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Abstract

Despite many preventive measures, including prophylactic antibiotics, periprosthetic joint 

infection (PJI) remains a devastating complication following arthroplasty, leading to pain, 

suffering, morbidity and substantial economic burden. Humans have a powerful innate immune 

system that can effectively control infections, if alerted quickly. Unfortunately, pathogens 

use many mechanisms to dampen innate immune responses. The study hypothesis was 

that immunomodulators that can jumpstart and direct innate immune responses (particularly 

neutrophils) at the surgical site of implant placement would boost immune responses and reduce 

PJI, even in the absence of antibiotics.

To test this hypothesis, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (a potent 

chemoattractant for phagocytic leukocytes including neutrophils) was used in a mouse model 

of PJI with Staphylococcus aureus (S. aureus). Mice receiving intramedullary femoral implants 

were divided into three groups: i) implant alone; ii) implant + S. aureus; iii) implant + fMLP + S. 
aureus.

fMLP treatment reduced S. aureus infection levels by ~ 2-Log orders at day 3. Moreover, fMLP 

therapy reduced infection-induced peri-implant periosteal reaction, focal cortical loss and areas 

of inflammatory infiltrate in mice distal femora at day 10. Finally, fMLP treatment reduced pain 

behaviour and increased weight-bearing at the implant leg in infected mice at day 10.
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Data indicated that fMLP therapy is a promising novel approach for reducing PJI, if administered 

locally at surgical sites. Future work will be toward further enhancement and optimisation of an 

fMLP-based therapeutic approach through combination with antibiotics and/or implant coating 

with fMLP.
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Introduction

Approximately 1-2 % of patients with primary knee and hip replacement and about 3-6 

% of patients with revision knee and hip replacement develop a PJI (Izakovicova et al., 

2019; Parvizi et al., 2017). Estimated risk of PJI can be over 20 % in patients with a 

combination of demographic, surgical (e.g. prior procedure) and/or comorbidity risk factors 

(e.g. diabetes) (Tan et al., 2018). Moreover, PJI cases are projected to rise significantly 

within the next two decades due to increased number of joint replacements resulting from 

increased life expectancy and greater expectations of mobility in the elderly (Izakovicova 

et al., 2019; Kurtz et al., 2007). This alarming scenario occurs despite many prevention 

strategies that have been implemented to prevent SSI, including surgical hand antisepsis, 

reduction of foot traffic in and out of the operating room, use of intraoperative skin 

antiseptic agents, perioperative glycaemic control, appropriate selection of surgical dressings 

and prophylactic antibiotics (Allegranzi et al., 2016; Anesi et al., 2017; Bratzler et al., 2004; 

Campbell et al., 2014; Corona and Singer, 2010; Edmiston et al., 2013; Greif et al., 2000; 

Kamath et al., 2016; Khoshbin et al., 2015; Kroin et al., 2015; Kroin et al., 2016; Lindsay 

et al., 2011; Panahi et al., 2012; Parvizi et al., 2017; Sewick et al., 2012; Sidhwa and Itani, 

2015; Stannard et al., 2012).

Although multiple bacterial pathogens have been associated with PJIs, S. aureus is often 

reported as the most common cause, accounting for approximately 13-44 % of all PJIs 

(Aggarwal et al., 2014; Manning et al., 2020; Pulido et al., 2008; Tsai et al., 2019). 

Treatments for PJIs include long courses of antibiotics, debridement of infected tissue and 

implant removal and replacement (Pelt et al., 2014; Segawa et al., 1999). However, antibiotic 

use is associated with emergence of antibiotic resistance, gut dysbiosis, increased risk of 

Clostridium difficile infection, organ cytotoxicity and allergic reactions, and the success 

rates after these treatments are abysmal, often ranging between 50 to 70 % (Becattini et 

al., 2016; Jakobsson et al., 2010; Korpela et al., 2016; Langdon et al., 2016; Pelt et al., 

2014; Sampson et al., 2016; Segawa et al., 1999; Yassour et al., 2016). There can be 

devastating consequences for patients that acquire a PJI, including amputation, arthrodesis, 

antibiotic-induced organ cytotoxicity or even death (Pelt et al., 2014; Segawa et al., 1999). In 

addition, patients with a PJI have also an increased risk of developing additional morbidities, 

such as deep-vein thrombosis and pulmonary embolism (Lieberman and Hsu, 2005). These 

dismal outcomes underscore the need for new approaches to reduce and to treat PJIs.
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The human innate immune system can recognise invading pathogens as “non-self” and 

mobilise its plethora of defences to protect the organism against them (Brubaker et al., 2015; 

Guo et al., 2015; Janeway and Medzhitov, 2002; Kawai and Akira, 2011; Martinon et al., 

2009; Schroder and Tschopp, 2010; Takeuchi and Akira, 2010). Recognition of microbial 

pathogens by PRRs sets in motion multiple signalling cascades that culminate in the 

production of pro-inflammatory cytokines, which recruit effector innate immune leukocytes, 

particularly neutrophils; those, in turn, destroy invading pathogens by various direct or 

indirect mechanisms such as phagocytosis, bursts of ROS, AMP production and NETs 

(Brinkmann et al., 2004; Dovi et al., 2004). Unfortunately, pathogens have evolved various 

mechanisms to dampen innate immune responses, blocking production of pro-inflammatory 

cytokines as well as inducing cell death and blocking proliferation in target host cells (Faure 

et al., 2014; Hornef et al., 2002; Lai et al., 2009; Mohamed et al., 2021; Shafikhani and 

Engel, 2006; Shafikhani et al., 2008; Tolle et al., 2015; Wood et al., 2015a; Wood et al., 

2015b). The study hypothesis was that local administration of immunomodulators that can 

accelerate and direct innate immune leukocyte responses (particularly neutrophils) toward 

the site of the surgically placed implant would enhance the immune responses toward 

infection and be effective in reducing PJI, even in the absence of prophylactic antibiotics.

To enhance local immune responses at the time of surgery, fMLP (also known as fMLF) 

was locally administered at the time of implant surgery in an established PJI mouse model 

(Bernthal et al., 2010; Bernthal et al., 2014; Hegde et al., 2017a; Thompson et al., 2018). 

fMLP is a naturally occurring formyl peptide. Formyl peptides are released at injured 

tissues, such as surgical sites, and invading bacterial pathogens (Li et al., 2016; Raoof et al., 

2010). fMLP was chosen because it is a potent chemoattractant for neutrophils and other 

inflammatory leukocytes (Balazovich et al., 1996; Derian et al., 1995; Madianos et al., 2005; 

Panaro and Mitolo, 1999; Sabroe et al., 2003). In addition, fMLP interaction with FPR 

chemokine receptors also activates bactericidal functions in neutrophils, such as superoxide 

and ROS production, phagocytosis and degranulation (Devosse et al., 2009; Dorward et al., 

2015; Sengeløv et al., 1994).

Materials and Methods

Animal experiments

The study was approval by the Rush University Medical Center Institutional Animal Care 

and Use Committee (IACUC No: 19-623). All procedures complied strictly with the 

standards for care and use of animal subjects as stated in the Guide for the Care and 

Use of Laboratory Animals (Institute of Laboratory Animal Resources, National Academy 

of Sciences, Bethesda, MD, USA). C57BL/6J mice were obtained from The Jackson 

Laboratory. These mice were allowed to acclimate to the environment for 1 week prior 

to performing the experiments.

Intra-articular injection

To demonstrate that fMLP was capable of mobilising and directing neutrophil response in 

the knee joint even in the absence of infection and/or injury, 12-week-old C57BL/6J mice 

received local intra-articular injection of fMLP (Sigma-Aldrich, F3506) or vehicle control 
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at the right-knee joint. Prior to injection, right hindlimbs were shaved and disinfected using 

70 % ethanol followed by iodine. fMLP was prepared at a concentration of 1 μg/μL in a 

solution of 25 % DMSO and 75 % PBS. Vehicle control was a 5 μL solution of 25 % 

DMSO and 75 % PBS. Mice were anaesthetised using 2 % isoflurane. A total of 5 μL of 

fMLP solution or vehicle control was injected into the right hindlimb knee joint using a 5 

μL Hamilton® syringe (Hamilton, 7634-01) and 27-Gauge needle, as previously described 

(Nagao et al., 2017). The dosing of 5 μg of fMLP was chosen based on its maximum 

solubility in vehicle solution and maximum volume of solution that could be injected into 

the knee-joint space. The syringe needle was applied to the intra-articular space directly 

through the patellar ligament with the knee flexed at a 90° angle and needle administration 

perpendicular to the apex of the flexed knee. A total of n = 5 mice received fMLP and a total 

of n = 5 mice received vehicle control. Mice were evaluated for local neutrophil response at 

the knee joint using in vivo BLI at 2 h and 6 h post injection. Mice were imaged using BLI 

under 2 % isoflurane anaesthesia.

Preparation of bacteria

A bioluminescent S. aureus (Xen36 S. aureus; PerkinElmer®) was used that was derived 

from parental strain S. aureus ATCC 49525 (Wright). This strain has been used and 

validated in mouse PJI models (Bernthal et al., 2010; Bernthal et al., 2014; Carli et al., 

2017; Hegde et al., 2017a). Xen36 S. aureus has been genetically modified to express 

the modified Photorhabdus luminescens luxABCDE operon, which encodes a luciferase 

enzyme, on the native plasmid, enabling this strain to produce a bioluminescent signal. 

Bacteria were incubated in TSB overnight on the day prior to surgery. On the day of surgery, 

Xen36 S. aureus was diluted in TSB to a spectrophotometer absorbance measurement of 600 

nm at an optical density of 0.5 (against a TSB blank). This was equivalent to ~ 1.0 × 108 

CFU/mL of S. aureus. This solution was further diluted to 5 × 105 CFU/mL in PBS and kept 

on ice. At the time of surgery, dropwise inoculation of 2 μL of 5 × 105 CFU/mL in PBS at 

the open knee-joint surgical site using a 5 μL Hamilton® syringe provided 1 × 103 CFU at 

the knee joint.

Mouse model of PJI

To show that an fMLP immunomodulator could reduce PJI, an established PJI model with 

bioluminescent S. aureus was used, as described previously (Bernthal et al., 2010; Carli et 

al., 2017; Hegde et al., 2017a). Briefly, 2 d prior to surgery, the ventral and lateral surface 

of the right hindlimb of 12-week-old C57BL/6J mice were shaved. To ensure additional 

removal of hair, a hair-removal spray was used. The day prior to surgery, mice underwent 

baseline testing for BLI, pain behaviour, weight-bearing and weight. The day prior to 

surgery, all non-sterilised instruments and implant material were autoclaved in self-sealing 

autoclave pouches. On the day of surgery, mice were anaesthetised using a mixture of 

ketamine (90 mg/kg) and xylazine (4.5 mg/kg). The right leg was disinfected using 70 

% ethanol followed by iodine. Using aseptic technique and using a dissection microscope 

(Zeiss, Stemi 508), a skin incision over the right knee was performed followed by a medial 

parapatellar arthrotomy. Incisions were performed using a Micro Knives sterile scalpel 

(10315-12, Fine Science Tools, Foster City, CA, USA). To expose the femoral condyles, 

lateral displacement of the quadriceps patellar complex was performed. The intercondylar 
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notch was located; a 25-Gauge syringe needle attached to a 3 mL syringe was used to 

penetrate the intercondylar notch and ream the distal intramedullary canal at a distance 

of approximately 10 mm. An orthopaedic-grade stainless steel K-wire (diameter 0.6 mm; 

DePuy Synthes) was surgically placed in a retrograde fashion into the intramedullary canal 

with assistance of a Pin Holder (Fine Sciences Tools, 26018-17). The distal aspect of the K­

wire was cut to a length of approximately 11 mm with a wire cutter leaving approximately 1 

mm protruding into the joint space.

With the open knee-joint surgical site and implant exposed, in the fMLP group, mice 

received a local intra-articular dose of 5 μg of fMLP in a 5 μL solution (25 % DMSO and 

75 % PBS). This was the fMLP dose previously used for intra-articular injection at the 

healthy mouse knee-joint to substantially increase local neutrophil activity (discussed in the 

Results section). In the control groups, mice received 25 % DMSO/75 % PBS solution as 

vehicle control. A 5 μL Hamilton® syringe was used to drop the solution into the exposed 

knee-joint space. The solution was left untouched at the knee joint for 5 min to enhance 

its absorption. This was followed by administration of 1 × 103 CFU S. aureus in a 2 μL 

solution of PBS or PBS control with use of separate 5 μL Hamilton® syringes into the 

exposed knee-joint space and on top of the implant. Administration of this and/or similar 

amounts of bacteria into the exposed knee-joint space has been described previously in a 

mouse PJI model with S. aureus (Bernthal et al., 2010; Bernthal et al., 2014; Carli et al., 

2017; Hegde et al., 2017b). Then, the exposed knee-joint space was again left untouched 

for 5 min to enhance absorption of the solution at the knee joint. Following absorption, 

the quadriceps complex was reduced back to midline. The knee-joint capsule was closed 

using 6-0 VICRYL sutures (Ethicon). Then, skin was closed using 6-0 PROLENE sutures 

(Ethicon). Mice were placed on a warming blanket for recovery following surgery. For 

analgesia, mice received subcutaneous buprenorphine (0.1 mg/kg) every 12 h for a duration 

of 48 h following surgery. Following surgery, living mice received assessments through 

BLI at days 1, 3, 5, 7 and 10; and von Frey filament testing, weight-bearing testing and 

body weight assessment at day 10. Mice were sacrificed at day 10 for μCT assessment 

and histological analysis. In a parallel study, mice were sacrificed at day 3 for infection 

assessment by bacteria count of the peri-implant knee-joint tissue and implant, using CFU 

analysis. In total, 35 mice received femoral implant placement in the PJI model: n = 5 

implant control, n = 15 implant + S. aureus, n = 15 implant + fMLP + S. aureus. A total of 

n = 6 mice in each of the two infected groups were sacrificed at day 3 for CFU analysis; 

these mice were assessed through BLI up to day 3. The remaining mice (n = 5 implant, n = 9 

implant + S. aureus, n = 9 implant + fMLP + S. aureus) were assessed through BLI up to day 

10 as well as von Frey filament testing (day 10), weight-bearing (day 10) and body weight 

measurement (day 10). Then, these mice were sacrificed at day 10 for gross morphological 

assessment, μCT analysis and histological analysis.

BLI

IVIS® Lumina II In Vivo Imaging System (PerkinElmer®) was used to track neutrophil 

activity at the knee joint as well as for quantification of bacterial abundance at the knee 

joint. For the assessment of neutrophil response in mice receiving knee injection of fMLP 

or vehicle control, BLI was performed at baseline prior to injection as well as at 2 h and 
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6 h post injection. 8 min prior to each imaging time-point, mice received intra-peritoneal 

injection of 100 mg/kg of luminol (Sigma-Aldrich, A4685) in PBS solution. Luminol is a 

chemiluminescent compound that produces a bioluminescent signal in the presence of ROS 

catalysed by MPO in neutrophils and has been used previously as a measure of neutrophil 

activity in the joints and subcutaneous tissue of mice (Gross et al., 2009; Tseng and Kung, 

2013).

In the mouse PJI model, BLI to quantify bioluminescent signal from bioluminescent S. 
aureus Xen 36 was performed at baseline (prior to surgery) as well as at days 1, 3, 5, 7 

and 10 post-surgery. There is direct correlation between Xen36 S. aureus light intensity and 

quantified tissue and implant bacterial burdened measured by CFU count at the site of the 

implant and surrounding tissue (Bernthal et al., 2010). In all BLI experiments, exposure 

time was performed for a total of 5 min. A standard circular ROI with a diameter spanning 

from the distal 1/4th of the femur and proximal 1/4th of the tibia/fibula was used. The ROI 

used for both assessment of neutrophil activity and bacterial bioluminescent signal using 

BLI are represented as red outlines in Fig. 1a and Fig. 2a, respectively. Emission intensity at 

the ROI over time was quantified using mean maximum flux (photons/s/cm2/sr). Mice were 

imaged using BLI under 2 % isoflurane anaesthesia. A total of n = 15 mice in each of the 

two infected groups were analysed with BLI. For CFU analysis, n = 6 mice in each of the 

infected groups were sacrificed at day 3 and only received BLI up to day 3. The remaining 

mice (n = 5 implant, n = 9 implant + S. aureus, n = 9 implant + fMLP + S. aureus) received 

BLI assessment up to day 10. BLI images for each group were selected for representation of 

mean values of mean maximum flux (photons/s/cm2/sr) at the ROI.

Infection burden assessment by CFU analysis at knee joint and implant

A subset of n = 6 mice in each of the infected groups (n = 6 implant + S. aureus, n = 6 

implant + fMLP + S. aureus) underwent CFU analysis following BLI at day 3 post-surgery. 

Briefly, mice were sacrificed at day 3 post-infection and the distal 1/4th of the femur and 

the proximal 1/4th of the tibia/fibula were cut and harvested to isolate the knee joint. Skin 

was removed from the harvested knee joint and the remaining bone and soft tissue was used 

for CFU analysis. The implant was removed in an anterograde fashion from the cut end of 

the femur. Bacterial loads from processed tissue and implants were determined using serial 

dilution and plating as previously described (Goldufsky et al., 2015; Kroin et al., 2015; 

Kroin et al., 2012; Kroin et al., 2016; Kroin et al., 2018). Samples were diluted in PBS to 

produce dilutions ranging from 10−1 to 10−5 within 96-well microplates. Aliquots of 5 μL 

were spot-plated at 100-10−5 on tryptic soy agar plates and incubated at 37 °C for 24 h. CFU 

counts were quantified the following day. Bacterial burden was assessed as CFU/g tissue 

for knee joint and surrounding tissue. Bacterial burden for tissue implant was assessed as 

CFU/implant.

Gross morphology analysis

Following sacrifice, mice underwent further imaging with the aid of a Zeiss (Stemi 

508) dissection stereomicroscope. Gross morphology was assessed for all mice that were 

sacrificed at day 10 post-surgery (n = 5 implant, n = 9 implant + S. aureus, n = 9 implant 

+ fMLP + S. aureus). Images were acquired following skin incision, to image the knee-joint 
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capsule, and the knee-joint capsule was opened to image the distal femur and implant. Knee 

capsule width measurements were performed using ImageJ (NIH) using a known reference 

length from each image. Images of gross morphology for each group were selected as 

average representatives within each group.

Histological analysis

The distal aspects of femora and surrounding tissues were fixed in 4 % formaldehyde for 3 d 

at 4 °C and stored in 70 % ethanol at 4 °C for μCT analysis. Following μCT analysis, tissues 

were decalcified in 0.5 mol/L EDTA (pH 8.0) for 14 d at 4 °C. Following decalcification, 

tissues were embedded in paraffin-wax. Serial 5 μm sagittal sections were performed at 

the distal femur tissues. Sections underwent H&E staining. Sections were imaged using 

an Olympus (BX43) light microscope. Image J was used to quantify cortical widths and 

inflammatory areas. Maximum cortical width was evaluated at the distal ventral femur. 

Maximum cortical width was defined as maximum distance from cortical bone at the ventral 

surface to the beginning of contiguous marrow space. Furthermore, inflammatory infiltration 

areas were measured using ImageJ as the largest contiguous areas of inflammatory infiltrates 

at the ventral 1/3rd of the femur epiphysis. Identification of inflammatory tissue eroding 

into the bone or marrow space in a mouse PJI model has been previously described 

(Thompson et al., 2018). Identification of inflammatory infiltrate was based on the following 

criteria: i) bone destruction, ii) fibrosis, iii) inflammatory infiltrate consisting of leukocytes 

representing chronic inflammation/osteomyelitis, as previously described (Thompson et al., 

2018; Tiemann et al., 2014). Black outline of the ROIs of the ventral 1/3rd of the epiphysis 

used to measure inflammatory areas are represented in Fig. 4a. Representation of the 

inflammatory infiltrate areas, used in the calculations, are demarcated by the orange outlines 

in Fig. 4a. Histological analyses were performed on all mice that were sacrificed at day 10 

post-surgery (n = 5 implant, n = 9 implant + S. aureus, n = 9 implant + fMLP + S. aureus). 

Representative histological images for each group were selected based on mean values for 

maximum cortical width at the distal femora as well as inflammatory infiltration areas.

μCT assessment

The distal 1/4th of fixed femur tissues at the implant leg at day 10 post-surgery were 

assessed by μCT (Scanco, μCT50). μCT was performed on all mice that were sacrificed 

at day 10 post-surgery (n = 5 implant, n = 9 implant + S. aureus, n = 9 implant fMLP + 

S. aureus). 3D as well as mid-coronal μCT sections of the distal femur were evaluated. A 

maximum width of the distal femur was evaluated using a ventral view 3D μCT image and 

ImageJ. Increased maximum distal femur width has been previously used as a measure of 

infection in a mouse PJI model (Thompson et al., 2018). 3D images and mid-coronal μCT 

sections were used to evaluate the following scoring criteria: i) periosteal reaction; ii) focal 

cortical loss; iii) trabecular loss; iv) total PJI scores. Total PJI score for each femur was 

the addition of three scores: i) periosteal reaction; ii) focal cortical loss; iii) trabecular loss. 

These scores were determined on a scale of 0-2, with 2 being the worst or most severe score. 

Subjective scoring criteria of bone were developed based on previous clinical radiographic 

evidence of PJI (Bauer et al., 2006) and mouse PJI model radiographic features and scoring 

(Carli et al., 2017). Criteria for the following periosteal reaction scores at the distal femur 

were as follows: 0) no or minimal periosteal reaction restricted to small regions; 1) moderate 
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periosteal reaction with limited changes in cortical surface dimension and congruity; 2) 

severe and extensive spread of periosteal reaction with moderate to severe changes in 

cortical surface dimensions and congruity. Criteria for the focal cortical loss scores at the 

distal femur were as follows: 0) no or minimal areas of focal cortical loss; 1) definitive 

areas of focal cortical loss found in small regions of the distal femur containing near or 

full-thickness cortical bone loss; 2) severe focal cortical loss causing full-thickness cortical 

bone loss spread over large region(s) such as a femoral condyle. Criteria for trabecular loss 

score at the distal femur were as follows: 0) no or minimal loss of trabecular bone; 1) 

moderate loss of trabecular bone; 2) severe loss of trabecular bone. Scoring was performed 

by two blinded observers and an ICC was calculated to estimate inter-rater reliability. ICC 

values were as follows: i) periosteal reaction, ICC 0.969 (95 % CI 0.926-0.987); ii) focal 

cortical loss, ICC 0.986 (95 % CI 0.966-0.994); iii) trabecular loss, ICC 0.929 (95 % CI 

0.832-0.970); iv) total PJI score, ICC 0.970 (95 % CI 0.928-0.987). Representative μCT 

images of each group were selected based on mean values for maximum distal femur width 

as well as scored parameters: periosteal reaction, focal cortical loss and trabecular loss.

Weight-bearing assessment

In addition to pain, impaired joint function is a common clinical symptomatic feature of 

PJI (Izakovicova et al., 2019). Weight-bearing at the implant leg was used as a measure 

of pain and joint function. Mice were assessed for weight-bearing at the right hindlimb at 

baseline (pre-surgery) and at day 10 post-surgery. Weight-bearing was assessed in all mice 

that were harvested at day 10 post-surgery (n = 5 implant, n = 9 implant + S. aureus, n = 9 

implant + fMLP + S. aureus). Mouse weight-bearing was captured using iPhone X (Apple) 

slow-motion video recording software, as previously described (Carli et al., 2017). Grading 

at the right hindlimb was as follows: full weight-bearing (3 points); partial weight-bearing 

(2 points); toe-touch (1 point); non-weight-bearing (0 points). Detailed scoring criteria are 

illustrated in Video 1 (available on journal website). Scoring was performed by two blinded 

observers and ICC was 0.972, 95 % CI 0.949-0.984.

Pain behaviour assessment by von Frey filament testing

One of the most common initial clinical findings or symptoms of a PJI is pain (Izakovicova 

et al., 2019; Tande and Patel, 2014). To measure pain behaviour in mice, mechanical 

allodynia was assessed using von Frey filament testing, as previously described (Im et al., 

2010; Miller et al., 2012). Mice can demonstrate allodynia, or pain behaviour (demonstrated 

for instance by leg withdrawal), in response to a normal innocuous stimulus, through 

application of various levels of mechanical stimulus [von Frey filaments applied at the 

plantar hind paw (Deuis et al., 2017)]. Mice were placed on top of a metal mesh stand 

(IITC mesh stand part #408, Woodland Hills, CA, USA) within a small, weighted plastic 

enclosure. Calibrated von Frey filaments (Stoelting™ Touch Test Sensory Probes, Fisher 

Scientific) ranging from filament forces of 2.44 g to 4.74 g were used. Filaments were 

applied to the plantar hind paw with a force requiring the filament to bow. Filaments were 

held at the plantar surface for 3 s or until a pain withdrawal response was displayed. A 

modified up-down method was used to calculate the force required to elicit withdrawal of 

the paw, which was quantified as PWT force (in g). Pain behaviour was assessed in all mice 

that were sacrificed at day 10 post-surgery (n = 5 implant, n = 9 implant + S. aureus, n = 

Hamilton et al. Page 8

Eur Cell Mater. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9 implant + fMLP + S. aureus); baseline assessments for all these mice were performed as 

well.

Weight

Mice were assessed for body weight at baseline (pre-surgery) and at day 10 post-surgery. 

Weight measurements were taken to further evaluate a potential response of mice to both 

surgery and infection, as described previously (Carli et al., 2017), as well as to fMLP 

treatment. Weight was assessed in all mice that were sacrificed at day 10 post-surgery (n 
= 5 implant, n = 9 implant + S. aureus, n = 9 implant + fMLP + S. aureus). Weight was 

calculated in g using an electronic scale (Ohaus, Scout SPX, Parsippany, NJ, USA).

Statistical analysis

Statistical analysis for ICC was performed using SPSS statistics software version 27. 

The remainder of statistical analyses were performed using Prism software version 

8. Comparison between two groups was evaluated using an unpaired Student’s t-test. 

Comparisons between more than two groups were evaluated with one-way ANOVA with 

post-hoc Tukey’s multiple comparison test. Comparisons of more than two groups over time 

were evaluated with mixed-effects analysis with post-hoc Tukey’s multiple comparison test. 

Data were presented as mean ± SEM. Threshold for significance was set at p < 0.05.

Results

fMLP treatment increased neutrophil activity in the knee joint

To assess whether fMLP could initiate and direct inflammatory responses toward the implant 

surgical site, even in the absence of injury and infection, mice received either fMLP or 

vehicle control in the right knee joint by intra-articular injection. Neutrophil response was 

assessed by in vivo BLI using luminol, which produces a bioluminescent signal in the 

presence of ROS catalysed by MPO in neutrophils (Gross et al., 2009; Tseng and Kung, 

2013). BLI performed at baseline prior to injection demonstrated minimal to no neutrophil 

activity in the knee joint in either group. As compared to the mock group, mice receiving 

fMLP exhibited ~ 2-fold higher neutrophil response at the 2 h time point and 3-fold higher 

neutrophil response at the 6 h time point as assessed by BLI (Fig. 1a,b). These results 

demonstrated that fMLP was able to mobilise and direct a neutrophil response toward the 

knee environment even in the absence of infection or surgery.

fMLP treatment reduced S. aureus infection in a mouse model of PJI

To show that an fMLP immunomodulator was able to reduce a PJI, an established PJI 

model with bioluminescent S. aureus was used, as described previously (Bernthal et 

al., 2010; Carli et al., 2017; Hegde et al., 2017a) and in Materials and Methods. In 

line with a previous report (Bernthal et al., 2010), bacterial-bioluminescence signal was 

significantly higher in infected mice as compared to non-infected mice, peaking at day 

3 post-infection but declining over time and plateauing at day 7-10 post-infection (Fig. 

2a,b). Importantly, infected mice receiving fMLP prior to infection had significantly reduced 

bacterial-bioluminescence signal at day 3 trending towards reduced signals at days 1 and 

5, compared to mice receiving vehicle alone (Fig. 2a,b, p < 0.001). Given that the peak 
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infection occurred at day 3 in both mock and fMLP-treated mice, infected implants and 

tissue surrounding implants were collected and assessed for their bacterial infection burden 

by CFU analysis, as previously described (Goldufsky et al., 2015; Kroin et al., 2016; Kroin 

et al., 2018). CFU analyses of the knee-joint tissues at day 3 post-surgery revealed an 

approximate 2-Log order reduction in S. aureus bacterial numbers in the group that received 

fMLP, as compared to the infected group without fMLP (Fig. 2c, p < 0.01). There also 

appeared to be a trend for CFU reduction on the implant itself in the group that received 

fMLP, but it did not reach statistical significance. Collectively, these data indicated that an 

fMLP immunomodulator was able to reduce acute S. aureus peak infection in the PJI model.

fMLP treatment reduced the pathological effects of S. aureus infection at the knee joint 
tissue and bone

Bone destruction and joint dysfunction are common clinical signs of PJI (Bozhkova et al., 

2020; Izakovicova et al., 2019; Lima et al., 2013). Knee joints and the tissues surrounding 

the implants were collected at day 10 post-infection and evaluated for the impact of 

infection with or without fMLP treatment. A striking feature of knee joints in infected mice, 

particularly in the group without fMLP treatment, was their overall large size as compared to 

non-infected knee joints (Fig. 3a,b). This increased size was reflective of increased abscess 

formation within the knee-joint capsule. Infected mice without fMLP treatment had the 

largest knee-capsule width, which was significantly larger than non-infected mice (Fig. 

3a,b, p < 0.01). While the fMLP treatment group trended toward having a smaller knee 

capsule width as compared to mock-treated group, these differences did not reach statistical 

significance (Fig. 3a,b). Upon opening the knee-joint capsule and removing abscess debris, 

the distal femur surrounding the implant was evaluated (Fig. 3c). In all groups, there 

appeared to be some level of adhesive tissue to the distal femur, which was likely a 

consequence of tissue reaction to implant surgery. In the implant group, characteristic 

features of the distal femur, such as the femoral condyles were abundantly clear. Infected 

mice receiving fMLP also appeared to retain somewhat the natural morphology of the distal 

femur and femoral condyles; however, compared to the non-infected group, there appeared 

to be more adhesive tissue to the femoral condyles in this group. Mice infected without 

fMLP treatment had the highest level of adhesive tissue and abnormal morphology of the 

distal femur of any group. This was most clearly evidenced by a loss of rounded contours of 

the femoral condyles in the infected group without fMLP, as indicated by black arrows (Fig. 

3c, black arrows).

To gain a better understanding of the effects of infection on the distal femur, with or 

without fMLP treatment, histological analysis of H&E-stained sections of the distal femur 

was performed at day 10 post-infection. The fMLP-treated group had significantly smaller 

cortical bone width as compared to the infected group without fMLP treatment (Fig. 4a,b, 

indicated by black dotted lines in magnified regions in orange boxes). Increased cortical 

width was likely a result of stimulation of bone production (periosteal reaction) from the 

overlying periosteum due to chronic inflammation, as has been reported in the context of 

infection and inflammation (Rana et al., 2009). The implant group without infection had the 

smallest cortical width.
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Inflammatory infiltrate has been found eroding into the distal femur in a mouse PJI model 

(Thompson et al., 2018), prompting the assessment of the pathological impact of infection 

with or without fMLP treatment on inflammatory responses and bone health. Data indicated 

that within the defined ROI in the ventral 1/3rd of the femur epiphysis, the infected group 

without fMLP had the largest contiguous area of inflammatory cell and tissue infiltration, 

which was significantly higher than the fMLP-treated infected group (Fig. 4a,b, p < 0.05, 

black arrow in magnified regions in blue boxes). In contrast, the uninfected implant group 

had the smallest regions of inflammatory cell and tissue infiltrate, which was likely a 

result of surgery and implant placement (Fig. 4a,b). Within the ventral 1/3rd of the femur 

epiphysis, the largest contiguous areas of inflammatory infiltrates were found at the bone­

implant interface in all groups.

The pathological impact of infection with or without fMLP treatment on bone by μCT was 

assessed. Maximum width of the distal femur was measured on the ventral μCT 3D view. 

This was in particular used as a measure to quantify periosteal reaction, which would widen 

the femur width. Similar to the non-infected group, the fMLP-treated group had significantly 

reduced femoral width as compared to the infected group without fMLP (Fig. 5a,b, p < 

0.01, indicated by yellow dashed lines). 3D images of the side, dorsal and condyle views, as 

well as mid-coronal μCT sections were evaluated by two blinded observers and scored for 

i) periosteal reaction, ii) focal cortical loss, iii) trabecular loss and combination of all three 

parameters were indexed as a combined μCT PJI score.

As compared to the infected group treated with vehicle, the fMLP-treated group exhibited 

significantly reduced periosteal reaction (Fig. 5a,b, indicated by green arrows, p < 0.01) and 

focal cortical loss (Fig. 5a,b, indicated by purple arrows, p < 0.05). Trabecular loss was 

significantly higher in the infected group without fMLP, compared to the non-infected group 

(p < 0.001), with a trend towards higher values as compared to the infected group treated 

with fMLP, but this effect did not reach statistical significance (Fig. 5a,b, indicated by red 

arrows). When all three parameters were merged into a combined PJI μCT score, it was 

found that fMLP treatment significantly reduced the combined PJI μCT pathology score as 

compared to the infected group without fMLP treatment (Fig. 5b, p < 0.01).

fMLP improved behavioural symptoms in a PJI mouse model

Pain and joint dysfunction are common clinical symptom associated with PJI in patients 

(Bozhkova et al., 2020; Izakovicova et al., 2019; Lima et al., 2013). Pain behaviour was 

evaluated following two methods: weight-bearing on the right hindlimb (implant leg) and 

mechanical allodynia with von Frey filament testing, as previously described (Carli et al., 

2017; Im et al., 2010; Miller et al., 2012). Weight-bearing was also used as an assessment 

for joint function (Carli et al., 2017). At baseline and prior to implant placement (day 

0), mice in all groups exhibited a similar weight-bearing score and calculated withdrawal 

force threshold for evidence of mechanical allodynia (Fig. 6a,b). In contrast, at day 10 

post-surgery, fMLP-treated infected mice exhibited a significantly improved weight-bearing 

score on the implant leg as compared to infected mice without fMLP (Fig. 6d, p < 

0.001). Furthermore, mice receiving fMLP also exhibited significantly improved (increased) 

withdrawal force threshold as compared to infected mice without fMLP treatment (Fig. 6e, 
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p < 0.05). Collectively, these data indicated that fMLP treatment significantly improved the 

behavioural symptoms that are associated with PJI (Bozhkova et al., 2020; Izakovicova et 

al., 2019; Lima et al., 2013).

fMLP treatment did not affect body weight in a mouse PJI model

Prior to surgery, all groups had a similar average body weight (Fig. 6c). At day 10 post­

surgery, all groups trended slightly toward having a lower weight; however, this was not 

statistically significant. Furthermore, at day 10 post-surgery, infected mice without fMLP 

treatment trended toward a slightly greater weight loss; however, this weight loss was not 

statistically significant between groups (Fig. 6f).

Discussion

PJI remains a devastating complication after arthroplasty, leading to pain, suffering, 

morbidity and a substantial economic burden (Kapadia et al., 2016; Kurtz et al., 2012). 

There is an urgent need for alternative and/or adjunct measures to antibiotic prophylaxis 

in addressing PJI. The present study assessed whether fMLP, a potent immunomodulator 

that recruits and activates inflammatory leukocytes, particularly neutrophils, would be able 

to control PJI even in the absence of antibiotics. Data indicated that fMLP treatment 

significantly reduced S. aureus infection in an established PJI model. Furthermore, fMLP 

reduced infection-induced bone and tissue pathologies and, subsequently, infection-induced 

pain and weight-bearing behaviour in infected animals.

Although infection was significantly reduced in fMLP-treated mice, it was not completely 

abolished in this model. Whether this was due to low level of fMLP used or the inability 

of fMLP to engage the adaptive immune responses, which are also needed to fully control 

S. aureus infection (Lin et al., 2009), remains to be investigated. Intriguingly, administration 

of systemic vancomycin prophylaxis or intra-articular vancomycin powder treatment alone 

also failed to completely eradicate S. aureus PJI in rats, although they were more effective 

in reducing infection when combined (Edelstein et al., 2017). Since antibiotics and 

immunomodulators (e.g. fMLP) combat infection through different mechanisms of action, 

combination therapy with both may also be more effective in eliminating a PJI. Future 

studies are needed to investigate whether fMLP in combination with prophylaxis or topical 

antibiotics would be more effective in controlling a PJI.

It is encouraging that fMLP treatment reduced infection burden early after surgery and 

infection, given that bacteria have been shown to form biofilm on the implant surfaces early 

after infection (Carli et al., 2017; Lamret et al., 2020). Indeed, a high neutrophil to S. aureus 
ratio at the implant surface is a prognostic factor for reduced biofilm production (Ghimire et 

al., 2019). Bacterial pathogens, including S. aureus, are protected from neutrophil killing 

when embedded in fully mature biofilms (de Vor et al., 2020; Gunther et al., 2009; 

Kristian et al., 2008). Due to the concern of biofilm formation on the implant surface 

itself, coating the implant with fMLP might better mobilise neutrophil recruitment directly 

to the implant interface, thus increasing neutrophil to S. aureus ratio at the implant surface 

to prevent early biofilm formation. Future studies are needed to assess the impact of fMLP 
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therapy (administered intra-articularly or by implant coating; alone or in combination with 

antibiotics) on biofilm production.

Inflammation and inflammatory responses are proportional to the bacterial burden and 

infection level and can culminate in severe tissue destruction (Bernthal et al., 2010; Carli 

et al., 2017). Chronic inflammation in the setting of infection can suppress osteoblast 

activity as well as enhance osteoclast activity and S. aureus infection can directly cause 

bone destruction, activate osteoclasts and inhibit osteoblasts leading to altered bone 

remodelling (Wright and Nair, 2010). Substantial evidence of inflammation and bone loss 

and destruction was found particularly in the infected group without fMLP, as assessed 

by gross morphology, μCT and histology. Furthermore, in the setting of osteomyelitis, 

periosteal reaction can occur through subperiosteal spread of inflammation, which in turn 

elevates and stimulates the periosteum to lay down new layers of bone (Rana et al., 

2009). Consistent with this report, significant increases in inflammation and periosteal 

reaction were found in the mouse PJI model, as assessed by μCT and histological analyses. 

Importantly, fMLP lowered these infection-induced bone pathologies.

Common clinical signs of PJI include joint pain and joint dysfunction (Bozhkova et al., 

2020; Izakovicova et al., 2019; Lima et al., 2013). Intriguingly, infected mice treated with 

fMLP exhibited significant reduction in pain behaviours and significant improvement in 

weight-bearing, further highlighting the positive impact of fMLP therapy in reducing PJI. 

Severe weight loss can be a sign of systemic infection with bacteria such as S. aureus (Wu 

et al., 2017). A slight trend towards weight loss was found in both infected and non-infected 

groups, although these differences did not reach statistical significance, suggesting that S. 
aureus infection in this model remained local. In line with the present study data, Carli 

et al. (2017), in a similar PJI S. aureus infection study, reported no significant differences 

in weights between the infected and non-infected groups, although both groups exhibited 

slightly lower weight at week 1 post-surgery.

There is minimal literature to date on the therapeutic use of fMLP. Interestingly, Shin et 

al. (2011) evaluated the impact of local treatment with fMLP (delivered in a hyaluronic 

acid gel carrier) in a rabbit calvaria defect model and demonstrated that fMLP promotes 

osteogenesis and bone formation at the defect site as compared to vehicle control. Of note, 

no evidence of increased inflammation was found at the defect site in rabbits treated with 

fMLP 4 weeks post treatment (Shin et al., 2011), suggesting that fMLP may have a positive 

effect on bone formation and healing after arthroplasty even in the absence of infection. 

Further studies should evaluate the positive or adverse impacts of local fMLP therapy on 

joint and surrounding tissue, as well as animal behaviour, in an uninfected cohort in a PJI 

model, to further lay the groundwork for its therapeutic use to combat PJI.

Sethi et al. (2015) reported that in rats with an S. aureus-contaminated surgically-placed 

tibial-intramedullary implant, administration of CpG oligodeoxynucleotide, which is found 

in bacterial DNA and shown to trigger inflammatory responses, led to ~ 67 % reduction 

in infection burden early after infection but did not prevent the development of chronic 

infection over time. The present study results were in line with these findings showing that 
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fMLP reduced early infection by a nearly 2-Log order at day 3 but did not completely 

abolish infection.

Conclusions

The present proof-of-concept study provided direct evidence in a mouse PJI model that 

fMLP immunomodulator was effective in reducing acute infection and protecting against 

infection-induced bone and tissue damage and associated pain. Immunomodulators such 

as fMLP may provide an alternative or adjunct therapeutic to antibiotics for reducing 

and/or treating PJI. Future studies should focus on optimisation of immunomodulator-based 

approaches such as fMLP dose assessment, implant coating with fMLP or combination of 

fMLP with prophylactic antibiotics or other immunomodulators.
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Refer to Web version on PubMed Central for supplementary material.
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fMLP
N-formyl-methionyl-leucyl-phenylalanine

FPR
formyl peptide receptor

H&E
haematoxylin and eosin

ICC
intraclass correlation

K-wire
Kirschner wire

MPO
myeloperoxidase
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neutrophil extracellular traps
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National Institutes of Health
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PJI
periprosthetic joint infection
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pattern recognition receptors
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region of interest
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TSB
tryptic soy broth

μCT
micro-computed tomography
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Fig. 1. fMLP increased neutrophil activity at the articular joint.
(a) fMLP (5 μg/5 μL) or vehicle (5 μL PBS + 25 % DMSO) were injected into the right-knee 

joint. Neutrophil recruitment was assessed by BLI prior to knee injection (baseline) or 

at 2 h and 6 h post intra-articular knee injection and 8 min post intra-peritoneal luminol 

injection at each time point. Red-dashed circle represents ROI used for BLI quantification. 

(b) Corresponding tabulated data are shown as mean ± SEM (n = 5 mice/group, * p < 0.05, 

Student’s t-test). Scale bar: 4 mm.
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Fig. 2. fMLP treatment reduced S. aureus infection in a mouse model of PJI.
(a) Mice received a surgically placed femoral implant and were treated with vehicle alone, 

103 Xen36 S. aureus or fMLP + Xen36 S. aureus. Infection burden was assessed by BLI 

performed at baseline as well as at days 1, 3, 5, 7 and 10 post-surgery and treatment. 

Red-dashed circle represents ROI used for BLI quantification. (b) Corresponding tabulated 

data for mean maximum flux (photons/s/cm2/sr) at the ROI are shown as mean ± SEM 

(n = 5-15 mice/group, * p < 0.05, mixed-effects analysis with post-hoc Tukey’s multiple 

comparison test). (c) Quantification of bacterial CFUs at the knee-joint tissue and femoral 

implant at day 3. Data represented as mean ± SEM (n = 6, * p < 0.05, Student’s t-test). Scale 

bar: 4 mm.
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Fig. 3. fMLP reduced the pathological effects of infection at the knee-joint tissue surrounding the 
implant.
(a) Gross morphological assessment was performed at the knee-joint capsule (knee capsule 

width in mm/measure of intra-capsular abscess) and distal femur for cartilage/bone erosion 

surrounding the implant in animals sacrificed at day 10 post-surgery and treatment. Yellow 

dashed line represents maximum knee-capsule width. Black arrows represent region of the 

femoral condyles. (b) Knee-capsule width plotted as mean ± SEM (n = 5-9, ** p < 0.05, 

one-way ANOVA with post-hoc Tukey’s multiple comparison test). Scale bar: 0.5 mm.
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Fig. 4. fMLP protected against infection and inflammation-induced bone damage and changes 
around the implant.
(a) At day 10 post-surgery and treatment, mice were sacrificed for histological assessment 

of the distal femur by H&E staining. Two parameters identified in the distal femur 

were dramatically higher in the infection group without fMLP, maximum cortical width 

(measure of traditional cortical bone in addition to new adjacent bone formation formed 

by periosteal reaction, yellow magnification/black dashed line) and inflammatory infiltrate 

(blue magnification/black arrow). Inflammatory infiltrate was measured as the largest 

contiguous area of inflammatory infiltrate in the ventral 1/3rd of the femur epiphysis. Within 

the blue magnification area, ROI for inflammatory infiltrate outlined with black solid line 

and inflammatory area outlined by an orange line. (b) Quantification of maximum cortical 

width and inflammatory infiltrate. Data represented as mean ± SEM (n = 5-9, * p < 0.05, ** 

p < 0.01, *** p < 0.001, one-way ANOVA with post-hoc Tukey’s multiple comparison test). 

Black scale bar: 200 μm; orange scale bar: 70 μm; blue scale bar: 85 μm.
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Fig. 5. fMLP protected against infection and inflammation-induced bone damage and changes 
around the implant.
Mice were sacrificed at day 10 post-surgery and treatment and femora at the implant sites 

were evaluated for pathological features as follows. (a) Distal femora were assessed by 

μCT analysis on 3D imaging and mid-coronal sections. Green arrows point to periosteal 

reaction, purple arrows to focal cortical loss, red arrows to trabecular loss. Yellow-dashed 

line represents cortical width. (b) μCT quantification of maximum femur width in mm 

(based on ventral-view 3D image), periosteal reaction score, focal cortical-loss score and 

trabecular-loss score, which were analysed using scoring criteria based on assessment of 3D 

images and mid-coronal sections by two blinded observers. Scoring criteria were quantified 

and combined as a single measure called combined μCT PJI score. Data represented as mean 
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± SEM (n = 5-9, * p < 0.05, ** p < 0.01, *** p < 0.001, one-way ANOVA with post-hoc 
Tukey’s multiple comparison test). Scale bar: 1 mm.
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Fig. 6. fMLP treatment improved weight-bearing, decreased pain behaviour and had no effect on 
weight in a mouse model of PJI.
Baseline assessment for (a) weight-bearing, (b) pain behaviour (mechanical allodynia) on 

von Frey filament testing and (c) body weight performed prior to surgery or treatment (day 

0). Assessment of (d) weight-bearing, (e) pain behaviour and (f) body weight performed 

at day 10 post-surgery and treatment. Data represented as the mean ± SEM (n = 5-9, * 

p < 0.05, ** p < 0.01, *** p < 0.001, one-way ANOVA with post-hoc Tukey’s multiple 

comparison test).
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