not provide
the optimal solution to handle repeatedly measured samples
within each subject. For those longitudinally observed data with
correlated reference panels, the csDEG detection is a research
problem still unsolved.

Key Points

• Cell type-specific differentially expressed genes (csDEG)
analysis is successful at dissecting bulk RNA-seq data
and identifying biomarkers in a finer resolution.

• Effect size, baseline expression level and cell type com-
position are the leading factors affecting csDEG calling
accuracy.

• CARseq, TOAST, CellDMC and TCA are the most reliable
methods in terms of precision and sensitivity.

• Insufficient power can be expected for low expression
genes. Larger sample size is needed compared with tra-
ditional DE analysis.

• csDEG is a challenging task itself, with room to improve
to properly handle low signal-to-noise ratio and low
expression genes.
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Supplementary data are available online at http://bib.oxfordjournals.
org/.
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