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Abstract

Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome
reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion
sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8%
of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector
containing sacB, we estimated that transposition frequency oscillated between 2.661025 and 1.161026, depending on the
clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar
for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts,
indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions
contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any
transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments
of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended
transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size
from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete
plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations
rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by
generating homologous regions of recombination. A further miniature sequence previously found to affect host range
specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions
entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.
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Introduction

Insertion sequences (IS) are probably the simplest autonomous

mobile DNA elements and generally consist of a transposase

coding gene, responsible for their transposition, which is bound by

terminal inverted repeats [1,2]. ISs can generate significant

variability in bacteria and contribute to their evolution [3], in

part because they are usually present in more than one copy per

genome and thus represent mobile regions of recombination.

Their mobility, together with their capacity to mobilize unrelated

DNA in their proximity, can lead to a panoply of mutations and

rearrangements in the host bacteria, which include insertions,

deletions, duplications, translocations, cointegrations, inversions

and gene activation [4]. From these activities, it easily follows that

they have an enormous potential to alter the genome and influence

bacterial evolution. They can also shuffle DNA among different

genetic replicons such as chromosomes and plasmids sustaining a

gene trading activity that widely contributes to the horizontal

spread of genetic information [e.g. 5,6]. ISs are widespread among

bacteria and archaea, present in nearly all of the sequenced

genomes and often in high numbers [1]. There is also a large

variety of ISs, with more than 2500 types included in the IS

repository database and grouped in 25 families [7]. Additional

types of small, non-autonomous mobile sequences are the REPINs

(repetitive extragenic palindromic (REP) doublets forming hair-

pins) [8] and MITEs (miniature inverted-repeat transposable

elements) [1]. MITEs are generally less than 300 bp long and

usually contain terminal inverted repeat sequences; MITEs are

thought to derive from ISs by internal deletions and to be

mobilized in trans by the transposase of their parental IS [1,9]. The

impact of MITE activity in the prokaryotic genome is potentially

very high and their small size allows them to contribute to

phenotypic variation in many different and creative ways, such as

generating new gene alleles and functions, or new regulatory

signals for preexisting genes [9].

Pseudomonas syringae is a plant pathogenic gamma proteobacter-

ium that is being extensively used as a model to study the

molecular bases of plant-microbe interactions and the evolution of
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pathogenicity [10]. In this respect, P. syringae is a major study

subject because of the large pathogenic variation within the

species. Indeed, P. syringae can be divided into at least 60 groups, or

pathovars, that are characterized by their host range [11]. While

the different pathovars show a highly conserved core genome,

there is a large variation in their virulence gene complement

[12,13]. The pathogenicity of P. syringae depends on the activity of

a type III secretion system that delivers specialized proteins,

known as effectors, into the plant cell, where they contribute to the

suppression of the plant defense responses and the establishment of

an infection [10]. Occasionally, effectors are recognized by the

plant machinery, leading to the activation of a general defense

response, the hypersensitive response, which ultimately leads to a

complete plant resistance phenotype. Therefore, effectors might

have a dual effect, either promoting pathogenicity and virulence or

restricting host range in specific plants. Remarkably, effectors and

other virulence genes are commonly bordered by ISs and other

types of repeated elements in diverse strains of P. syringae

[14,15,16], which would likely favor their frequent horizontal

transfer and exchange. This is supported by the fact that mobile

genetic elements are often associated with regions that are not

syntenic among different P. syringae genomes [17,18,19]. Sequenc-

ing of native plasmids and genomes has revealed a diverse

collection of ISs in pathovars of P. syringae [17,19,20,21,22], with

partial or complete sequences of 32 newly described P. syringae ISs

included in the IS Finder repository. However, it is not possible to

estimate the actual diversity due to the lack of a complete IS

inventory and the use of different names for the same element.

Additionally, there is a large variation in the types and frequency

of ISs in the only three complete genomes currently available, of P.

syringae pv. tomato DC3000 [19], P. syringae pv. phaseolicola 1448A

[17] and P. syringae pv. syringae B728a [21]. Nevertheless, the

ability to transpose within P. syringae has been demonstrated for

only a few elements, including IS51 (syn. ISPsy21) and IS52 [23],

IS801 [24], ISPsy2 and ISPsy3 [25], and the hopX1 effector

transposon [26].

P. syringae pv. phaseolicola is the causal agent of halo blight of

beans (Phaseolus vulgaris L.) and is used as a model for the study of

the molecular basis of pathogenicity and virulence [27]. We are

interested in the characterization of transposable elements in this

bacterium in order to explore their impact on the evolution of

virulence and in the frequent genome changes that were reported

to occur during the interaction with plant hosts [28]. Additionally,

and due to the current lack of other suitable markers, we want to

expand the use of repeated DNA for typing populations [29,30].

Repeated DNA has been directly involved in shaping host range in

P. syringae pv. phaseolicola by the inactivation or alteration of

effector genes [31,32]. A chimeric transposable element promoted

large deletions eliminating effector gene avrPphF (syn. hopF1),

allowing the emergence of populations that overcame the

resistance conferred by gene R1, which was widely used for the

control of halo blight [32]. Likewise, the generation of new alleles

of effector gene avrPphE (syn. hopX1) after the insertion of a small

repeated sequence [31], which has been determined in this work to

be a MITE (see below), lead to the emergence of new pathogenic

races. Genome rearrangements have also been linked to the

activity of repeated DNA. Originally isolated from a P. syringae pv.

phaseolicola strain, IS801 was shown to participate in the

integration and excision of a native plasmid mediated by

recombination between copies of the IS, which resulted in a

dynamic exchange of DNA between the plasmid and the

chromosome [24,33]. IS801 belongs to the IS91 family of rolling

circle transposable elements, which seem to be preferentially

involved in the dissemination of pathogenicity-related genes

[34,35,36]. Nevertheless, there is still limited information on the

content and functionality of transposable elements in this

pathogen. Five percent of the ORFs in the closed genome of P.

syringae pv. phaseolicola 1448A were identified as mobile genetic

elements [17], but this figure includes integrases and phage-related

DNA sequences, making it difficult to estimate the relevance of

transposable elements. Although an inventory of transposable

elements in strain 1448A is not available, the annotation of the

genome (accession no. CP000058) includes the coding regions for

transposases, but not other non-coding sequences related to

transposable elements, limiting the utility of this information.

To characterize and quantify the impact of transposable

elements on the life cycle of P. syringae, we analyzed and

reannotated the genome of the model bacterium P. syringae pv.

phaseolicola 1448A. We also used an IS trapping vector to identify

functionally active elements and assess their impact in the genome

flexibility. This study provides a foundation for a larger scale

analysis of transposable elements in other P. syringae genomes.

Results

P. syringae pv. phaseolicola 1448A contains at least
seventeen insertion sequences and two MITEs

A comparison of the genome of P. syringae pv. phaseolicola

1448A with the databases indicates that it harbors at least

seventeen different types of insertion sequences and two MITEs

(Table 1 and Annotation files S1, S2 and S3). The transposases of

these insertion sequences have all been previously annotated in the

genome of strain 1448A [17], and here we contributed the

definition and annotation of the complete elements, as well as the

identification of 21 truncated copies and several MITEs that were

not annotated previously.

The copy number of transposable elements was highly variable,

from one to 48 complete copies, and many of them were

fragmented, suggesting the occurrence of DNA reorganizations. In

total, the mobile DNA amounted to at least 199,018 nt,

representing 3.3% of the nearly 6 Mb genome (Table 2); however,

the density of ISs varied for the chromosome (2.8%), the 132 kb

plasmid (25.8%), and the 52 kb plasmid (2.7%). Coding sequences

(CDSs) for transposases were reported to clearly disrupt 8 reading

frames in the 1448A genome (Table S1) [17]. Our annotation of

the complete mobile elements reveals that they interrupt at least

five other CDSs and form chimeras with at least 40 CDSs (Table

S1). The majority of these CDSs would likely have an altered

functionality or not be functional at all, as occurs with the

interrupted CDSs and 11 chimeric CDSs whose 59 end correspond

to mobile DNA sequences.

Nine copies of IS801 (copies IS801.T1 to T6 and T10 to T12)

and three copies of ISPsy19 (ISPsy19.T6 to T8), were of wild type

length but contained a premature stop in the transposase gene.

Since the IS801 transposase can efficiently act in trans [36], it is

conceivable that the interrupted derivatives of IS801 could also

transpose in the cell. Element ISPsy17.T5 is also full-length but

interrupted by a tandem insertion of ISPsy19 and of a new mobile

element identified in this work and designated MITEPsy1 (see

below). Additionally, element ISPsy17.38 contains an independent

insertion of MITEPsy1 14 nt upstream of the transposase start

codon, although this would predictably not affect transposition of

the element because it does not affect the terminal repeats or the

CDS.

There is a very limited description of insertion sequences

ISPsy17, ISPsy19 and ISPsy24, for which nearly only the

transposase genes were identified [17,32]. Therefore, to estimate

the size of the complete element, we aligned the coding sequences

Miniature Transposable Sequences in P. syringae
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of the corresponding transposases found in the genome of 1448A

plus up to 1 kb on either side. The longest consensus sequence that

contained terminal repeats, but not any duplicated sequence

resulting from insertion, was considered to be that of the full-

length insertion sequence.

For ISPsy17, we determined a consensus sequence of 1374 nt

that was bordered by 28 nt imperfect repeats (Tables 1 and 3).

The right border defined in this way coincided with that previously

defined from deletion variants generated by a chimeric element

derived from ISPsy17 [32]. The element includes a 1260 nt ORF

that could code for a putative 419 aa transposase, which was found

in 48 intact copies and 62 in total, in the genome of P. syringae pv.

phaseolicola 1448A (Table 1). The predicted start codon of the

transposase is located only 53 nt downstream of the 59 end of the

element, which may indicate that transcription of the transposase

gene could be exclusively under the control of promoters upstream

of the insertion point (i.e. promoters outside of the IS). We

analyzed a comparison of the 1448A genome with those of P.

syringae pv. syringae B728a and P. syringae pv. tomato DC3000,

which do not harbor ISPsy17. Only 13 of the 47 chromosomal

insertions of ISPsy17 (insertions 1, 2, 4, 8, 10, 12, 16, 19, 27, 37–

39, 45) in 1448A were located in DNA regions that were otherwise

complete in at least one of the two other bacteria. These insertions,

that we will call here ‘‘genuine insertions’’, were surrounded in 10

out of 13 cases by a perfect target duplication of 6 or 8 nt. In all,

twenty four insertions were surrounded by an 8 nt target

duplication, whereas others were surrounded by either a 6 nt

duplication, an imperfect 4 to 5 nt direct repeat or by no

discernible target repeat (Table 4). Although in all cases the

sequence was apparently unique for each of the target duplica-

tions, we evaluated the possible occurrence of a target preference

Table 1. Type and number of mobile elements found in the genome of P. syringae pv. phaseolicola 1448Aa.

Number of insertions

Mobile elementb Synonym Family Size (nt) No. of CDSs
Inverted
repeats Chromosome pA pB

IS51 ISPsy21 IS3 1312 2 26 2 1 (1) -

IS53 ISPsy20 IS21 2572 2 27 2 (3) - -

IS801 IS91 1512 1 no 3 (6) 1 (10) -

ISPsy2 IS5 1194 1 12 5 (6) (2) -

ISPsy3 IS91 1507 1 no - (3) -

ISPsy4 ISPsy23 IS21 1962 2 23 (3) (1) -

ISPsy16 IS110 1461 1 12 2 (1) 3 (3) -

ISPsy17 ISPsy18 IS256 1374 1 28 47 (10) (4) 1

ISPsy19 IS5 1178 1 17 28 (10) 3 -

ISPsy22 IS5 unk unk unk (2) - -

ISPsy24 IS3 1235 2 26 2 (4) (1) -

ISPsy25 IS630 $1177 1 19 1(1) - -

ISPsy26 ISPsy29 IS3 $1231 2 28 - 1 (1) -

unnamedc unk unk unk unk (1) - -

unnamedd Tn3 unk unk unk (1) (2) -

unnamede IS66 unk unk unk (1) - -

unnamedf IS66 unk unk unk (1) - -

MITEPsy1 IS5? 100 0 18 5 1 -

MITEPsy2 unk 228 0 26 1 1 -

aOnly repeats larger than 200 bp are included in the Table, except in the case of the MITEPsy1 element. No. of CDSs indicates the number of coding sequences found in
the mobile element; inverted repeats indicate the number of nucleotides in each terminal inverted repeat. Numbers in parentheses indicate degenerate elements. unk,
unknown; -, indicates the element was not detected.

bThe following insertion elements, previously found in P. syringae, were not present in 1448A: ISPs1, ISPssy, ISPsy1, ISPsy5 ISPsy6, ISPsy7, ISPsy8, ISPsy9, ISPsy10, ISPsy11,
ISPsy12, ISPsy13, ISPsy14, ISPsy15, ISPsy27, ISPsy28, ISPsy30, IS52, and IS1240. The size of ISPsy25 and ISPsy26 was estimated to be at least the size of the transposase plus
the surrounding DNA that included the typical bordering inverted repeats.

cCorrespond to loci PSPPH_0182-PSPPH_0183. Loci PSPPH_0182 belongs to family Pfam PF05621, of NTP-binding proteins involved in transposition. PSPPH_0183 is
reorganized, but contains a C-terminal Mu transposase domain (PF09299) found in various prokaryotic integrases and transposases.

dCorrespond to loci PSPPH_3494, PSPPHA0085, and PSPPHA0131.
eCorresponds to locus PSPPH_3497.
fCorresponds to locus PSPPH_4298.
doi:10.1371/journal.pone.0025773.t001

Table 2. Amount of DNA corresponding to putative insertion
sequences in the genome of P. syringae pv. phaseolicola
1448A.

Size (kb)
Insertion
sequence DNA (kb) % of ISs

Chromosome 5928 163.6 2.8

p1448A-A 132 34.0 25.8

p1448A-B 52 1.4 2.7

Total 6112 199.0 3.3

doi:10.1371/journal.pone.0025773.t002
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for ISPsy17. For this, we constructed alignments of all the

insertions with a perfect 8 nt duplication, because members of

the IS256 family, such as ISPsy17, generate an 8 or 9 bp direct

target repeat [2]. From these alignments, we could not discern any

obvious consensus sequence that could serve as the insertion

target, except that there was always a C or a T 24 nt downstream

of the 39 end of ISPsy17, suggesting that this element might insert

randomly.

ISPsy19 was defined as a 1178 nt element containing a perfect

17 nt inverted repeat (Tables 1 and 3) and coding for a putative

367 aa transposase. There were 31 intact copies and it was often

associated with other mobile elements, with 9 complete or

degenerate insertions adjacent to ISPsy2 and three adjacent to

MITEPsy1. Six chromosomal insertions of ISPsy19 (insertions 7,

10, 14, 18, 27, and T7) could be considered genuine insertions in a

genome comparison with strains B728a and DC3000. Fifteen of

the ISPsy19 copies were surrounded by a 3 nt perfect duplication

of the target DNA; alignment of the DNA surrounding these

elements suggests that the insertion target for ISPsy19 is the

sequence CHHD.

ISPsy24 is a 1235 nt element surrounded by an imperfect 26 nt

repeat (Table 3) and coding for two putative proteins of 102 and

273 aa, of which the first belongs to the IS3 family of tranposases

(InterPro IPR002514) whereas the second contains a ribonuclease

H-like domain (InterPro IPR012337). ISPsy24 is present only in

two intact copies, and only one of them generated a 4 nt target

repeat; therefore, it is not possible to deduce if this element has any

target preference or if it leads to target duplication.

A 104 nt sequence with terminal inverted repeats was

previously found inserted into effector gene avrPphE (syn. hopX1)

in race 8 strains of P. syringae pv. phaseolicola, leading to a change

in host range [31]. We found that this sequence is present in

several copies in the 1448A genome (Table 1) and was able to

transpose (see below); we therefore considered it to be a functional

MITE and designated it as MITEPsy1. Comparison of the

MITEPsy1 insertions in 1448A and in other P. syringae pv.

phaseolicola strains (accession no. AB023077 and AY147025),

plus the analysis of the insertions entrapped with pGEN500

(Table 5), indicate that this element is 100 nt long, has 18 nt

terminal inverted repeats and that it inserts after the sequence

CTAG or YTAA, which is duplicated upon insertion (Table 3).

The high similarity between their repeated sequences suggests that

MITEPsy1 might have generated from ISPsy2 (Figure 1). BlastN

comparisons with microbial genomes indicated that well conserved

(.97% identity) copies of MITEPsy1 are present only in P. syringae

pvs aesculi 0893-23 and NCPPB 3681, glycinea B076, lachrymans

M301315, mori 301020 and savastanoi NCPPB 3335, all

belonging to genomospecies 2. Additional sequences homologous

to MITEPsy1 were only found in the genomes of P. syringae pvs

actinidiae M302091 (91 nt, 77% identity) and tomato DC3000

(52 nt, 91% identity) (Figure S1), indicating a somewhat restricted

distribution of this element in the P. syringae complex. Additionally,

the genomes of P. stutzeri ATCC 17588 and of the denitrifying

and alkane degrading Gammaproteobacterium HdN1 (accession

no. FP929140) contain an identical 99 nt sequence that showed

a global 71% identity with MITEPsy1 (Figure S1). A further Blast

Table 3. Characteristics of selected mobile elements in P. syringae pv. phaseolicola 1448A.

Insertion element Terminal inverted repeatsa Sequence duplicationb Target sequenceb

ISPsy17 GAGACTGTCAGAAATTTTGTGTTCGGGC

|.||.|.||||…||||||||||||||

GGGAGTATCAGTTTTTTTGTGTTCGGGC

Probably 8 nt Random

ISPsy19 GAGGGTGTAGACAAAAT

|||||||||||||||||

GAGGGTGTAGACAAAAT

3 nt CHHD

ISPsy24 TGTAGTGGTCTAATGAAACCGGACAC

||||||||||.|.|||..||||||||

TGTAGTGGTCAACTGATCCCGGACAC

4 nt ? unk

MITEPsy1 GGAAGGTCTGAAAAAGCC

|.|…||||||||||||

GTATCCTCTGAAAAAGCC

4 nt CTAG or YTAA

MITEPsy2 GGGGGTGTAAGCCAGAACCGCCGAAAATTCCGTC

||||.||||||||.||||||||||||.|||||||

GGGGTTGTAAGCCGGAACCGCCGAAATTTCCGTC

unk unk

aTerminal inverted repeats are shown 59-39, with the left repeat in the top and the right repeat at the bottom.
bunk, unknown.
doi:10.1371/journal.pone.0025773.t003

Table 4. Nucleotide direct repeats found bordering insertions
of ISPsy17 in P. syringae pv. phaseolicola 1448Aa.

Type of insertion

Direct repeat Genuine Other

Perfect 8 nt 7 13

Imperfect 8 ntb 3 1

7 nt - 3

6 nt 3 1

Degeneratec - 5

None - 12

aOnly those insertions containing a complete copy of ISPsy17 were analyzed.
Genuine insertions are those that disrupt a sequence in 1448A that in genome
comparisons is continuous in the genomes of P. syringae pv. syringae B728a or
P. syringae pv. tomato DC3000.

bThese insertions consist of an 8 nt direct repeat with 1–2 mismatches or a 1 nt
insertion.

cDegenerate indicates direct repeats of 4–5 nt, which might be surrounded by
mismatches.

doi:10.1371/journal.pone.0025773.t004
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PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e25773



search with the homolog from P. stutzeri found similar sequences in

plasmids or chromosomes of diverse Pseudomonas species, Marino-

bacter aquaeolei, Klebsiella pneumoniae and plasmid pRSB105 from an

uncultured bacterium, suggesting that sequences similar to

MITEPsy1 might be widespread among bacteria.

A putative 228 nt MITE, designated MITEPsy2, is present in

the native plasmids of P. syringae pv. savastanoi NCPPB 3335 [37].

This element contains terminal repeats highly similar to those of

ISPsy30, an insertion sequence of the Tn3 family also present in

strain NCPPB 3335 and in several other P. syringae strains

(Figure 1). MITEPsy2 is also present in two copies in the 1448A

genome (Table 1), and shows 26 nt imperfect inverted repeats

(Table 3). Homologs of this MITE are widespread in the P. syringae

group, although it shows high sequence variability with identity

levels in pair comparisons as low as 78%.

Importantly, neither MITEPsy1 nor MITEPsy2 were identified

using the programs MUST [38] and MITE-Hunter [Han,

personal communication; 39], specifically designed for the

detection of MITEs, indicating the need to design enhanced

prediction programs.

The transposition frequency is similar in different
growing conditions

Our analysis suggested that there have been unique, indepen-

dent transposition events within 1448A. To test the hypothesis that

some of these transposons are transposing within the genome, we

estimated transposition frequency of mobile DNA in P. syringae pv.

phaseolicola using the entrapment vector pGEN500 [40]. This

plasmid contains gene sacB from Bacillus subtilis, which confers

sucrose-dependent lethality to many Gram-negative bacteria, thus

providing a positive selection for insertions of mobile elements into

sacB [41]. We examined transposition using individual transfor-

mants of P. syringae pv. phaseolicola 1448A as well as heteroge-

neous bacterial populations originated from single transformation

experiments, which we designated as ‘‘pool of transformants’’.

The overall transposition frequency of different pools

of transformants or clones of P. syringae pv. phaseolicola

1448A(pGEN500), originating from independent electroporation

events, ranged from 2.661025 to 1.161026, depending on the

transformant (Table 5). Similar frequencies were observed after six

consecutive rounds of growth in liquid KMB plus tetracycline (not

shown), suggesting that sucR clones did not accumulate in the

bacterial populations. We found comparable transposition fre-

quencies using P. syringae pv. phaseolicola strain 1449B (race 7; not

shown), suggesting that the data obtained with strain 1448A might

be representative of this pathovar. Since there is a similar

proportion of the different types of insertion among the different

transformants analyzed (Table 5), this variation must be due to

phenomena that have a general effect. An obvious explanation is

that, for each transformant, there is a differential level of toxicity of

the entrapment vector in the absence of sucrose. This would

predictably cause the premature death of cells, even though they

are not exposed to sucrose, and would result in an artificial

increase of the apparent rate of transposition. Indeed, in some

clones we observed a lack of correspondence between the optical

density of the culture and the expected number of colony forming

units (not shown). If this would be the case, then the use of

entrapment vectors based on sacB would not allow for the

estimation of accurate absolute transposition frequencies, at least

in P. syringae, although it could be used for comparative analyses.

Transposition activity has been reported to be influenced by the

growth environment [42], and particularly by diverse stressful

Figure 1. Conservation of the terminal repeats of MITEPsy1 and
MITEPsy2. A black background indicates conservation of each
nucleotide in at least three quarters of the sequences. The ends of
the six copies of MITEPsy1 in strain 1448A are identical; for MITEPsy2,
the ends of the chromosomal copy (MITEPsy2.1) and of the copy in
plasmid p1448A-A (MITEPsy2.2) are shown.
doi:10.1371/journal.pone.0025773.g001

Table 5. Type and number of mobile elements entrapped in three populations of transformants (PT) and four individual
transformants (T1 to T4) of P. syringae pv. phaseolicola 1448A containing the entrapment vector pGEN500.

Number of plasmids carrying a mobile element

Mobile element Size (kb) PT1 PT2 PT3 T1 T2 T3 T4 Total
% of sucR

plasmids
% of
insertionsa

Transposition
frequency (61026)

26.063.0 3.761.2 3.860.6 13.062.4 1.160.5 9.860.8 9.660.8

IS801 .1.5 1 0 0 1 0 0 1 3 0.7 0.7

1.5 69 62 56 25 30 31 27 300 65.2 71.2

0.679 19 13 25 6 4 1 3 71 15.4 16.9

0.360 0 0 0 0 1 0 1 2 0.4 0.5

0.229 6 15 8 2 0 3 1 35 7.6 8.3

MITEPsy1 0.1 1 0 4 1 1 1 2 10 2.2 2.4

None - 4 9 8 5 4 4 5 39 8.5

Total no. 100 99 101 40 40 40 40 460

aAverage percentage of each insertion type over the total number of insertions on sacB.
doi:10.1371/journal.pone.0025773.t005
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conditions [40,43,44], although the effect of host and growth

factors on transposition are considered to be specific for each

mobile element [2,42]. We therefore evaluated the transposition

frequency in bacteria subjected to both favorable and stressful

conditions using five independent transformants of strain

1448A(pGEN500). For all the conditions tested, there were no

significant differences among the frequencies estimated indepen-

dently for each of the transformants and, in consequence, further

analyses were done using the combined data of all the

transformants for each condition. The average transformation

frequency was not significantly different for any of the conditions

tested, which included bacteria grown in liquid rich medium

(KMB; transposition frequency 7.7266.8561026) or minimal

medium (MG; 6.5665.7361026), and bacteria recovered from

artificially inoculated bean cv. Tendergreen (compatible host;

6.7763.5161026) and tobacco leaves (incompatible host;

3.8762.3161026). These results suggest that growth conditions

do not have a significant influence on the transposition frequency

of mobile DNA in P. syringae pv. phaseolicola 1448A.

Only two mobile elements were identified in a functional
assay using an entrapment vector

We were able to use the strains recovered from the previous

experiments to identify the mobile DNA disrupting sacB in

pGEN500. A preliminary sequence analysis of over 40 clones

indicated that pGEN500 contained insertions of IS801 in nearly

all the sucR colonies. Therefore, native plasmid profiles from 460

sucR colonies obtained from three independent pools of transfor-

mants and four individual transformants were analyzed by

Southern hybridization using a specific IS801 probe. Only

10.7% of the plasmids in sucR clones did not hybridize with

IS801 (Table 5). Sequencing of the sacB gene in these strains

revealed that they either contained insertions of MITEPsy1 (2.2%

of the plasmids) or had deletions or point mutations in sacB (8.5%).

All the insertions of MITEPsy1 produced, as expected, a 4 nt

duplication of the target sequence (Table 3).

The remaining pGEN500 derivatives, representing 89.3%,

contained DNA cross-hybridizing to the IS801 probe (Table 5),

although the size of the insertions was variable. Only 65% of these

plasmids contained inserts of a size compatible with the full-length

IS801 (1512 nt), whereas the remaining plasmids contained inserts

derived from IS801 of 229 nt, 360 nt, 679 nt, and over 1.5 Kb

(Figure 2), as shown by DNA sequencing. The 229, 360 and

679 nt derivatives, representing 26.3% of the total number of

IS801 insertions, are the result of a one-ended transposition and

consist of continuous fragments flanked by the right terminal

repeat and by a tetranucleotide with homology to the wild type left

end of IS801 (Figure 2). The larger fragments consisted of a

complete copy of IS801 that had recruited 290, 1017 or 1431 nt of

the DNA immediately upstream of the element (Figure 2), ending

in a tetranucleotide identical to the 59 end of IS801. The mobilized

DNA and the preceding IS801 copy are duplicated with 100%

identity in the genome [PSPPH_0007 (IS801) and PSPPH_0008

(oxidoreductase); PSPPH_0016 (IS801) and PSPPH_0017 (oxido-

reductase)], and therefore we were unable to discern if they

correspond to the first (PSPPH_0007 and PSPPH_0008) or to the

second copy (PSPPH_0016 and PSPPH_0017).

Partial fragments of IS801 are very often associated to virulence

genes [14,34], so we questioned if they could have originated from

one-ended transposition events. In a Blast comparison, IS801 was

present in only a portion of the closed genomes and plasmids of P.

syringae strains, where we found 17 truncated fragments (Table 6),

of which 11 were inserted less than 5 kb away from a putative

virulence gene. Only five of these 17 fragments contained an intact

right repeat and lacked the left repeat. However, only two of the

five fragments could be considered as the result of a one-ended

transposition because their 59 end was homologous to the left

repeat of IS801; both fragments were identical to the 229 nt

functional fragment identified in this work. The analysis of partial

sequences from diverse P. syringae strains previously described to

contain IS801 fragments [34] also showed that none of them had

the typical characteristics of miniature fragments originating from

one-ended transposition (containing an intact right end repeat and

having as a left end a tetranucleotide with homology to the wild

type left end of IS801). This suggests that the large majority of

IS801 fragments in the P. syringae genomes, and associated to

virulence genes, is probably the result of DNA reorganizations.

Transpositions do not occur in bursts
Transposition could occur in the cell either as a single event or

as multiple simultaneous events. To investigate this in P. syringae,

we examined the hybridization pattern of five clones of P. syringae

pv. phaseolicola 1448A(pGEN500), each containing a different

type of insertion in sacB (see Table 5), using insertion sequences

IS53 (syn. ISPsy20), IS801, ISPsy2, and ISPsy24 as probes. All the

clones showed identical patterns of hybridization with all the

probes, with the exception of the bands corresponding to the

insertion in the entrapment plasmid, suggesting that a single

insertion has occurred in each of them (Figure S2 and data not

shown).

Discussion

The very large variability in the occurrence of ISs in prokaryotic

genomes cannot be easily explained and, unexpectedly, the

analysis of over 200 genomes indicated that the variability is

apparently not correlated with pathogenicity or rates of horizontal

gene transfer, with genome size being the only significant predictor

of abundance and diversity [45]. The genome of P. syringae pv.

phaseolicola 1448A contains 102 complete IS elements, which is

nearly twice the number that would be expected given its genome

size [45]. In this case, it is likely that the complement of virulence

genes present in strain 1448A is partly responsible for this

Figure 2. Structure and terminal ends in IS801 and miniature
derivatives found to actively transpose in P. syringae pv.
phaseolicola 1448A. Grey boxes indicate the wild type IS801
(1512 nt) or miniature sequences derived from the complete element,
with their size indicated inside the box; all of them share the same right
terminus and continue without gaps as indicated by their relative
position. The sequences indicate the tetranucleotides marking their left
and right ends. The broken white box indicates the three different
fragments of gene PSPPH_008/PSPPH_0017 that were mobilized by
IS801 in three different experiments, with an indication of their sizes.
Drawings are to scale.
doi:10.1371/journal.pone.0025773.g002
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abundance, given the close association between virulence genes

and mobile elements in P. syringae, and in particular with IS801

[14,34,46].

There is a remarkable asymmetry in the distribution of mobile

elements in P. syringae pv. phaseolicola 1448A, representing over a

quarter of the large 132 kb plasmid (p1448A-A) but only under

3% of the 52 kb small plasmid (p1448A-B). Since the percentage

of IS DNA in plasmids larger than 20 kb averages 5–15%,

reaching 20% in some cases [1], these figures are also outside of

the range normally found in other plasmids of equivalent size. This

asymmetry is also found in the native plasmids of P. syringae pv.

savastanoi NCPPB 3335, where less than 4% of the 45 kb plasmid

pPsv48B corresponds to mobile DNA, whereas they represent

nearly a quarter and a third of the size for the 78 and the 42 kb

plasmids, respectively [37]. We do not yet have an explanation for

this asymmetry, which strongly disagrees with the observation that

genome size could predict IS abundance [45], and that cannot be

easily justified based on the gene content of these plasmids. Both

p1448A-B and pPsv48B appear to mostly contain genes for their

survival with a very low number of potential virulence genes

[17,37]. By contrast, p1448A-A carries several virulence genes and

a pathogenicity island that is essential to produce disease in the

plant host, bean [16,17]. Since genes are generally inactivated

upon IS insertion, we may expect a higher number of insertions of

mobile elements in the predictably dispensable plasmid p1448A-B,

rather than in the essential virulence plasmid, p1448A-A.

Nevertheless, p1448A-B contains a whole type IV secretion

system, spanning around 25 kb, which is also present in pPsv48B

and that might be implicated in plasmid survival or virulence

[47,48]. It is therefore possible that evolution selects against

insertions in p1448A-B and pPsv48B, at least in part, because they

could compromise the integrity of the type IV system.

Using an entrapment vector in a functional assay, we identified

the mobilization of only IS801 and MITEPsy1, in spite that P.

syringae pv. phaseolicola 1448A harbors at least nineteen putative

types of mobile elements. The number of intact copies of these two

elements in the genome of strain 1448A is relative low, 4 and 6

copies, respectively, compared to the 48 copies of ISPsy17 or the 31

of ISPsy19, suggesting that insertions of these elements do not

accumulate to high numbers. In particular, the number of insertions

of IS801 do not appear to be very different in comparisons between

and within the two genetic lineages previously defined in P. syringae

pv. phaseolicola [29]. Remarkably, we observed the transposition of

miniature sequences corresponding to partial fragments of IS801

(see below) that, together with MITEPsy1 represented around 28%

of the total mobilized elements in strain 1448A. We did not observe

the transposition of any of the other mobile elements found in strain

1448A among the ca. 500 clones analyzed, indicating that they

might transpose at a frequency lower than 1028, that they have

become fixed in the chromosome or that other conditions stimulate

excision. Given their apparent stability, these mobile elements

might therefore be suitable as epidemiological markers. The

transposition frequency was stable for each clone in all growing

conditions examined, including repeated transfers in culture,

suggesting that the frequency of transposition in P. syringae pv.

phaseolicola is not influenced by the type of interaction with the

plant host or by the growing medium. Nevertheless, we cannot rule

out that the different growing conditions are affecting the relative

proportion of each type of mobile element that are transposing, or

their insertion specificity.

Members of the IS91 family, including IS801, are evolutionary

close to diverse plasmids and single-stranded phages, such as

WX174 and, unlike other mobile elements, are thought to transpose

by a rolling circle replicative mechanism, producing permanent

insertions and efficiently transposing with a transposase provided in

trans [34,35,36]. IS91 lacks proper terminal inverted repeats and its

transposition is thus similar to a round of plasmid replication.

Transposition of IS91 originates at the right terminal repeat, which

is called ori91 and is essential for this process [49], and ends in the

left repeat, called ter91, or in any other sequences with homology

with ter91, resulting in one-ended transposition [34,49]. IS801 was

suspected to also undergo one-ended transposition [36], and we

demonstrate here that it occurs with a very high frequency in its

natural bacterial host, representing more than 26% of the total

Table 6. Type of truncated fragments derived from IS801 found in closed genomes of Pseudomonas syringae.a

Number of each type of IS801 truncation

Genome Molecule accession no. 59 Internal 39 Both ends Total no.
Possible mobile
fragmentb

P. syringae pv. phaseolicola
1448A

Chromosome CP000058 - - 1 - 1 -

p1448A-A CP000059 3 1 2 1 7 2 (229 nt)

P. syringae pv. maculicola
ES4326

pPMA4326B AY603980 - 2 1 - 3 -

P. syringae pv. tomato
DC3000c

Chromosome AE016853 - 1 - 1 2 -

pDC3000A AE016855 1 - - - 1 -

pDC3000B AE016854 1 1 1 - 3 -

aOnly truncated fragments larger than 100 nt were taken into account, but not the complete element with premature stops; (-) indicates that no fragments were found
in the category. Plasmid pFKN (accession no. AF359557) contains a copy of IS801, but not truncated forms. The following sequences (accession no.) did not contain any
IS801 sequences: p1448A-B (CP000060), pPMA4326A (AY603979), pPMA4326C (AY603982), pPMA4326D (AY603981), pPMA4326E (AY603983), pPSR1 (AY342395), and
P. syringae pv. syringae B728a (CP000075).

bWe assumed that, as it happens with IS91 [34], the right end (39 end) of IS801 is essential for transposition; therefore, partial fragments of IS801 were considered to be
able to transpose when: (1) they contained an intact right end, and (2) the fragment started with any of the tetranucleotides described as an IS801 insertion target
(GAAC, GGAC, CAAG and CGAC) [36]; these partial fragments could be found only among those with a 59 end deletion because fragments with internal deletions were
specifically excluded.

cIS801 has not been described in strain DC3000 [19], and the fragments found in this strain probably correspond to insertion sequence ISPsy3, a close relative of IS801
that also belongs to the IS91 family.

doi:10.1371/journal.pone.0025773.t006
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IS801 transposition events (Table 5). The left end of members of the

IS91 family shows a highly conserved 17 nt G-C rich sequence that

includes a potential stem and loop structure [35]. However, we did

not find this sequence in the 59 end of any of the three miniature

fragments identified here, suggesting that it might be irrelevant for

transposition. Likewise, we did not identify in these ends any

obvious repeat, palindrome or consensus sequence, except for the

conserved tetranucleotide marking the left end of the fragment (see

Figure 2). This suggests that any IS801 fragment could move in one-

ended transposition event as long as it contains the right IS801 end

and any of the tetranucleotides with homology to the left end of

IS801 (GAAC). However, in the original sequence of IS801

(accession no. X57269) there are 7 occurrences of the tetranucle-

otides GAAC, GGAC, CAAG and CGAC, plus 11 of GCAC; these

sequences border the IS801 miniature fragments (Figure 2) and

were previously identified as target sequences for IS801 insertion

[36], except GCAC. In spite of this, we observed one-ended

transposition of only three of these 18 potential transposing

fragments. Additionally, although the tetranucleotide GCAC found

at the beginning of the 679 nt fragment has not been described as a

target sequence for IS801, this fragment was mobilized with a much

higher frequency than the others (Table 5). Therefore, it is likely that

other sequences around the left end might be important for

recognition of the IS801 left terminus and complete the transpo-

sition process. Importantly, the miniature IS801 derivatives

identified here must be the result of the partial transposition of

full-length elements, rather than the mobilization of pre-existing

submolecular fragments, because there are no copies of the 679 or

360 nt fragments in the 1448A genome. This clearly indicates that

transposition of a complete IS801 copy is normally inefficient,

producing the mobilization of miniature fragments with a high

frequency.

As occurs with IS91 [34], IS801 was also capable of mobilizing

adjacent DNA, albeit at a very low frequency. In three independent

events, we observed the mobilization of different partial fragments

of the same gene, PSPPH_0008/PSPPH_0017 coding for the alpha

subunit of a molybdopterin oxidoreductase, which in all cases

started in the same tetranucleotide than the IS801 left end, GAAC

(Figure 1). We do not have a satisfactory explanation for this

preference; moreover, both PSPPH_0008 and PSPPH_0017 are

probably non-functional because the IS801 insertion appears to

have eliminated most of the 39 end of the gene (Table S1), while at

least 153 nt are missing from the 59 end of the PSPPH_0008 reading

frame in comparison with its closest homolog (not shown).

Nevertheless, our results indicate that IS801 could potentially

mobilize by transposition the virulence genes with which it is often

associated. This could be relevant, because elements related to IS91

are involved in the mobilization of virtually every class of antibiotic

resistance genes [50]. Although the mobilization of adjacent DNA

by IS801 occurred at low frequency in our experimental conditions,

it is possible that the interaction with plant hosts provides a highly

selective environment favoring the exchange of effector and other

virulence genes mobilized by IS801.

IS801 is limited in distribution within P. syringae, and is tightly

associated to virulence genes [34], very often appearing as a partial

element of various sizes and whose origins are unclear. Our analysis

of partial fragments in complete plasmid and chromosome genomes

of P. syringae suggests that most of them originated by recombina-

tion, rather than by one-ended transposition (Table 6), although a

229 nt fragment in the large plasmid of strain 1448A is interrupting

a copy of ISPsy3 (PSPPH_A0015), suggesting that it originated by a

true transposition event. Nevertheless, it is of course possible that

any of these miniature fragments could mobilize accompanying

DNA, even if this happens at a low frequency. One-ended

transposition was proposed to be the main mechanism for gene

propagation mediated by IS91 [34]; conversely, our results suggest

that IS801, and partial fragments thereof, might preferentially

contribute to the generation of recombination regions around

virulence genes instead of serving as carrier elements. Indeed,

insertion sequences are known to play a major role in genome

flexibility, and variation between isolates of P. syringae appears to be

due more to recombination than to mutation [51,52].

A remarkable outcome is the identification of a functionally

active MITE in strain 1448A, that we have designated MITEPsy1;

a second putative MITE, designated MITEPsy2, was also

discovered in the genome at lower copy number, but this was

not trapped in the transposition assay. MITEs are non-

autonomous elements, in that they lack a transposase and rely

entirely on transposases encoded within other elements existing

within the genome, which act in trans [53]. The lower copy number

of MITEPsy2 and the fact that it was not captured in the

transposition assay may indicate that it is a recent addition to the

1448A genome, which lacks a transposase to mobilise it. MITE

elements are widespread in bacteria and there is indirect evidence

of their mobility [54,55]. For example, a MITE-like sequence was

shown to transpose as a composite element and mobilized an

antibiotic resistance gene [56]. However, this is the first time that a

MITE is reported to actively transpose in vivo, and at a high

frequency, opening the way to functionally test the requirements

and molecular mechanisms for their transposition. MITEPsy1 has

probably originated from ISPsy2, because their terminal repeats

are nearly identical; in any case, it is likely that the ISPsy2

transposase is responsible for the mobility of MITEPsy1, because

transposase specificity is generally determined by the sequence of

the mobile element terminal repeats [2,4]. However, a potentially

contradicting result is that we observed the frequent mobilization

of MITEPsy1, reaching nearly 2.5% of the total number of

insertions (Table 5), although in no case did we observe the

mobilization of ISPsy2 despite strain 1448A encoding five

complete copies of this element. Two of the six copies of

MITEPsy1 present in the genome of 1448A are interrupting two

loci, PSPPH_0770 and PSPPH_A0017 (Table S1), whereas

another two are intergenic and a further two are inside other

transposons. The insertion of MITEPsy1 into a CDS implies a

change in the reading frame, because the element is 100 nt long

and produces a 4 nt duplication, potentially leading to gene

inactivation or to the generation of new alleles. Indeed, insertion of

a 104 nt sequence (identified here as MITEPsy1 plus the 4 nt

duplication) in the 39 end of effector gene avrPphE (syn. hopX1) in a

strain of P. syringae pv. phaseolicola race 8 lead to the generation of

a new allele that no longer induced the hypersensitive response in

resistant bean cultivars, causing the expansion of its host range

[31]. Therefore, it shall be important to screen effector genes in

different phytopathogenic bacteria for the presence of repeated

sequences that might be surrounding them and could either

participate in their mobility or alter their coding sequences,

because they could represent new miniature mobile elements.

Examples of this type of small repeated sequences have already

been found in the chromosome and plasmids of different strains of

P. syringae [17,57], whereas two different MITEs were found to

alter the host range of Ralstonia solanacearum and contribute to the

generation of epidemic genotypes of the pathogen [55].

Materials and Methods

Bacterial strains and growth conditions
Escherichia coli DH5a was routinely grown using LB medium

[58] at 37uC and was used for cloning purposes. Pseudomonas
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syringae pv. phaseolicola 1448A [race 6,; 59] and 1449B [race 7;

60] were routinely propagated at 25uC using King’s medium B

(KMB) [61] and the frequency of transposition was generally

estimated using nutrient agar (NA; Oxoid, Basingstoke, UK) and

NA supplemented with 5% (w/v) sucrose (SNA). Medium MG

[62] was used as a minimal medium to evaluate nutrient limitation

on transposition. When required, media were supplemented with

tetracycline (Tc) at a final concentration of 12.5 mg ml21.

DNA hybridization and sequence analyses
For hybridization probes, we amplified a complete copy of

IS801 or internal fragments of ISPsy2, IS53 and ISPsy24 from

strain 1448A using specific primers (Table S2); these fragments

were cloned in pGEM-T Easy and used as template for DNA

amplification and labeling. Preparation of labeled probes with

digoxigenin by PCR, Southern hybridization, and detection of

hybridization signals were carried out with a DIG DNA labeling

and detection kit (Roche Diagnostics) following the manufacturer’s

instructions.

To complete and update the genome annotation, the sequence

of all the insertion sequences already found in P. syringae (IS Finder

Database; www-is.biotoul.fr) [7], except ISPsy27 whose sequence

was not available, were individually compared to the genome of P.

syringae pv. phaseolicola 1448A using the genomic blastn program

[63] at the NCBI website. Likewise, the genome of strain 1448A

was compared to the IS Finder Database using the blast programs

to examine for the existence of new, not registered, insertion

sequences. Following the criteria of the IS Finder repository, an

insertion sequence was considered new when its deduced product

was less than 98% similar and/or its DNA sequence less than 95%

identical to any other previously identified insertion sequence in

the databases. During annotation, an element was considered to

be truncated when it lacked part or all of at least one of the

terminal repeats, or when it contained internal deletions or

insertions that affected the transposase promoter or caused

premature stops or deletions larger than 100 nt in its reading

frame.

Multalin [64] and Blast 2 Sequences [65] were used to search

for homology among sequences and to produce sequence

alignments. Annotation was done with Artemis [66] and genome

comparisons with ACT [67] using WebACT [68]. All the

transposable elements, and truncated fragments larger than

200 nt, were annotated in the genome of 1448A and numbered

consecutively; truncated copies, or those having a premature stop

codon or deletion in the transposase coding region, were

numbered separately and identified with the letter T and a

different color code (Annotation files S1, S2 and S3). Also, a list of

revised annotations to the Pph 1448A genome can be found on the

annotation updates page of the Pseudomonas-Plant Interaction

web site (http://pseudomonas-syringae.org/) and in the IS-Finder

genomes web site (http://www-genome.biotoul.fr/index.php).

The sequence of MITEPsy1 has been deposited in the EMBL

databases under accession number FR714508.

Trapping of insertion sequences
We originally used vector pGBG1, which allows entrapment of

mobile elements when they insert into the CI repressor, thereby

allowing the expression of resistance to tetracycline from the l pR

promoter [69]. However, the vector was inadequate for our

purpose because it conferred constitutive resistance to tetracycline

to P. syringae pv. phaseolicola. As an alternative strategy, therefore,

we used vector pGEN500 to trap mobile elements by selection of

sucrose resistance after inactivation of gene sacB [40].

Transformants of P. syringae pv. phaseolicola containing

pGEN500 were selected on KMB plus tetracycline after

electroporation, grown in the same conditions in liquid medium

and stored at 280uC in 20% glycerol. To avoid the accumulation

of insertions during routine transfer of cultures, the frequency of

sacB inactivation was estimated, in general, using cultures started

from cryopreserved transformants. To obtain pools of transfor-

mants, cells were incubated at 28uC for 2–4 h in KMB

immediately after electroporation and a 100 ml aliquot was

transferred to 5 ml of KMB+Tc. After overnight growth, aliquots

of this culture were cryopreserved whereas other aliquots were

directly used for the estimation of the transposition frequency. To

isolate derivatives containing mobile elements inserted into sacB,

cultures were diluted and spread onto SNA+Tc and the

occurrence of insertions was monitored by examining changes in

the mobility of pGEN500 in uncut plasmid preparations separated

in 0.8% agarose gels [70]. The location and size of the

corresponding insertions was analyzed by restriction digestion,

PCR of the 59 or the 39 ends of the sacB gene and, in some cases,

by DNA sequencing. PCR was carried out using primer pairs

sacB5L1 (59CCCGTAGTCTGCAAATCCTT39) - sacB5R1

(59GCCGTAATGTTTACCGGAGA39) and sacB3L1 (59GGTC-

AGGTTCAGCCACATTT39) – sacB3R1 (59GGCATTTTC-

TTTTGCGTTTT39), designed from the published sacB sequence

(accession no. X02730); these primer pairs allow for the

amplification of the complete sacB CDS (1422 nt) plus its promoter

in two overlapping fragments.

A working transposition frequency was estimated using the

formula: [(number of sucrose and tetracycline resistant cfu per

millilitre60.92)/total number of tetracycline resistant cfu per

millilitre]; in this formula, we multiplied by 0.92 because an

average of 91.5% of the sucrose-resistant (sucR) clones among more

than 500 analyzed (see Table 5, and data not shown) were found to

originate by the insertion of a mobile element, whereas the

remaining 8.5% was due to small deletions or individual nt changes

in sacB. The frequency of transposition in rich and minimal media

was estimated for five independent transformants of strain

1448A(pGEN500) grown overnight in KMB or MG, both

supplemented with tetracycline; each experiment was repeated at

least seven times. To estimate transposition from cells growing in

planta, those five transformants were independently inoculated on

leaves of bean (Phaseolus vulgaris L.) cv. Tendergreen, or fully

expanded leaves of tobacco (Nicotiana tabacum cv. xanthi) as

previously described [71], using plants maintained in growth

chambers at 20uC, a photoperiod of 16/8 h day/night and 80%

of humidity. Six hours after inoculation with bacterial suspensions

adjusted to an OD600 of 0.5 (approximately 56108 cfu ml21),

excised leaf disks were ground in sterile 10 mM MgCl2 and

appropriate dilutions plated on NA and SNA, both supplemented

with tetracycline. The experiment was repeated at least three times.

The analysis of transposition frequency data in different growing

conditions was done using a two-way ANOVA test (p,0.05).

Supporting Information

Figure S1 Alignment of MITEPsy1 with homologs in
other bacteria. Global alignments were done with Blast, and

curated manually, between (upper sequence) a copy of MITEPsy1

from P. syringae pv. phaseolicola 1448A (accession no. CP000058,

positions 705671–705770) and (lower sequence) A) contig 32.3

(accession no. AEAL01000292.1) from the draft genome of P.

syringae pv. actinidiae M302091; B) the genome of P. syringae pv.

tomato DC3000 (accession no. AE016853), and C) the genome of

P. stutzeri ATCC 17588 (accession no. CP002881; an identical
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alignment was obtained with the genome of the Gammaproteobacter-

ium HdN1, accession no. FP929140, positions 593503–593601).

D) Terminal inverted repeats of the MITEPsy1 homolog present

in P. stutzeri ATCC 17588 and the Gammaproteobacterium HdN1.

(DOC)

Figure S2 Each transposition involves the movement of
a single element. Southern hybridization of DNA digested with

PstI using a complete copy of IS801 as a probe. Lanes contain

genomic (Lane 1) or total plasmid DNA (Lane 7) from

1448A(pGEN500) or DNA isolated from clones containing

independent insertions of mobile elements in gene sacB of

pGEN500 as follows: two independent MITEPsy1 insertions

(Lanes 2 and 3); two independent insertions of IS801 (Lanes 4

and 5), and IS801 that recruited 1431 nt of adjacent DNA (Lane

6). Asterisks to the left of lanes indicate hybridization bands

corresponding to the elements inserted in the vector. M, molecular

weight marker (Kb Ladder, Agilent Technologies).

(PPT)

Table S1 Coding sequences annotated in the genome of P.

syringae pv. phaseolicola (Pph) 1448A that are chimeras with or that

are interrupted by mobile elements.

(DOC)

Table S2 List of primers used for the amplification of insertion

sequences.

(DOC)

Annotation File S1 Annotation of insertion sequences, and

fragments thereof larger than 200 nt, and MITEs in the

chromosome of P. syringae pv. phaseolicola 1448A (accession

no. CP000058). The file is in the format of a feature table (tab file)

to be read as an entry with the Artemis browser.

(TAB)

Annotation File S2 Annotation of insertion sequences, and

fragments thereof larger than 200 nt, and MITEs in plasmid

p1448A-A of P. syringae pv. phaseolicola 1448A (accession

no. CP000059). The file is in the format of a feature table (tab

file) to be read as an entry with the Artemis browser.

(TAB)

Annotation File S3 Annotation of insertion sequences, and

fragments thereof larger than 200 nt, in plasmid p1448A-B of P.

syringae pv. phaseolicola 1448A (accession no. CP000060). The file

is in the format of a feature table (tab file) to be read as an entry

with the Artemis browser.

(TAB)
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