
von Hippel BMC Medical Research Methodology  (2015) 15:35 
DOI 10.1186/s12874-015-0024-z
RESEARCH ARTICLE Open Access
The heterogeneity statistic I2 can be biased in
small meta-analyses
Paul T von Hippel
Abstract

Background: Estimated effects vary across studies, partly because of random sampling error and partly because of
heterogeneity. In meta-analysis, the fraction of variance that is due to heterogeneity is estimated by the statistic I2.
We calculate the bias of I2, focusing on the situation where the number of studies in the meta-analysis is small.
Small meta-analyses are common; in the Cochrane Library, the median number of studies per meta-analysis is 7 or
fewer.

Methods: We use Mathematica software to calculate the expectation and bias of I2.

Results: I2 has a substantial bias when the number of studies is small. The bias is positive when the true fraction of
heterogeneity is small, but the bias is typically negative when the true fraction of heterogeneity is large. For
example, with 7 studies and no true heterogeneity, I2 will overestimate heterogeneity by an average of 12
percentage points, but with 7 studies and 80 percent true heterogeneity, I2 can underestimate heterogeneity by an
average of 28 percentage points. Biases of 12–28 percentage points are not trivial when one considers that, in the
Cochrane Library, the median I2 estimate is 21 percent.

Conclusions: The point estimate I2 should be interpreted cautiously when a meta-analysis has few studies. In small
meta-analyses, confidence intervals should supplement or replace the biased point estimate I2.
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Background
When different studies estimate the effect of a treatment
or exposure, the estimates will vary from one study to
another. Some of this between-study variance comes
from random sampling error, while some may come
from heterogeneity. There are several sources of hetero-
geneity, including differences in the treatment, the
treated population, the study design, or the data analysis
method. When there is no heterogeneity, estimates are
said to be homogeneous and differ only because of ran-
dom sampling error.
Heterogeneity is very important. If the existing studies

of a treatment are homogeneous, or nearly homoge-
neous, then there is some assurance that the treatment
will have a similar effect when applied to new subjects.
On the other hand, if the existing studies are very het-
erogeneous, then unless the reasons for heterogeneity
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are well understood, the effect of the treatment on new
subjects will be hard to predict [1].
Unfortunately, when studies are compared in a meta-

analysis, it is often difficult to say anything definitive
about heterogeneity. The reason for this difficulty is that
most meta-analyses are small. One summary of the
Cochrane Library reported that the median number of
studies per meta-analysis was 7 [2], another summary re-
ported that the median was 6 [3], and another reported
that the median was just 3 [3]. With so few studies, the
classical test for heterogeneity, Cochran’s Q [4], is not
very informative because its result is as much a function
of the number of studies as it is of the amount of het-
erogeneity. When the number of studies is large, Q will
often reject the null hypothesis even if the true extent of
heterogeneity is trivial, but if the number of studies is
small, Q provides little power to reject the null hypoth-
esis of homogeneity even if substantial heterogeneity is
present [5]. The power of Q and other homogeneity tests
is further reduced when the studies in the meta-analysis
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are unbalanced in size—for example, if one of the studies
in the meta-analysis is much larger than the others [5].
To better describe heterogeneity, Higgins and Thompson

[6] introduced the I2 statistic, which was meant to improve
in two ways on Cochran’s Q. First, I2 is more interpretable
than Q; specifically, I2 estimates the proportion of the
variance in study estimates that is due to heterogen-
eity. Second, unlike Q, I2 was meant to be independent
of the number of studies; regardless of the number of
studies, I2 ranges from 0 to 1 because it estimates a pro-
portion. The I2 statistic is now used not just in meta-
analysis but also in other analyses where we want to know
what fraction of the variance in a set of estimates is due to
heterogeneity [7-9].
I2 does not eliminate the uncertainty that comes from

having a small number of studies. No statistic can. In
small meta-analyses, for the same reason that Q has low
power, I2 is very imprecise. For example, if Q fails to
reject the null hypothesis of homogeneity, then the confi-
dence interval around I2 will usually include 0. In meta-
analyses from the Cochrane Library, the 95% confidence
interval around I2 typically runs approximately from 0 to
.60, implying that up to 60% of the between-study variance
could be due to heterogeneity, or there could be no het-
erogeneity at all [2]. This is not a very informative conclu-
sion. Unfortunately, the uncertainty of the I2estimate is
not obvious to the typical reader of a meta-analysis pub-
lished in, for example, Epidemiology [10,11], the American
Journal of Epidemiology [12,13], or the Cochrane Library
[14]. These outlets do not report the confidence interval
around I2; they only report the point estimate I2, which
may give a false impression of precision.
In this note, we show that I2 is not just imprecise; it is

also biased. Depending on the circumstances, the bias of
I2 can be small or large, positive or negative, but the bias
is largest when the number of studies is small and the
true fraction of variance that is due to heterogeneity is
either very large or very small. For example, in meta-
analyses with 7 studies and no true heterogeneity, the I2

statistic will on average lead us to believe that hetero-
geneity accounts for about 12% of the between-study
variance. At the other extreme, with 7 studies and 80%
of the variance due to heterogeneity, the I2 statistic can on
average lead us to believe that just 52% of the variance is
due to heterogeneity. These biases of 12 to 28 percentage
points are not trivial when one considers that, in the
Cochrane Library, the median I2 value is just 21% [2].
In the following sections, we calculate and illustrate

the bias of I2 and discuss implications for the statistics
reported in meta-analyses.

Methods
We use Mathematica software, version 8, to calculate
the expectation and bias of I2 analytically. This Methods
section introduces notation, assumptions, and statistical
properties, and describes the calculations that we sub-
mitted to Mathematica. The Results section will give the
results of those calculations.

Meta-analysis
Meta-analysis summarizes the results of K studies, each
of which has sample size nk, k = 1,…,K. In each study,

there is a true effect βk estimated by β̂k , with a true
standard error σk estimated by σ̂ k , or, equivalently, a true
variance σ2k estimated by σ̂ 2

k . With large nk, the quantity

β̂k−βk
� �

=σ̂ k approaches a standard normal distribution

according to the central limit theorem.
Two models can be used in meta-analysis: a fixed-ef-

fects model and a random-effects model. Some confusion
is possible because the term fixed effects is used in two
different senses [15]. In some literature, the term fixed
effects means that the K study effects βk are assumed to
be homogeneous. We use the term fixed effects in its
other sense, where it means that we seek only to
generalize about the K studies in the meta-analysis. The
true effects βk can be either homogeneous or heteroge-
neous, but they are regarded as fixed quantities. Because
of sampling error, the K studies would produce different

estimates β̂k and σ̂ k if they were repeated, but the true
effects βk and true standard errors σk would not change.
Under a random-effects model, by contrast, we assume

that the true effects βk in the meta-analysis were drawn
at random from a larger population of effects, and we
seek to make inferences about that larger population
[16]. So the βk are not fixed quantities but random vari-
ables that would be different if a different sample were
drawn from the population of effects.

The estimand ι2

In order to understand the properties of the estimator
I2, we must first define the quantity that is being esti-
mated. We call the estimand ι2. It represents the fraction

of variance in the estimated effects β̂k that is due to het-
erogeneity rather than measurement error.

More formally, the β̂k vary from one study to another.

The variance in β̂k is partly due to the heterogeneity of
the true effects βk and partly due to estimation error
summarized by the standard errors σk. By the law of
total variance we have

V β̂k

� �
¼ V βk

� �þ E σ2k
� �

¼ τ2 þ σ2
ð1Þ

where τ2 = V(βk) is the heterogeneity variance or
between-study variance, and σ2 ¼ E σ2k

� �
is the average

within-study variance. Under a fixed-effects model these
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variances and expectations refer only to the K effects βk
and standard errors σk in the meta-analysis. Under a ran-
dom effects model τ2 refers to the larger population of
effects, but σ2 still refers only to the K standard errors σk
in the meta-analysis, unless we are willing to regard the
σk as well as the βk as samples from a larger population.
The fraction of variance that is due to heterogeneity is

ι2 ¼ V βk
� �

V β̂k

� � ¼ τ2

τ2 þ σ2
ð2Þ

If ι2 = 0 then the effects βk are homogeneous; if ι2 > 0
then they are heterogeneous.
Note that, unlike some past definitions [6], our definition of

ι2 does not assume equal standard errors σ1 = σ2 =…= σK.
Note also that ι2 is not an absolute measure of heterogen-
eity. Instead, τ2 is an absolute measure of heterogeneity,
while ι2 compares τ2 to σ2. When the estimation error is
small, as it is if nk is large, then ι2 can be large even if τ2 is
small [17].

The naïve estimator ι̂2

To estimate the fraction ι2, Higgins and Thompson [6]
first derived the naïve estimator

ι̂2 ¼ 1−
df
Q

ð3Þ

where df = K–1, Q is Cochran’s Q statistic [4]

Q ¼
XK
k¼1

β̂k−�̂β
� �2

σ̂ 2
k

ð4Þ

and

�̂β ¼
XK

k¼1
σ̂ −2
k β̂kXK

k¼1
σ̂ −2
k

ð5Þ

is the precision-weighted average of the estimated effects.
The distribution of ι̂2 depends on the distribution of

Q. Under homogeneity, with large nk, Q has a central
chi-square distribution with df degrees of freedom.
Under heterogeneity, the large-nk distribution of Q de-

pends on whether we regard the effects as fixed or ran-
dom. Under a random-effects model, Q is distributed
like a weighted sum of K–1 central χ21 variables, where
the weights are given by a matrix function of τ2 and σ2k
[18]. If we make the simplifying assumption that all the
standard errors are equal (σk = σ) then the weights are
all equal to 1 + τ2/σ2 [18] or, in our notation (1 − ι2)− 1,
so that

X ¼ 1−ι2
� �

Q ð6Þ
has a central chi-square distribution with df degrees of
freedom [18]. As ι2 gets small, we converge toward the
homogeneous situation where Q itself has a central chi-
square distribution with df degrees of freedom.
Under a fixed-effects model, by contrast, Q has a non-

central chi-square distribution with df degrees of free-
dom and a non-centrality parameter of [19]

λ ¼
XK
k¼1

βk−�β
� �2

σ2k
ð7Þ

where �β is the precision-weighted mean of the true ef-
fects βk. If we make the simplifying assumption that all
the standard errors are equal (σk = σ) then the non-
centrality parameter reduces to

λ ¼ 1
σ2

XK
k¼1

βk−�β
� �2

¼ K
τ2

σ2

¼ K
ι2

1−ι2

ð8Þ

The last line shows that λ is an increasing function of
ι2 and that that λ = 0 if ι2 = 0. So again, as ι2 gets small,
Q converges toward the central chi-square distribution
that it has under homogeneity.

The truncated estimator I2

A shortcoming of the naïve estimator ι̂2 is that it can be
negative even though the estimand ι2 cannot. Negative
values of ι̂2 occur whenever Q < df, which is not a rare
event. Figure 1 shows the probability that ι̂2 is negative
when the effects are homogeneous. The probability de-
creases as df increases, but the probability is always
greater than 50%.
To avoid negative estimates, Higgins and Thompson

[6] suggested rounding them up to zero. The rounded or
truncated estimator

I2 ¼ max 0; ι̂2
� � ð9Þ

is the estimator that is widely used today. I2 cannot be
negative but can be zero. Values of I2 = 0 occur in about
one-quarter of published meta-analyses [20].

Expectation and bias of the estimators
The expectation of the naïve estimator ι̂2 is

E ι̂2
� � ¼ 1−df E

1
Q

� �
ð10Þ

This is easily calculated in the homogeneous case,
where 1/Q is an inverse chi-square variable whose ex-
pectation is 1/(df – 2). It is just as easily calculated in



Figure 1 The probability that a central chi-square variable Q is less than its degrees of freedom.
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the heterogeneous case with fixed effects; in that case, 1/Q
is a scaled inverse chi-square variable with an expectation
of (1 − ι2)/(df − 2). The calculation is harder in the hetero-
geneous case with random effects; in that case, 1/Q is the
scaled inverse of a noncentral chi-square variable. Al-
though the expectation of this inverse has a closed-form
solution [21], it is not transparent or easy to calculate by
hand. However, we can calculate it using Mathematica.
The expectation of the truncated estimator I2 is a little

harder to calculate. It is the weighted average of two
conditional expectations: the expectation of I2 when I2 =
0 and the expectation of I2 when I2 > 0. The probability
that I2 = 0 is P(Q < df ), and the probability that I2 > 0 is
P(Q > df ). Therefore the expectation of I2 is

E I2
� � ¼ P Q < dfð Þ � 0þ P Q > dfð Þ � Eð I2 Q > dfj Þ

¼ P Q > dfð Þ � E 1−
df
Q

jQ > df

��
ð11Þ

Under homogeneity, Q has a central chi-square distri-
bution and the expectation E(I2) has a closed-form solu-
tion which Mathematica can calculate.
Under heterogeneity, the expectation E(I2) depends on

whether we regard the effects as fixed or random. If ef-
fects are random, then X = (1 − ι2)Q has a central chi-
square distribution. The probability that I2 = 0 is P(X <
(1 − ι2)df), and the probability that I2 > 0 is P(X > (1 − ι2)df).
Therefore the expectation of I2 is

E I2
� � ¼ P X > 1−ι2

� �
df

� �
� E 1−

�
1−ι2

� df
X

X > 1−ι2
� �

df

������
ð12Þ

which again has a closed-form solution which Mathematica
can calculate.
If instead effects are fixed, then the expectation E(I2)
in (11) has no closed-form solution. But the expectation
for specific values of ι2 and df can be calculated using
numerical integration in Mathematica.

Results and discussion
Expectation and bias of I2 under homogeneity
Under homogeneity, there are two sources of bias in I2,
one positive and one negative. The positive source is lar-
ger, so the net bias in I2 is positive.
The first source of bias is negative bias in the naïve es-

timator ι̂2 ¼ 1−df =Q . Since the estimand ι2 is zero, the
bias of ι̂2 is the expectation

Bias ι̂2
� � ¼ E ι̂2

� � ¼ −2
df −2

ð13Þ

which is negative, and larger if df is small.
The second source of bias arises when ι̂2 is truncated

to yield I2 ¼ max 0; ι̂2ð Þ: Since truncation rounds nega-
tive values up to 0, the resulting truncation bias is posi-
tive. When df is small, truncation is more common
(Figure 1), so the truncation bias is more severe.
While this intuitive explanation is helpful, it does not

tell us whether the positive and negative components
combine to produce a net bias that is positive or nega-
tive, large or small. To answer that question, we evaluate
the expectation E(I2) in (11), which is also the bias since
the estimand is ι2 = 0. Mathematica gives the bias as

Bias I2
� � ¼ E I2

� �
¼ df

df −2

� � df
2e

� �df =2
−Γ df

2 ;
df
2

� �
Γ df

2 þ 1
� � ð14Þ

where Γ(df/2 + 1) is the gamma function and Γ(df/2, df/2)
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is the upper incomplete gamma function (which has two
arguments).
It is hard to tell by inspecting (14) whether the bias is

positive or negative, small or large. To visualize the an-
swer, Figure 2 plots the expectation E(I2), which is also
the Bias(I2), as a function of the number of studies K =
df + 1. The bias is always positive, indicating that the
positive truncation bias outweighs the negative bias in in
ι̂2 . The bias shrinks at a decreasing rate as K grows.
With K = 3 studies (which is the median in one sum-
mary of the Cochrane Library [22]), the bias is undefined
because E(I2) is only defined if df > 2. With K = 7 studies
(which is the median in another summary of the
Cochrane Library [2]), the bias is .12. With K = 10 stud-
ies, the bias is .11; with K = 50 studies the bias is .06.

Expectation and bias of I2 under heterogeneity
Under heterogeneity, the expectation E(I2) depends on
whether we regard the effects as fixed or random.

Random-effects model
With random effects, there are still two sources of bias in I2,
one positive and one negative. But now the positive source
can be either smaller or larger than the negative source, so
that the overall bias can be either negative or positive.
The first source of bias is negative bias in the naïve es-

timator ι̂2:

Bias ι̂2ð Þ ¼ E 1−
df
Q

� �
−ι2

¼ 2ι2−2
df −2

ð15Þ

This bias is always negative since 0 ≤ ι2 < 1. The bias is
larger if df is small.
Figure 2 The expectation of I2 when ι2 = 0.
The second source of bias arises when ι̂2 is truncated
to yield I2 ¼ max 0; ι̂2ð Þ: Since truncation rounds nega-
tive values up to 0, truncation yields a positive bias. The
truncation bias is smaller if df is large or ι2 is large. This
is because the probability of truncation is a little smaller
when df is large, and a lot smaller when ι2 is large.
(From (12) the probability of truncation is P(X > (1 − ι2)
df ), where Xeχ2df ).
Intuitively, when ι2 is small, we approach the homoge-

neous case where the bias in I2 is positive because of
truncation. However, when ι2 is large, truncation is less
common and the bias in I2 approaches the bias of ι̂2 ,
which is negative.
More formally, under a random-effects model, the ex-

pectation E(I2) in (12) has a solution which Mathematica
gives as

E I2
� � ¼

 
−2e

1
2df ι2−1ð Þ df ι2−1ð Þ−2ð Þ−df ι2−1ð Þ

� df ι2−2ð ÞE−df
2

�
1
2 df −df ι2ð Þ

�
!

df −2ð Þdf E1−df
2

�
− 1

2 df ι2−1ð Þ
�

ð16Þ

where expressions of the form En(z) represent the expo-
nential integral function.
The expectation in (16) is in closed form but is even

less transparent than its predecessor in (14). It is not
clear from inspection whether the bias is large or small,
positive or negative.
To visualize E(I2), Figure 3 gives a graphics grid dis-

playing 9 plots of E(I2) as a function of K, for ι2 values
between .1 and .9. In each plot, a dotted line is drawn at



Figure 3 The expectation of I2 under a random-effects model, for ι2=.1,.2,…,.9.
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the value of the estimand ι2, so that the bias of I2 is the
difference between the dotted line and the curve E(I2).
The bias is generally larger for small K. At ι2 = .1 the

bias is positive. At ι2 = .2 there is practically no bias, and
above ι2 = .2 the bias switches from positive to negative.
As ι2 increases beyond .2 the bias gets larger for small K,
but smaller for large K.
When K is large there is practically no bias, particu-

larly if ι2 is large as well. But when K is small, as is often
the case in meta-analysis, the bias can be noticeable
even if ι2 is large. For example, if ι2 = .8 and K = 7 (a
typical or even high value for the Cochrane Library [2]),
the expectation of I2 is just .52.

Fixed-effects model
Under heterogeneity with fixed effects, Mathematica gives
the expectation of the naïve estimator ι̂2 as

E ι̂2
� � ¼ 1þ df 2df =2−2 e−λ=2 −1ð Þ−df =2λ1−df =2

� Γ
df
2
−1

� �
−Γ

df
2
−1;−

λ

2

� �� �
ð17Þ

where λ = Kι2/(1 − ι2) from equation (8). However, this
expression for E ι̂2ð Þ is only real if df is even.a If df is
odd, a much longer exact expression for E ι̂2ð Þ can be de-
rived using results in [21], or an approximation can be
obtained numerically.
The bias of the naïve estimator is ι̂2−ι2 . Although it is

not obvious from inspection, the bias is negative for ι < .8,
and very slightly positive for ι ≥ .8.
The bias of the truncated estimator I2 is a little differ-

ent. Intuitively, when ι2 is small, we approach the homo-
geneous case where the bias in I2 is positive because of
truncation. However, as ι2 gets large, truncation is less
common and the bias in I2 approaches the bias of ι̂2 ,
which again is negative for ι < .8, and very slightly posi-
tive for ι ≥ .8.
The expectation of the truncated estimator I2 can be

calculated from equation (11) but under a fixed-effects
model the solution no longer has a closed form, not
even a complicated one. Instead, to evaluate E(I2) we use
numerical integration in Mathematica.
Figure 4 is a graphics grid displaying 9 plots of E(I2) as

a function of K, for ι2 values between .1 and .9. The bias
is generally larger for small K. At ι2 = .1 the bias is posi-
tive. At ι2 = .2 there is practically no bias except for very
small K. Above ι2 = .2 the bias switches from positive to
negative. As ι2 increases from .3 to .5 the negative bias



Figure 4 The expectation of I2 under a fixed-effects model, for ι2=.1,.2,…,.9.
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gets larger, but as ι2 increases further from .6 to .7, the
bias gets smaller and is increasingly restricted to small
values of K, until at ι2 =.8 there is practically no bias. At
ι2 =.9 the bias is positive again but very small and re-
stricted to very small values of K.
In general, the bias is milder under the fixed-effects

model than under the random-effects model, particularly
if ι2 is large. For example, if ι2 = .8 and K = 7 (a typical
or even high value for the Cochrane Library [2]), the ex-
pectation of I2 is just .52 under the random-effects
model but is .80 (practically unbiased) under the fixed-
effects model.

Conclusions
We have shown that, in small meta-analyses, the widely
used heterogeneity statistic I2, which was already known
to be imprecise, is biased as well. The bias shrinks as the
number of studies K grows, but since K is often small in
published meta-analyses, the bias of I2 is often large in
practice.
The bias and imprecision of I2 are to some extent un-

avoidable and should not be taken as a criticism of the
I2 statistic itself. All statistics are imprecise in small sam-
ples, and any reasonable estimator of the heterogeneity
fraction ι2 will be biased when the true value of ι2 is
close to 0. The reason for the bias is fundamental. Like
the estimand ι2, any reasonable estimator should be lim-
ited to nonnegative estimates, but the expectation of
those nonnegative estimates will be positive and will ex-
ceed ι2 when the true value of ι2 is close to 0.
Similar bias has been observed in the heterogeneity

variance τ2. Any reasonable estimator of τ2 will be lim-
ited to nonnegative values, and this will cause bias when
the true value of τ2 is close to zero [15,23]. Estimators of
τ2 have been constructed that are less biased or more
precise under some circumstances, but all nonnegative
estimators are biased when the true value of τ2 is close
to zero [24].
Despite its bias and imprecision, the I2 statistic re-

mains useful. In large meta-analyses, I2 can be precise
with little bias, and even in small meta-analyses it is bet-
ter to have a biased and imprecise estimate of ι2 than it
is to have no estimate at all. In addition, although the
bias of I2 depends to some extent on the number of
studies K, I2 is much less dependent on K than Q is.
Nevertheless, I2 should be presented and interpreted cau-

tiously in small meta-analyses. Perhaps the most straight-
forward response to the bias and imprecision of I2 is to
report a 95% confidence interval in addition to—or even
instead of—the point estimate I2. Although methods for
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calculating confidence intervals around I2 can be a bit
complicated [6,19,23,25], the best methods have good
coverage and they give a sense of the range of possible ι2

values without highlighting a point estimate that may
be biased and imprecise. While some meta-analyses
do report confidence intervals around I2 [26], such confi-
dence intervals are not included in recent meta-analysis
published in journals such as Epidemiology [10,11],
the American Journal of Epidemiology [12,13], or the
Cochrane Library. Journals publishing meta-analysis
should consider requiring confidence intervals for ι2.
In small meta-analyses, confidence intervals for ι2 are

often very wide [2] but their width tells us something. The
width of the confidence intervals tells us how little infor-
mation a small meta-analysis typically provides about het-
erogeneity. In many small meta-analyses, we may not be
able to estimate heterogeneity with much precision; in
fact, we may have little confidence in any estimate beyond
the average effect size. No statistic can change the limita-
tions of small meta-analyses, and the statistics that we re-
port should make those limitations clear.

Endnote
aWe filed a bug report with Wolfram Research regard-

ing Mathematica’s failure to provide a real solution for
odd df.
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