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A B S T R A C T

The objective of this study was to quantify the chemical content of multiple products using one single calibration
model. This study involved seven tuber and root powders from arrowroot, Canna edulis, cassava, taro, as well as
purple, yellow, and white sweet potato, for partial least square (PLS) regression to predict polysaccharide contents
(i.e., amylose, starch, and cellulose). The developed PLS models showed acceptable results, with Rc

2 of 0.9, 0.95,
and 0.85 and SEC of 2.7%, 3.33%, and 3.22%, for amylose, starch, and cellulose, respectively. The models also
successfully predicted polysaccharide contents with Rp

2 of 0.89, 0.95, and 0.79; SEP of 2.83%, 3.33%, and 3.55%;
and RPD of 3.02, 4.47, and 2.18 for amylose, starch, and cellulose, respectively. These results showed the po-
tential of Fourier transform near-infrared spectroscopy to quantify the chemical composition of multiple products
instead of using one individual model.
1. Introduction

Root and tuber crops are abundant in tropical countries and
commonly consumed as flesh or powder products. Among those crops are
cassava, potato, sweet potato, taro, arrowroot, and Canna. These crops
are rich sources of carbohydrates and contain high levels of poly-
saccharides. Polysaccharides mainly contain cellulose as a texture
enhancer to stimulate digestive enzyme (Kumar et al., 2012) and starch
as a major source of carbohydrate (Yong et al., 2018) to provide energy.
In powder form, roots, and tubers can be used as alternate powders made
of grains or wheat in food production. As opposed to grains or wheat,
those crops contain high amounts of resistant starch, which can improve
the digestive system (Demartino and Cockburn, 2020). Moreover, the
crops contain low levels of gluten (Food and Agriculture Organization
(FAO), 1990), lowering the incidence of celiac disease and harmful im-
mune responses caused by wheat consumption (Scherf et al., 2016).

The determination of polysaccharide contents is usually carried out
by chemical analysis (Cai et al., 2014; Zhao et al., 2018), which requires
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intense work and relatively expensive analytical instruments. Therefore,
the conventional method is difficult to use with large samples and routine
analysis. Near-infrared (NIR) spectroscopy covers electromagnetic radi-
ation in NIR regions at 14000–4000 cm�1, and it is becoming popular for
qualitative and quantitative food analyses. The spectrum in the NIR re-
gion contains information about the overtone and combination of
fundamental vibrations useful for the identification of the interaction of
molecules and chemical groups (Shi et al., 2019). Amylose is a type of
starch that comprises a linear polymer of α-D-glucose units, which are
connected by α-1,4 glycosidic bonds (Egharevba, 2019). Amylose is
written as [C6H10O5]n, while cellulose is a polysaccharide composed of a
linear chain of β-linked D-glucose units in fiber form. Given that C–H and
O–H dominate the spectrum in those compounds, their functional groups
can be easily analyzed by NIR spectroscopy.

Several studies utilized NIR spectroscopy for quality analysis of intact
fruits (Jamshidi et al., 2012; Zhang et al., 2019), grains (Bagchi et al.,
2016; Erkinbaev et al., 2017), liquids (de Sousa Marques et al., 2013;
Masithoh et al., 2016), or for the determination of adulteration (Chen
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Table 1. Mean and standard of deviation of cellulose, starch, and amylose of root and tuber powders.

Samples Cellulose (%) Starch (%) Amylose (%)

Canna edulis 42.50 � 4.17c 43.14 � 2.25f 43.26 � 2.13e

Arrowroot 35.76 � 6.44b 38.87 � 9.37e 43.59 � 2.63e

Modified cassava 48.71 � 1.52d 18.05 � 3.80c 33.68 � 1.84d

Taro 25.02 � 4.50a 22.00 � 4.39d 24.29 � 4.16b

Purple sweet potato 41.36 � 8.69c 8.91 � 2.45a 26.02 � 3.09b

White sweet potato 38.91 � 1.63bc 12.40 � 2.40b 28.19 � 2.55c

Yellow sweet potato 39.97 � 2.78c 5.66 � 0.97a 20.99 � 1.64a

All samples 38.89 � 8.31 21.29 � 14.22 31.43 � 8.82

a–f Means followed by different letters in each column are significantly different among different types of flours (p < 0.05).
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et al., 2019; Masithoh et al., 2020). NIR spectroscopy has also been
widely used to determine quality parameters of several crops (Magwaza
et al., 2016; Zhang et al., 2019). However, not many studies have
examined roots and tubers. Several research groups studied tubers and
roots (Ding et al., 2015; Lebot et al., 2009), but they used single crops in
developing a calibration model to increase costs if several crops are
necessary. Although the calibration model using multiple products was
developed by Rambo et al. (2016) using banana, coffee and coconut
samples, the application for multiple products of powders made of roots
and tubers has not yet been conducted. Therefore, this study aimed to
develop calibration models by using various root and tuber powders
based on Fourier transform (FT)-NIR spectroscopy to determine their
polysaccharide contents in terms of cellulose, starch, and amylose.

2. Material and methods

2.1. Sample

Tuber powders used in this study were made of seven crops, namely,
arrowroot (Maranta arundinacea), canna edulis (Canna indica), purple,
yellow, and white colour sweet potato (Ipomoea batatas), taro (Colocasia
esculenta), and cassava (Manihot esculenta). For cassava, it was in the form
of modified cassava flour. The samples were purchased from ten different
sellers in Indonesia to obtain large varieties of samples. Of each crop, ten
samples were obtained from ten different farmers, resulting in 70 sets of
samples. For every set, three samples were utilized for spectral analysis
for a total of 210 spectral data. All samples were dried in a 70 �C dryer for
1 day to eliminate moisture, which may affect the spectra, and sieved
using a 212 μm sieve to obtain particles of uniform size. Water content of
all samples were 8.24–18.64%.
Figure 1. Original spectra of Canna edulis, arrowroot, modified cassava (mocaf), purp
region of 4000–10,000 cm�1
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2.2. FT-NIR spectra measurement

The spectra of 210 samples in reflectance mode were acquired using
an FT-NIR spectrophotometer (Antaris II FT-NIR analyzer, Thermo Sci-
entific Co., Waltham, MA, USA) with an InGaAs detector. Each sample
was scanned for 32 scans at the range of 10,000–4000 cm�1 with 4 cm�1

intervals. A background scan was frequently conducted with a golden slit
before acquiring the spectrum of each sample.
2.3. Chemical analysis

Cellulose determination. Cellulose was determined bymodification of
Eveleigh et al. (2009) method. After distillation using free sugar, 50 mL
of enzyme cellulase (CTec2, Novozyme, DNK) and hemicellulase (Vis-
cozyme, Novozyme, DNK) were added to yield 1 mL. The reaction was
performed at 150 rpm, 40 �C, and 24 h using a shaking water bath. After
vortexing, 1 mL of supernatant was obtained from the centrifuge (13,000
rpm, 4 �C, 10 min). After washing with 1 mL of distilled water for 30 s
and another round of vortexing, the supernatant was acquired by
centrifugation. About 3 mL of the supernatant, 100 μL of the sample, 200
μL of distilled water, and 900 μL of dinitrosalicylic acid (DNS) solution
were added to a 1.5 mL tube. The sample tubes were allowed to react in
boiling water for 5 min and cooled in ice for 15 min. Absorbance was
measured at 575 nm with a microplate spectrophotometer. Cellulose
content was presented in percentage (%).

Starch determination. Starch was determined by modification of
Mccleary et al. (2019) method. After the cellulose assay, 1 mL of
α-amylase (Termamyl, Novozyme, DNK) enzyme diluted with a factor of
50 was prepared with 50 mM sodium acetate buffer and 50 mM acetic
acid buffer. The mixture was then reacted at 95 �C for 2 h. After the
reaction, 900 μL of glucoamylase diluted in 100 μL of supernatant pH 4.3
le sweet potato, taro, white sweet potato, and yellow sweet potato powder in the



Figure 2. (a) PCA score plot and (b) loading values of PCs of original spectra.

R.E. Masithoh et al. Heliyon 6 (2020) e05099
buffer was prepared with 50mM sodium acetate buffer. Subsequently, 50
mM acetic acid buffer was added and reacted at 55 �C for 2 days. About 1
mL of GOPOD solution was added to 100 μL of the sample, vortexed, and
reacted at 40 �C for 20 min. The sample was then stabilized to room
temperature by using ice. Absorbance was measured at 510 nm with a
spectrophotometer. Starch content was presented in percentage (%).

Amylose was determined by modification of method. Samples
(0.3–0.4 g) in a 50 mL tube were weighed, added with 5 mL of toluene,
and subjected to O/N shaking at 25 �C and 130 rpm. Another toluene
wash was conducted prior to protein and lipid removal. Toluene was then
completely removed using SpeedVac. Samples of 0.1 g were placed into a
50 mL tube, dissolved with 90% DMSO in 50 mM pH 5.0 sodium acetate
buffer, and melted completely with 20 min of boiling and 20 min of
sonication. About 1 mL of Lugol's solution diluted 10-fold to 100 μL was
added to the sample and vortexed. Finally, the sample was diluted in
Lugol's solution (50 mM pH 5.0 sodium acetate buffer). Absorption of the
amylose complex was measured at 620 nm with a spectrophotometer.
Amylose content was presented in percentage (%).
3

2.4. Spectral analysis

All spectra collected using Thermo Scientific™ OMNIC™ Series
Software were then transformed to MS Excel® 2013 and Unscrambler®X
(Version 10.5.1, CAMO Software, Norway) for spectral pre-processing
and chemometric analysis. Two chemometric techniques were used:
principal component analysis (PCA) and partial least-squares regression
(PLSR). PCA was used for dimension reduction and data visualization of
samples. PLSR was applied to predict the starch, cellulose, and amylose
contents of tuber samples. To develop the PLSR model, the FT-NIR
spectra were pre-processed through smoothing, baseline corrections,
normalization (mean, max, and range), Standard Normal Variate (SNV),
and Multiplicative Scatter Correction (MSC) methods. Of 210 spectra
data, 50% and 50% of the data were used for calibration and prediction,
respectively. Full-cross validation was carried out to develop a calibra-
tion model using PLSR. The best model was selected based on five sta-
tistical methods, i.e., coefficient of determination (R2) of calibration (Rc

2),
standard error of calibration (SEC), determination of prediction (Rp

2),



Table 2. Calibration and predicted results of partial least square regression (PLSR) for Canna edulis, arrowroot, modified cassava, taro, purple sweet potato, white sweet
potato, and yellow sweet potato powders by using several pre-processed methods.

Pre-processing ORI SM MN RN MAXN BS SNV MSC

Amylose Rc
2 0.9 0.9 0.9 0.9 0.9 0.89 0.9 0.9

SEC 2.71 2.72 2.75 2.76 2.72 2.78 2.7 2.72

Rp
2 0.89 0.8 0.89 0.89 0.89 0.89 0.89 0.89

SEP 2.84 2.89 2.89 2.88 2.89 2.92 2.83 2.86

RPD 3.02 2.24 3.02 3.02 3.02 3.02 3.02 3.02

Starch Rc
2 0.95 0.95 0.92 0.91 0.91 0.95 0.95 0.95

SEC 3.33 3.33 4.14 4.27 4.27 3.38 3.32 3.3

Rp
2 0.93 0.95 0.91 0.9 0.90 0.93 0.93 0.93

SEP 3.89 3.33 4.38 4.47 4.47 3.94 3.83 3.82

RPD 3.78 4.47 3.33 3.16 3.16 3.78 3.78 3.78

Cellulose Rc
2 0.76 0.75 0.83 0.83 0.82 0.83 0.85 0.85

SEC 4.1 4.19 3.47 3.43 3.55 3.41 3.22 3.31

Rp
2 0.71 NA 0.77 0.77 0.77 0.75 0.79 0.78

SEP 4.08 6.4 3.76 3.77 3.76 3.93 3.55 3.64

RPD 1.86 NA 2.09 2.09 2.09 2.00 2.18 2.13

Note: ORI ¼ original; SM ¼ smoothing; MN ¼ mean normalization; RN ¼ range normalization; MAXN ¼ maximum normalization; BS ¼ baseline correction; SNV ¼
standard normal variate; MSC¼multiplicative scatter correction (MSC); Rc

2¼ coefficient of determination of calibration; Rp
2¼ coefficient of determination of prediction;

SEC ¼ standard error of calibration; SEP ¼ standard error of prediction; RPD ¼ ratio of prediction to deviation.
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standard error of prediction (SEP), and ratio of prediction to deviation
(RPD) (Li et al., 2015).

3. Results and discussion

3.1. Data exploration

Table 1 shows the mean and standard deviation of cellulose, starch,
and amylose in root and tuber powders as determined by wet chemical
analysis. The highest and lowest cellulose contents belonged to modified
cassava (MC) and taro (TR) powder, respectively. C. edulis powder had
the highest starch content, while yellow sweet potato powder had the
lowest starch content. In general, all family of sweet potatoes (white,
yellow, and purple) had lower starch contents compared with other
crops. These findings were similar to a study conducted by (Lebot, 2010)
on cassava and sweet potato crops. Meanwhile, the highest amylose
contents were found in arrowroot and C. edulis powders, while the lowest
was observed in yellow sweet potato powder.

Original spectra of samples are presented in Figure 1, which showed a
similar trend of all root and tuber powders in the wavenumber range of
4000–10,000 cm�1. However, the spectra of C. edulis and arrowroot
powders were indicated by higher relative absorbance compared with
those of other powders. Significant peaks on the FT-NIR spectra were
observed, such as the highest absorption band at 5184 cm�1, which was
attributed to OH stretching and bending in amylose (Sampaio et al.,
2018). Other peaks were found at 4280 cm�1, which was due to CH
stretching and deformation in polysaccharides (Li et al., 2015), and at
5102 cm�1, which was the result of OH stretching or bending in starch
(Aenugu et al., 2011). Another absorption peak at 4860 cm�1 was caused
by N–H stretching in protein; a weak but broad absorption peak was
observed at around 8620 cm�1, which was attributed to CO stretching in
starch (Williams, 2001).
3.2. Principal component analysis (PCA)

Given that variable data resulting from FT-NIR spectroscopy are large,
data without missing information can be visualized by PCA (Guill�en--
Casla et al., 2011). By using the original spectra shown in Figure 2(a), all
samples could be explained by PC 1 and PC 2 with 99% and 1% of total
4

variance, respectively. White, purple, and yellow sweet potato were
grouped together and presented positive values in PC 2. Those powders
also demonstrated negative values in PC 1, along with mocaf and taro.
Mocaf and taro powders exhibited negative values of PC 2. Arrowroot
and C. edulis had negative and positive values of PC 2, respectively.

Figure 2(b) shows the positive loadings of PC 1 around 5216 cm�1 for
arrowroot and C. edulis; this peak was assigned to the OH first stretching
overtone due to the presence of amylose. These findings were supported
by the amylose content of arrowroot and C. edulis, which were similar
and higher compared with other powders (see Table 1). The positive
loadings of PC 1 at around 6968 cm�1 corresponded to C–H stretching
and represented the starch content (Lohumi et al., 2014). In the present
study, arrowroot and C. edulis also had a higher starch content than other
powders. Tuber and root crops are high in fiber (Chandrasekara and
Kumar, 2016), including cellulose, which was indicated in the peak at
around 4405 cm�1 due to OH or CO stretching (Aenugu et al., 2011). In
Figure 2(b), the high cellulose contents of all sweet potato and C. edulis
samples (Table 1) were shown by the positive loadings of PC 2.
3.3. PLSR for quantification of cellulose, amylose, and starch contents

PLSR was used to relate the FT-NIR instrument variables to the
dependent variables. In this study, the dependent variables were
amylose, cellulose, and starch contents of C. edulis, arrowroot, MC, taro,
purple sweet potato, white sweet potato, and yellow sweet potato pow-
ders. A single calibration model was obtained for the determination of
cellulose of all powders made of seven tubers and root crops. Two other
calibration models were used to determine the amylose and starch con-
tents. Several methods can be used to select the best calibration model
that yields high accuracy. In general, the models are assessed by statistics
indicators such as Rc

2, SEC, Rp
2, SEP, and RPD (Li et al., 2015).

The PLSR models were developed using original and pre-processed
spectra of samples from FT-NIR instrument. Results of PLS analysis are
provided in Table 2, showing R2, SEC, SEP, and RPD. R2 indicates the
variation percentage of Y variables (i.e., amylose, starch, and cellulose
contents), which are accounted for by the X variables (absorbance). R2

above 0.83 is usable with caution for most applications, while that above
0.92 is usable in most applications Standard error of calibration (SEC)
and prediction (SEP) are the standard deviation of differences between



Figure 3. NIR scatter plots of calibration (left) and prediction (right) data sets of (a) amylose, (b) starch, and (c) cellulose showing Rc
2, SEC, Rp

2, SEP, and RPD values
resulted from PLS regression.
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NIR and reference samples in the calibration and prediction sample sets.
A goodmodel has low SEC and SEP. RPDmeasured the accuracy of model
prediction; values of 1.5–2.0, 2.0–2.5, and above 2.5–3.0 can provide
rough screening, estimated quantitative screening, and excellent
screening, respectively (Lebot et al., 2009).

As shown in Table 2, the PLS calibration models developed by using
original and pre-processed spectra resulted in Rc

2 of 0.75–0.85, 0.8–0.9,
and 0.91–0.95, for cellulose, amylose, and starch, respectively. SEC for
cellulose, amylose, and starch was in the range of 3.22–4.19 (%),
2.7–2.79 (%), and 2.95–4.27 (%), respectively. Rp

2, SEP, and RPD were
5

obtained from predicted data, which were calculated using the calibra-
tion models. The PLS calibration models could predict cellulose, amylose,
and starch contents with Rp

2 of 0.71–0.79, 0.8–0.89, and 0.90–0.95, as
well as SEP of 3.55–6.4 (%), 2.83–2.89 (%), and 3.34–4.47 (%),
respectively. Moreover, the model could predict cellulose, amylose, and
starch contents with RPD of 1.86–2.18, 2.24–3.02, and 3.16–4.47,
respectively.

The best calibration model for quantification of amylose with Rc
2 of

0.9 and SEC of 2.7% was achieved by applying the SNV method. The best
calibration model for predicting the amylose content was obtained with



Figure 4. Regression coefficient (B) of PLSR using the SNV method for quantification of amylose and cellulose, as well as the smoothing method for quantification
of starch.
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one latent variable. The model was then applied to predict the amylose
content, which resulted in Rp

2 of 0.89, SEP of 2.83%, and RPD of 3.02.
Scatter plot using calibration and prediction data sets for amylose
quantification was shown in Figure 3(a). For the quantification of the
starch content, smoothing was applied to raw spectra, which resulted in
Rc
2 of 0.95 and SEC of 3.33%. The model could predict the starch content

with Rp
2 of 0.95, SEP of 3.34%, and RPD of 4.47. Results of calibration and

prediction models for starch were illustrated as scatter plots in
Figure 3(b). The calibration model for predicting the cellulose content
with the highest Rc

2 of 0.85 and the lowest SEC of 3.22% was obtained by
applying SNV (Table 2). By using predicted samples, the model could
predict the cellulose content with Rp

2 of 0.79, SEP of 3.55%, and RPD of
2.18. Figure 3(c) showed scatter plots of calibration and prediction
models for cellulose quantification.

Those obtained statistical values were acceptable (Williams, 2001),
which implied that the models for quantifying amylose, starch, and cel-
lulose in this study were sufficient for agricultural applications. Other
studies obtained R2 of 0.97 and 0.93 for amylose and total starch of pea
flour (Zeng and Chen, 2018), coefficient correlation (R) of 0.94 for
amylose in rice (Sampaio et al., 2018), R2 of 0.94 of starch in sweet
potato (Katayama et al., 1996), R2 of 0.93 in Moso bamboo (Li et al.,
2015), and R2 of 0.82 for zucchini (Pomares-viciana et al., 2018).
However, those findings used a single product for each analysis.

The PLS loadings or coefficients of regression were used to interpret
which bands were highly correlated with the contents of amylose, starch,
and cellulose. Figure 4 shows the regression coefficients for predicting
the contents of amylose, starch, and cellulose of tuber and root crops, i.e.,
arrowroot, C. edulis, cassava (in the form of MC powder), taro, as well as
purple, yellow, and white sweet potato. The trends of the three spectra
were similar because they were carbohydrates, but starch showed higher
absorbance values than amylose and cellulose. Several peaks similarly
owned by those polysaccharides were marked with rectangles, such as
those at 4036, 4788, 5216, and 5860 cm�1. Another peak was detected at
around 7196 cm�1 for amylose and starch, but a slight shift to 7020 cm�1

was noted for cellulose.
Both amylose and starch have very similar shapes, but starch has a

higher absorbance intensity across the spectral region than amylose. This
difference is due to the fact that both starch and amylose are poly-
saccharides made up of glucose units (Egharevba, 2019). Significant
peaks with relatively high absolute regression coefficient values for
amylose and starch are portrayed in Figure 4 at 4428, 5240, and 7168
6

cm�1; these peaks corresponded to OH stretching/CO stretching, OH
stretching first overtone, and CH combination (Shenk et al., 2008). (Xie
et al., 2014) and (Zeng and Chen, 2018) marked significant bands for the
amylose determination of rice flour at 6493 and 8143 cm�1 and pea flour
at 7012 cm�1. Similar peaks around 4000–7000 cm�1 were found for
kudzu, maize, sweet potato, cassava, and potato starch (Xu et al., 2015).
Peaks around 4073, 4325, and 7042 cm�1 corresponding to CH
stretching and deformation vibrations and OH first overtone in starch
were observed by (Lohumi et al., 2014).

Cellulose is a polysaccharide with extended structure linear polymer
of glucose allowing hydrogen bonding between OH groups on nearby
chains to group closely into fibers exhibiting little interaction with water
or other solvents (LibreTexts, 2019). In Figure 4, several prominent peaks
of the cellulose spectra (indicated by arrows) were observed at 4260
(CH2 symmetrical stretching and ¼ CH2 deformation), 5036 (OH
stretching/OH bending), 5404 (CO stretch second overtone), and 7020
cm�1 (OH first overtone) (Shenk et al., 2008).

4. Conclusion

This study demonstrated that FT-NIR spectroscopy can be used to
quantify the amylose, starch, and cellulose contents of seven tuber and
crop powder with high degree accuracy. The calibration models show Rc

2

and SEC of 0.9 and 2.7% for amylose, 0.96 and 2.95% for starch, as well
as 0.85 and 3.22% for cellulose, respectively. When applied to predict
polysaccharide content, the models result in Rp

2 of 0.89, SEP of 2.83%,
and RPD of 3.02 for amylose, Rp

2 of 0.96, SEP of 2.95%, and RPD of 5.00
for starch, as well as Rp

2 of 0.79, SEP of 3.55%, and RPD of 2.18 for cel-
lulose. Those statistical values indicate that the developed calibration
models can be used to predict chemical content of multiple crops in
powder form. Therefore, the models can reduce the cost and time
compared to single use analysis.
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