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ABSTRACT The genus Enterobacter includes species responsible for nosocomial out-
breaks in fragile patients, especially in neonatal intensive care units (NICUs). Determining
the primary source of infection is critical to outbreak management and patient out-
comes. In this investigation, we report the management and control measures imple-
mented during an Enterobacter outbreak of bloodstream infections in premature
babies. The study was conducted in a French NICU over a 3-year period (2016 to
2018) and included 20 premature infants with bacteremia. The clinical and microbio-
logical characteristics were identified, and whole-genome sequencing (WGS) was
performed on bacteremia isolates. Initially, several outbreak containment strategies
were carried out with no success. Next, outbreak investigation pinpointed the neo-
natal incubators as the primary reservoir and source of contamination in this out-
break. A new sampling methodology during “on” or “in use” conditions enabled its
identification, which led to their replacement, thus resulting in the containment of
the outbreak. WGS analysis showed a multiclonal outbreak. Some clones were identi-
fied in different isolation sources, including patients and neonatal incubators. In
addition, microbiological results showed a multispecies outbreak with a high preva-
lence of Enterobacter bugandensis and Enterobacter xiangfangensis. We conclude that
the NICU health care environment represents an important reservoir for Enterobacter
transmission and infection. Finally, extracting samples from the neonatal incubator
during active use conditions improves the recovery of bacteria from contaminated
equipment. This method should be used more frequently to achieve better monitor-
ing of the NICU for HAIs prevention.

IMPORTANCE Neonatal incubators in the NICU can be an important reservoir of patho-
gens responsible for life-threatening outbreaks in neonatal patients. Traditional disinfection
with antiseptics is not sufficient to eradicate the microorganisms that can persist for long
periods in the different reservoirs. Identification and elimination of the reservoirs are cru-
cial for outbreak prevention and control. In our investigation, using a new strategy of
microbiological screening of neonatal incubators, we demonstrated that these were the
primary source of contamination. After their replacement, the outbreak was controlled.
This new methodology was effective in containing this outbreak and could be a viable al-
ternative for infection prevention and control in outbreak situations involving incubators
as a reservoir.
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Health care-associated infections (HAIs) have emerged as a major cause of morbid-
ity, mortality, and rising health care costs within neonatal intensive care units

(NICUs) (1). Newborns admitted to the NICU are at high risk of contracting nosocomial
infections due to the immaturity of their immune system and the prevalence of inva-
sive procedures (2). One of the most severe HAIs in this context, especially in very low
birth weight (VLBW) infants (,1,500 g), is late-onset sepsis (LOS), which is frequently
associated with invasive procedures (3–5). HAIs extend hospital stay by 19 days, caus-
ing 45.0% of deaths by 2 weeks of age (6). Epidemiological data show that in VLBW
infants, the predominant pathogens of neonatal LOS are Gram-positive bacteria (48.0
to 70.0%) such as coagulase-negative staphylococci and Staphylococcus aureus, but
Gram-negative organisms (19.0% to 25.0%) such as Enterobacterales are also important
(7–9). Over the last decades, the genus Enterobacter has emerged as an important
nosocomial pathogen in NICUs (10, 11). Today, more than 20 different species have
been identified by molecular techniques (12). Enterobacter spp. can colonize the gas-
trointestinal tract, as well as surfaces or devices in the NICU, constituting an important
reservoir of HAIs (13–15). Improved methodologies for identifying and monitoring out-
breaks are necessary to reduce HAIs in NICUs. In this study, we describe management
and control measures of a LOS Enterobacter outbreak in a French NICU. We used
whole-genome sequencing (WGS) to characterize Enterobacter strain gene content and
to provide a comprehensive understanding of the epidemiological dynamics of the
outbreak.

RESULTS
Outbreak description and demographics. In May 2016, an outbreak alert was emit-

ted following three cases of Enterobacter sepsis in the NICU. The rate of Enterobacter
invasive infections had risen from 0.7% in 2015 to 2.14% in 2016. We initiated an out-
break investigation and surveillance program as follows:

� To exclude cross-transmission, the NICU was divided into two sectors with
dedicated health care workers: one with infected and colonized babies and one
Enterobacter-free. The movement of neonates within and between units was
restricted, and entrance to the outbreak area was kept to a minimum.

� Health care workers’ adherence to the infection control policies (hand hygiene,
use of gloves, change of health care clothes and individual protective equipment)
was assessed, followed by NICU feedback dissemination, on-site educational and
training sessions, and audits of the surveillance measures.

� Biocleaning practices of equipment and hospital environment were audited, and
environmental surveillance was introduced.

� Supervision of antibiotic consumption was reinforced.
� The Assistance Publique-Hôpitaux De Paris (AP-HP) infection control team held
monthly meetings with the local infection control team (LICT), medical and
paramedical NICU infection control staff, and the hospital management to discuss
the decision needed to stop the outbreak.

� All parents and visitors were informed of the new hygiene measures and the
reason for enhanced infection control of the outbreak and were provided with a
written explanation.

Major outbreak control interventions are shown in Fig. 1. From January 2016 to
December 2018, 1,621 newborns were admitted to our NICU. During this period, we
identified 20 Enterobacter bacteremia cases among 20 separate newborns. In the blood
cultures, the 20 strains isolated were all identified as Enterobacter cloacae complex by
matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-
TOF MS) at the time of the outbreak.

All 20 newborns (100.0%) had a low birth weight (,1,500 g). Mean birth weight
was 883.6 6 343.8 g, gestational age was 27.0 6 2.1 weeks, 53.0% of the patients were
female, 45.0% (9 of 20) of the births were by cesarean, and the mean of CRIB II was
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10.0 6 3.6. Of the 20 patients, 14 (70.0%) died during the outbreak period, and 7 of the
14 patients who died had neutropenia (50.0%).

The highest incidence of bloodstream infection caused by Enterobacter was registered
in May to June 2016, November 2016, and January 2017. During these same periods, we
identified 220 newborns (13.6%) colonized with Enterobacter. The highest colonization rate
was in January 2017 (Fig. 1).

The 20 isolates from blood cultures were typed by enterobacterial repetitive inter-
genic consensus (ERIC)-PCR as the outbreak progressed. It showed 11 different clusters
(A-K) (Fig. 2). Two predominant cluster were identified: cluster A (25.0%) and cluster E
(23.3%). In addition, cluster A was associated with Enterobacter xiangfangensis, and
cluster E was associated with Enterobacter bugandensis.

Environmental microbiology investigation. At the start of the outbreak, 100 envi-
ronmental samples were collected for Enterobacter screening from surfaces, shared
devices, water, and drains in the NICU. All the cultures were negative.

After the assessment of risk factors, the neonatal incubators seemed to be the most
probable source of the outbreak. The local infection control team performed a thor-
ough examination and complete disassembly of the incubators (Fig. 3). The two mod-
els of incubators (model A [n = 22] and model B [n = 11]) were tested in both “off” and
active “on” modes between July 2017 and October 2017.

In model A of incubator, 45 samples were collected. Enterobacter was found in 26.0% (5
of 19) in “off” conditions versus 77.0% (20 of 26) in “on” conditions. The results remained
positive after changing various motor parts and all seals. In model B, 15 samples were col-
lected. However, Enterobacter was not found in either “off” or “on” conditions.

The 20 Enterobacter strains ECE1-ECE20 isolated from model A incubators were
typed by ERIC-PCR. Profiles A, E, F, G, I, and K were identified, showing the same profile
clusters as isolates from blood cultures. In addition, the two strains sequenced by WGS
showed that ECE1 (profile A) is a member of genetic lineage A, and ECE11 (profile E)
constitutes a third lineage C with strain ECH5 (sepsis).

FIG 1 Monthly number of Enterobacter isolates from sepsis and colonized newborns (blood culture/nasopharynx and rectum) from 2016 to 2018 in the
neonatal intensive care unit (NICU). Colonization strains are shown in gray, and bacteremia strains are identified by ID ECH. Pink and yellow show lineages
A and B, respectively. The figure also shows the timeline of events and the overview of the implementation of the various infection prevention and control
measures by the local infection control team. LICT, local infection control team.
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Genomic analysis of Enterobacter isolates from blood culture. We found five
species belonging to E. cloacae complex: 50.0% (10 of 20) E. xiangfangensis, 30.0% (6 of
20) E. bugandensis, 5.0% (1 of 20) E. cloacae, 5.0% (1 of 20) Enterobacter hoffmannii,
5.0% (1 of 20) Enterobacter quasihormaechei, and one which did not, 5.0% (1 of 20)
Enterobacter cancerogenus. Multilocus sequence type (MLST) analysis distinguished 5
STs among the 10 E. xiangfangensis isolates and 5 STs among the 6 E. bugandensis iso-
lates, indicating a high genetic diversity (Fig. 2). The ST50 and ST1402 were observed
in blood cultures and environmental sources, specifically in neonatal incubators
(Fig. 4). In addition, ST50, ST1408, and ST118 persisted during the entire outbreak pe-
riod (2 years).

A core genome phylogenetic analysis identified two distinct lineages of genetically
related isolates (A and B), each of which correlated with different MLST (lineage A,
ST50; and lineage B, ST1408) and with ERIC-PCR clusters (lineage A, cluster A; and line-
age B, cluster E) (Fig. 2). Lineage A (n = 6) isolates were identified as E. xiangfangensis,
and lineage B (n = 2) isolates were identified as E. bugandensis. Clones were present
within each of the lineages, a level of genomic identity that is indicative of direct
descent and/or transmission. Within lineage A, ECH1, ECH2, and ECH3 demonstrate
five pairwise single-nucleotide polymorphisms (SNPs) and 8 for ECH2 and ECH6. Both
members of lineage B were genetically indistinguishable (0 pairwise SNPs) (supple-
mental file 1).

Drug susceptibility testing and antibiotic resistance genes. We determined the
antimicrobial and antiseptic susceptibility of the 20 strains recovered from patients
with bloodstream infection due to Enterobacter (Table 1). All strains were susceptible
to cefepime, aminoglycosides, and ciprofloxacin but resistant to colistin. In addition, in
all strains, we observed a heteroresistance to colistin. We found that 30.0% (6 of 20) of
the strains were cefotaxime-resistant (CTX-R). All CTX-R strains were identified as E.
xiangfangensis, and CTX-R was associated with overproduction of the cephalosporinase

FIG 2 Phylogenetic tree of 20 Enterobacter strains isolated in blood culture during the outbreak period.
The phylogenetic tree was performed using the core genome single-nucleotide polymorphism (SNP)
analysis by pairwise distance matrix of distinguishing SNPs between the isolates. ERIC, enterobacterial
repetitive intergenic consensus; ND, not determined.
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AmpC. Lineage-specific patterns of resistance were also observed. Lineage A included
5 of the 6 CTX-R strains. In contrast, lineage B strains were susceptible to CTX. All
strains of lineage A carried the AmpC-type b-lactamase ACT-15, even the CTX-S strain
ECH23. All lineage A strains showed mutations in AmpR and AmpD. The only differen-
ces between the five CTX-R strains and the CTX-S strain (ECH23) were the presence of
an insertion (Ser-Ser-Ser-Met) at the amino-terminal end and of a four-amino acid
insertion at the carboxyl-terminal end in the AmpD protein in the CTX-R strains. These
differences might be associated with the AmpC overproduction (supplemental file 2).
The sixth CTX-R strain (ECH24) harbored an ACT-17.

WGS analysis did not show acquisition of resistance-associated genes. Patients were
treated with cefepime or piperacillin-tazobactam or meropenem plus gentamicin or
amikacin or ciprofloxacin according to the susceptibility of the strain. Finally, decreased
susceptibility to the antiseptics evaluated (chlorhexidine and benzalkonium chloride)
was observed in all the strains (100%).

DISCUSSION

In this investigation, we describe the clinical, microbiological and molecular charac-
teristics, as well as the management and control measures, of an Enterobacter outbreak
in one NICU over a 2-year time span. Identifying the primary source of infection is criti-
cal in the management of an outbreak and of each patient with bacteremia (16). Here,

FIG 3 Incubators identified as the source of contamination during the Enterobacter outbreak. (A) Outdoor and indoor sites where microbiological control
was performed. (B through E) Red arrows show the sites where microbiological controls were performed under “on” conditions that allowed for isolation of
the Enterobacter strains.
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we determined that the incubators were the primary source of Enterobacter strains re-
sponsible for the outbreak.

Clinical characteristics of the patients were consistent with the findings of other
studies (11, 17). A higher mortality rate (70.0%) was observed in our study compared
to other outbreaks of Enterobacter infection in NICUs with reported mortality rates of
34.0 to 63.6% (17–19). Recently, our group highlighted the association of fatal septic
shock and the presence of lipopolysaccharide (LPS) modifications that could explain
the mortality rate observed in Enterobacter outbreaks (20). The impact of this LPS mod-
ification on virulence has also been evidenced in other species such as Salmonella spp.
and Acinetobacter spp. (21, 22).

It is known that Enterobacter spp. colonizes the newborn immediately after birth
(23, 24). Interestingly, the cases of infection covered by this study did not necessarily
occur during periods of high incidence of colonization in the NICU. Furthermore, colo-
nization persisted after even after biocleaning, as has been reported in other studies
(11, 13). Enterobacter colonization in newborns follows different patterns of coloniza-
tion due to limited maternal contact, delayed enteral feeding, antibiotic treatment,
and exposure to the NICU environment. The hypothesis that Enterobacter infections
classically occur after intestinal colonization and translocation remains moot (11). In
our study, gut colonization never preceded sepsis.

The NICU environment plays an important role as a reservoir for invasive strains causing
neonatal sepsis (25). The multiclonal nature of our Enterobacter outbreak, quickly elucidated
by ERIC-PCR and then by SNPs analysis, supports the hypothesis that cross-contamination
in the NICU environment can be a cause of HAIs (25, 26). Transmission of invasive strains
usually occurs from patient to patient through the hands of health care workers and
through shared devices (27, 28). In this context, premature newborns are especially suscepti-
ble to Enterobacter infection due to their immature immune system, their low birth weight,
and the invasive procedures they undergo (28, 29).

To control the outbreak, the NICU was divided into two sections in January 2017 to
prevent transmission. However, the incidence of sepsis cases, as well as colonization,
continued. The presence of Enterobacter and other pathogens in neonatal incubators is
common and was suspected to be the source of contamination for HAIs in this NICU

FIG 4 Evolution of pairwise distances by SNP analysis in the strains recovered from bacteremia (red circles) and neonatal incubators (green circles). (Left) E.
bugandensis population. (Right) E. xiangfangensis population. Tree branch numbers indicate SNP distances between genomes (circles), and each multilocus
sequence type (MLST) is represented with a different color.
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(30). We initially screened for Enterobacter spp. in the incubators following traditional
procedures, but no Enterobacter strain was isolated (31). In response, the hospital’s bac-
teriology team decided to carry out a new strategy. They collected specimens with the
incubators running, which facilitated bacterial recovery by raising humidity and tempera-
ture to more optimal conditions for microorganism growth. Using this new strategy, it
was possible to find Enterobacter isolates. In addition, several MLSTs were isolated from
multiple sources (blood cultures from patients with bacteremia and incubators), support-
ing the hypothesis that incubators were the principal source of contamination within
the NICU during this outbreak (Fig. 4), as was reported in other works (32, 33). In March
2018, due to the persistence of the outbreak despite the reinforcement of control meas-
ures, all 22 model A incubators, contaminated by Enterobacter were replaced. A signifi-
cant decrease in the number of cases of bloodstream infections due to Enterobacter was
observed.

Selective pressures from antimicrobials are another important factor in the emer-
gence of Enterobacter in the hospital environment. Interestingly, in contrast to other
studies (29, 34), multidrug-resistant (MDR) strains were not identified in our cohort.
Nevertheless, given the link between antimicrobial regimens and colonization of new-
borns with MDR Enterobacter strains, control of antimicrobial therapy during and after
an outbreak should be undertaken to avoid the emergence of potential MDR strains
(32). Measures such as revision of antimicrobial therapy and additional training of the
NICU staff to reduce antimicrobial consumption and to prevent cross-contamination in
the NICU were accordingly implemented by our hospital system. In addition, the preva-
lence of 100% of decreased susceptibility to quaternary ammonium compounds
observed in this study suggests that another method of incubator disinfection such as
steam decontamination should be used to reduce the presence of pathogens in the
NICU (33).

The prevalence and distribution of specific Enterobacter species in the NICU are not
well documented due to frequent misidentification of this pathogen in clinical practice.
In several studies where MALDI-TOF MS was implemented as a tool for bacterial identi-
fication, Enterobacter was reported as E. cloacae or an E. cloacae complex (13, 26, 28). In
our investigation, WGS was used to establish the precise taxonomy of bacterial isolates,
revealing E. xiangfangensis and E. bugandensis to be the most prevalent species in the
outbreak. E. bugandensis, a recently described species, was first identified as responsi-
ble for an NICU outbreak in 2016 (19, 34). In 2018, Pati et al. (35) reported the potential
of E. bugandensis for causing bloodstream infections, as well as its ability to induce the
release of proinflammatory cytokines. These results support the hypothesis that
E. bugandensis is an emerging pathogen in the NICU with a virulence potentially
greater than other species of the genus Enterobacter (35, 36). However, more studies
implementing tools for precise species identification are needed in additional settings
to better understand its epidemiology in the NICU (12).

Although illuminating, our study has some limitations. First and foremost, our study
was conducted in a single medical center, which does not authorize us to generalize
about the epidemiological dynamics of Enterobacter in all NICUs.

Our study shows the importance of long-term broad surveillance of NICUs to iden-
tify the epidemiology of neonatal outbreaks due to the different Enterobacter species
and shows the usefulness of WGS in understanding the transmission and prevention of
hospital-acquired bloodstream infections. Additionally, we find that sampling neonatal
incubators while they are in active use improves recovery of organisms from contami-
nated instruments. These methods should be employed more generally to achieve bet-
ter surveillance of the NICUs for HAIs prevention.

MATERIALS ANDMETHODS
Hospital characteristics, patient population, and data collection. AP-HP is a public health institu-

tion administering 38 teaching hospitals spread throughout Paris, its suburbs, and surrounding counties,
with 21,000 beds (10% of all public hospital beds in France). It serves 12 million inhabitants. Antoine-
Béclère Hospital is a 400-bed teaching AP-HP hospital providing primary care to adults and neonatal
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patients, including a level 3 NICU with 28 intensive care beds. A local infection control team (LICT) over-
sees the prevention and surveillance of HAIs in the hospital. Clinical data at birth included gestational
age, weight, cesarean birth, Clinical Risk Index for Babies (CRIB) scoring and postnatal neutropenia
(,1,000 polynuclear neutrophils/mL). HAIs were defined by positive blood culture $ 48 h from NICU
admission.

Outbreak management. In May 2016, a significant rise in bacteremia due to Enterobacter spp. was
observed in the NICU. According to the accepted definition, an outbreak due to Enterobacter was sus-
pected (37). Surveillance cultures of rectal and cavum swabs were obtained from all admissions to the
NICU. Colonization was defined as a rectal/cavum swab sample that tested positive for Enterobacter. Soon
after the confirmation of the outbreak, neonatal HAI prevention actions were implemented by the LICT.

Environment investigation. In January 2017, the LICT set up an environment sampling campaign
to identify a possible environmental source of the outbreak. Multiple environmental sites were tested,
including shared devices in the ward (gloves, sheets, plaster, ultrasound gel, neonatal incubators, etc.)
using contact plates or swabs. In addition, water samples were collected in different rooms and filtered
to search for Enterobacter spp., and multiple siphons were swabbed. The swabs were inoculated on
Columbia agar with 5.0% sheep blood and Drigalski agar plates (bioMérieux SA, Marcy l’Etoile, France).
The isolated colonies were identified using the reference spectra library of the Bruker Biotyper MALDI-
TOF MS (Bruker Daltonics). After the absence of identification of the contamination source and as the
outbreak was still active, in July 2017, we implemented two different incubator sampling protocols. Both
methodologies included the sampling of the corners and of risky and unattainable areas (seals, ventila-
tor, holes, etc.) just after cleaning. The first method was performed under “off” conditions, and the sec-
ond was performed under “on” conditions, which were 37°C, and 85.0% humidity for 48 h. Both methods
were used on the two incubator models (model A, n = 22; and model B, n = 11) owned by the NICU.

Microbiology diagnostic. Blood cultures were processed for the diagnosis of bacteremia with auto-
mated microbial detection systems BacT/Alert 3D system (bioMérieux SA, Marcy l’Etoile, France). To
determine the evolution of HAIs in neonatal patients and colonized babies, all newborns admitted were
routinely screened for bacterial colonization and received a nasopharynx and rectum examination on
their arrival in the unit and on a weekly basis following the admission. Rectal and cavum swabs collected
from patients and surfaces were inoculated on Drigalski agar (bioMérieux SA, Marcy l’Etoile, France). All
inoculated samples were incubated at 36°C for 48 h. The isolates recovered were routinely identified
using MALDI-TOF MS.

Antimicrobial and antiseptic susceptibility evaluation. MICs of cefotaxime (CTX), cefepime (FEP),
meropenem (MEM), piperacillin-tazobactam (PIP/TZ), ciprofloxacin (CIP), gentamicin (GEN), kanamycin (KN),
and colistin (COL) were determined by the Mueller–Hinton broth microdilution method. Interpretation fol-
lowed the recommendations of the European Committee on Antibiotic Susceptibility Testing (EUCAST) (38).
MICs of chlorhexidine (CHX) and benzalkonium chloride (BZK) were determined by Mueller–Hinton broth
microdilution method in accordance with Clinical and Laboratory Standards Institute guidelines (CLSI, 2019).
Antiseptic decrease susceptibility was acknowledged if the MIC was less or equal to 2 mg/mL in keeping
with previous reports (39, 40). Each antimicrobial and antiseptic susceptibility determination was performed
three times. Escherichia coli ATCC 2592 and E. cloacae ATCC 13047 were used as quality control in each run.

Strains molecular typing by ERIC-PCR. To quickly identify the clonal relatedness of Enterobacter strains
during the outbreak period, an ERIC-PCR was designed. DNA extraction was performed with the Easy Mag kit
(bioMérieux, France), and 2 mL was used as the DNA templates. Subsequently, the amplification was per-
formed using ERIC2 primers: 59-AAGTAAGTGACTGGGGTGAGCG-39. The amplification reaction volume was
25 mL under the following conditions: an initial denaturation for 10 min at 94°C, followed by 40 cycles with
amplification at 94°C for 30 s, 55°C for 30 s for alignment, elongation stage at 72°C for 1 min, and a final stage
of 10 min at 72°C. The amplified products were resolved through electrophoresis and analyzed on 1.5% aga-
rose with GelRed revelator (Biotium, USA). Patterns of different strains were compared by visual inspection, as
described by Coudron et al. (41). The patterns were interpreted as identical if an identical number of bands of
the same size was found.

Whole-genome sequencing and analysis. Sequencing libraries were prepared using the Nextera
XT DNA sample preparation kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instruc-
tions. We multiplexed and sequenced samples on an Illumina NextSeq500. We obtained de novo assem-
bly using SPAdes assembler version 3. 10. 1. The bacterial genome was annotated using the Rapid
Annotation Subsystem Technology (RAST) online server. Antibiotic resistance genes were further investi-
gated using the Resistance Gene Identifier (RGI) of the Comprehensive Antibiotic Resistance Database
(CARD) and ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/). Assignment of isolates to species was
ascertained by BLAST and ANIB analysis using pyANI (42). The core genome was determined as 1,106
genes. For the investigation of molecular epidemiology, a core genome SNP analysis was performed.
Reads were trimmed using fastq-mfc from ea-utils-1.1.2.779 (43), and de novo genome assembly of iso-
lates was performed using ABySS 2.0.2 (44). A core genome alignment was created from these assem-
blies using recombination-adjusted method (roary version 3.13.0) (45) with -s and -e flags. FastTree
v2.1.8 was then used to construct a phylogenomic tree (46). snp-dists v0.8.2 (47) was used to construct a
pairwise distance matrix for distinguishing SNPS between the isolates. Using thresholds previously
established for Enterobacterales, we defined clonality as#10 pairwise SNPs in the core genome (48).

Ethics approval. The study was approved by the ethical committee of the French Society of
Intensive Care (CE SRLF 19–40).

Data availability. The genome sequencing data are publicly available at the NCBI GenBank under
BioProject accession number PRJNA770343.
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