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Abstract: This paper highlights the multi-material additive manufacturing (AM) route for manufacturing
of innovative materials and structures. Three different recycled thermoplastics, namely acrylonitrile
butadiene styrene (ABS), polylactic acid (PLA), and high impact polystyrene (HIPS) (with different
Young’s modulus, glass transition temperature, rheological properties), have been selected (as a case
study) for multi-material AM. The functional prototypes have been printed on fused deposition
modelling (FDM) setup as tensile specimens (as per ASTM D638 type-IV standard) with different
combinations of top, middle, and bottom layers (of ABS/PLA/HIPS), at different printing speed
and infill percentage density. The specimens were subjected to thermal (glass transition temperature
and heat capacity) and mechanical testing (peak load, peak strength, peak elongation, percentage
elongation at peak, and Young’s modulus) to ascertain their suitability in load-bearing structures,
and the fabrication of functional prototypes of mechanical meta-materials. The results have been
supported by photomicrographs to observe the microstructure of the analyzed multi-materials.

Keywords: multi-material printing; fused deposition modelling; tensile properties; thermal properties;
mechanical meta-materials

1. Introduction

Today, additive manufacturing (AM) has become one of the most common techniques for
fabricating periodic lattices and innovative materials [1,2]. Commercially, many fabrication methods
are available, with variable resolutions, including: polyjet 3-D printing; fused deposition modelling
(FDM), selective laser sintering (SLS); electron beam melting (EBM); laser lithography; and projection
microstereolithography etc. [3–11].

FDM is one of the low-cost techniques of AM which is used to prepare the functional prototypes
of polymers/composites [12–17]. In FDM, parts are built layer by layer by heating a thermoplastic
filament to a semi-liquid state and extruding it through a small nozzle per 3D CAD models in STL
format [18,19]. The filament is usually 1.75 mm to 3.0 mm [20].

The reported literature highlights that the next generation structures using existing materials via
AM will surely need to revolve around cost reduction, improved performance, and advanced structural
design [21]. The study conducted for 3D printing of multilateral components of ABS and thermoplastic
polyurethane (TPU) reveals, with support of 3D imaging, that interface properties are found in control
with good layer connectivity [22]. Multi-material 3D printing potential is going to be a milestone
in rapid manufacturing, customized design, and structural applications. Being compatible with
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functionally graded materials in a single structural form, multi-material 3D printing can potentially
be applied in structural engineering applications to get the benefit of combined/hybridized material
properties. Multi-material printing provides fast and robust structures with the functionality of all the
combined materials [23,24]. It was suggested that the hybrid manufacturing (additive+ subtractive)
process can fulfill the demand of high dimensional accuracy, less post-processing, and improved
surface properties [25]. Multi-material 3D printing is applicable to new smart 4D structures which can
provide specific shape/properties/functionalities [26]. It was highlighted that existing AM techniques,
such as FDM, can be modified to hybrid deposition manufacturing (HDM) with embedded components
to produce more complex, integrated multi-material components than with traditional techniques [27].
It was reported that build orientation, fabrication parameters, and associated variables can largely
affect the connection between the multilateral interfaces during 3D printing [28,29], so these should be
optimized to get better mechanical, thermal, and surface properties [30,31].

ABS is a common thermoplastic which is amorphous in nature and has high impact resistance,
heat resistance, toughness, and low thermal conductivity with potential application in civil engineering.
Generally, two types of ABS are classified: one as ABS for molding and another as ABS for
extrusion/printing [32,33]. PLA exhibits a range of crystallinity and mechanical properties between
polystyrene and polyethylene terephthalate. The bio-degradability and bio-compatibility are the key
advantages of PLA to promote its use in the structural and bio-medical applications [34,35]. ‘HIPS’ is a
low-cost polymer which provides ease of fabrication and machining. HIPS has low tensile strength,
high impact strength (useful for structural application) when it is required to have low cost impact
strength, machinability, and fabrication. It is commercially used in pre-production of prototypes
because of its high dimensional stability and ease of fabrication, painting, and joining.

The reported literature reveals that many studies have been performed in the recent past to
enhance the properties of thermoplastics by reinforcing them with metals/non-metals through
extrusion and finally 3D printing by FDM [12,13,18,19]. But, hitherto, very little has been reported on
multi-material printing of thermoplastics to enhance its mechanical properties. Since FDM is one of
the cost-effective techniques for printing multi-material components, effort has been made to explore
the effect of multi-material printing through FDM for preparation of functional prototypes which may
be directly installed for structural applications (e.g., as a light load-bearing element) or next-generation
mechanical meta-materials. This paper is an extension of work reported by Singh et al. [20], in which
break properties were explored to understand the mechanism of failure in the case of multi-material
components. In the present study, peak load properties supported by photomicrographs have been
explored to understand the multi-material distribution behavior (in form of multi layers) in the3D
printing of functional prototypes. In the present study, ABS, PLA, and HIPS were 3D-printed in
multi-nozzle FDM to explore the applicability of the final products in structural applications.

2. Materials and Methods

ABS has high toughness, a high degree of moldability, and low thermal conductivity. PLA has
good biodegradability/crystallinity. HIPS is low-cost with high impact resistance. These three recycled
thermoplastics have been selected for the fabrication/multi-material printing operation with FDM.
Table 1 shows the mechanical, thermal, and rheological properties of the feedstock materials (average
and standard deviation values for three sets of observations). It should be noted that ABS, PLA,
and HIPS have significant differences in their MFI, glass transition temperature, peak load, peak
strength, peak elongation, Young’s modulus, and yield stress. The aim of the present study is to
fabricate the new part with three combined polymeric layers so that the final product possesses the
advantages of all the polymers.
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Table 1. Properties of ABS, PLA, and HIPS.

Polymers
HIPS ABS PLA

OV SD SEx OV SD SEx OV SD SEx

MFI (g/10 min) 7.5 ± 0.20 0.16 0.11 8.76 ± 0.16 0.13 0.09 13.52 ± 0.11 0.09 0.06

Young’s modulus (MPa) 112.5 ± 0.12 0.09 0.06 175 ± 0.11 0.09 0.06 47.9 ± 0.10 0.08 0.05

Yield stress (MPa) 3.44 ± 0.21 0.17 0.12 0.49 ± 0.21 0.17 0.12 0.27 ± 0.16 0.13 0.09

Glass transition temp (◦C) 100.41 ± 0.16 0.13 0.09 109.76 ± 0.2 0.16 0.11 62.57 ± 0.21 0.17 0.12

Peak load (N) 80.8 ± 0.11 0.08 0.06 207 ± 0.2 0.16 0.11 282.4 ± 0.20 0.16 0.11

Peak strength (MPa) 4.21 ± 0.16 0.13 0.09 10.78 ± 0.11 0.09 0.06 14.71 ± 0.16 0.13 0.09

Peak elongation (mm) 1.9 ± 0.20 0.16 0.11 4.75 ± 0.16 0.13 0.09 5.13 ± 0.16 0.13 0.09

Percentage elongation at
peak (%) 3.0 ± 0.11 0.09 0.06 6.0 ± 0.15 0.12 0.08 7.0 ± 0.10 0.08 0.05

Note: OV = Observed value, SD = standard deviation, SEx = Standard error of mean.

3. Experimentation

The experimentation stage consisted of the evaluation of melting and solidification characteristics,
glass transition temperature determination, extrusion, and multi-material 3D printing.

3.1. Differential Scanning Calorimetry (DSC)

DSC is analytical tool for determination of thermal properties, including melting points, glass
transition temperature, solidification temperature, degree of crystallinity, heat capacity rate, etc. These
properties are defined under controlled continuous heating (endothermic reaction) and controlled
continuous cooling (exothermic reaction). The endothermic reaction was carried at the heating rate of
+10 ◦C/min from 30 ◦C to 250 ◦C, whereas the exothermic reaction was carried at −10 ◦C/min from
250 ◦C to 30 ◦C.

3.2. Extrusion by Twin Screw Extrusion (TSE)

In the present case, extrusion with TSE was performed at 230 ◦C with a screw speed of 50 rpm and
an applied load of 10 kg to prepare the feedstock filaments. The extrusion parameters were fixed based
on pilot experimentation. The TSE used in the present study can produce 1.75 ± 0.05 mm diameter
feedstock filaments with yield of 2–3 m/min under 50 rpm screw speed.

3.3. 3D Printing

Commercial open-source FDM setup (Make: Divide by Zero, Model 250i, Mumbai, India)
configured with two nozzle heads was used for multi-material 3D printing. The static parameters for
the fabrication of the combined parts were:

(i) Diameter of nozzle: Φ0.3 mm
(ii) Diameter of filament: Φ1.75 ± 0.05 mm
(iii) Height of layer: 0.27 mm
(iv) Default printing layers on the outer periphery: 3 + 3 (by adjusting 3 top and 3 bottom layers)
(v) Fill pattern: Rectilinear
(vi) Perimeter speed: 30 mm/sec
(vii) Travel speed: 130 mm/sec
(viii) Extrusion temperature: 250 ◦C
(ix) Print bed temperature: 55 ◦C

In the present case study three input parameters were varied for printing (see Table 2):

(i) Infill percentage: 60, 80 and 100%
(ii) Speed of printing: 50, 60 and 70 mm/sec.
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(iii) Printing material configuration

The multi-material printing was performed with a total of 12 layers (4 layers of each material, i.e.,
ABS, PLA, and HIPS). The multi-material printing configurations named as APH, PHA, and HAP mean:

APH: bottom 4 layers of ABS, middle 4 layers of PLA, and top 4 layers of HIPS
PHA: bottom 4 layers of PLA, middle 4 layers of HIPS, and top 4 layers of ABS
HAP: bottom 4 layers of HIPS, middle 4 layers of ABS, and top 4 layers of PLA

Figure 1 shows the 3D view of the benchmark/sample on the printing interface.
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Figure 1. 3D benchmark of samples on the printing interface.

Based upon Table 2, 9 specimens (with three repetitions on each setting) of multi-material
components were printed (as per Taguchi L9 orthogonal on commercial FDM setup as per ASTM D 638
type IV). The samples composed of single materials (ABS, PLA, and HIPS) were also printed with fixed
parametric settings of FDM to analyze the changes in the mechanical strength and the interconnectivity
of layers. Figure 2 shows the 3D-printed parts with multi-material layers.

Table 2. Input process variables for multi-material 3D printing on FDM.

Parameters Level 1 Level 2 Level 3

Material Combination APH PHA HAP
Infill percentage (%) 60 50 100

Printing Speed (mm/sec) 50 60 70
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Figure 2. 3D-printed multi-material component of ASTM 638 type IV.

4. Results and Discussion

It was observed that the extruded feedstock of recycled ABS, PLA, and HIPS resulted in significant
differences in mechanical properties. The experimental observations (average of three repeated trails)
outlined that, as virgin material, ABS had the greatest Young’s modulus, PLA had the greatest peak
load, peak strength, peak elongation, and lowest Young’s modulus and yield stress, whereas HIPS had
the lowest peak load, peak elongation, peak strength, and greatest yield stress (See Table 1). Figure 3
shows the load vs. deflection curves of ABS, PLA, and HIPS materials under tensile failure.
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Figure 3. Load vs. deflection curve for extruded feedstock filaments.

As observed from Figure 3, the selected grade of PLA thermoplastic has the greatest peak load
value (see Table 1), followed by ABS and HIPS. Hence, in multi-material structures, if PLA is selected
for the outermost layer, followed by ABS (middle layer) and HIPS in the innermost section (especially
in arch structures), this will lead to better stability from a load-bearing view point. Similar observations
have been made by other investigators [36–38].

4.1. Thermal Properties

Figure 4 shows the DSC thermographs for ABS, PLA, and HIPS polymers. As observed from
Figure 4, ABS, PLA, and HIPS are compatible with each other and have similar ranges of heat integral
value. It has been observed that the integral heat input during heating of ABS, PLA, and HIPS
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was 13.63 mJ, 14.71 mJ, and 11.71 mJ, respectively. Thus, multi-material printing (with proposed
combination) may result in better layer connectivity. On the other hand, during solidification of the
material, it was observed that ABS, PLA, and HIPS released 13.52 mJ, 10.80 mJ, and 10.87 mJ (which
are also in similar range).
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As shown in Figure 4, two heating and two cooling cycles were repeated and similar trends of the
endothermic and exothermic reactions were observed. Hence, it is ascertained that under repetitive
thermal shock, material integrity is not compromised (within the set temperature range). These results
are also in line with the observations made otherwise [20].

4.2. Tensile Properties

The material was tested as per ASTM D 638 type IV (for 12 successive printed layers of
ABS/HIPS/PLA) on a tensile testing machine. After the fracture of each sample, data were recorded
(see Table 3). Three repetitions were made for each sample setting in order to reduce the experimental
error. It was observed that in experiment no. 3 with the APH multi-material configuration, 100%
infill percentage and 70 mm/sec printing speed resulted in the greatest peak load, peak strength,
and elongation properties and the lowest Young’s modulus, whereas in experiment no. 1 with APH,
the 60% infill and 50 mm/sec printing speed configuration resulted in the lowest values of peak load,
peak strength, and peak elongation properties. The component/prototype printed in experiment no. 4
had the greatest Young’s modulus. The most important fact was observed in the case of the Young’s
modulus for experiments 2, 4, and 9, which resulted in values greater than those of any of the parent
materials. Again, the yield stress in experiments 3, 8, and 9 resulted in the values below those of the
parent materials.
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Table 3. Mechanical properties of 3D-printed multi-material components.

Exp
No.

Material
Combination

Infill
(%)

Printing
(mm/sec)

Peak Load
(N)

Peak Strength
(MPa)

Peak Elongation
(mm)

Percentage Elongation at
Peak (%)

Young’s Modulus
(MPa)

Yield Stress
(MPa)

OV SD SEx OV SD SEx OV SD SEx OV SD SEx OV SD SEx OV SD SEx

1 APH 60 50 133.9 ±
0.16 0.13 0.09 6.97 ±

0.20 0.16 0.11 2.85 ±
0.11 0.08 0.06 4 ± 0.16 0.13 0.09 72.92 ±

0.22 0.18 0.13 2.73 ±
0.21 0.17 0.12

2 APH 50 60 179.9 ±
0.21 0.17 0.12 9.37 ±

0.11 0.08 0.06 2.85 ±
0.22 0.17 0.12 4 ± 0.16 0.13 0.09 264.58 ±

0.21 0.17 0.12 2.68 ±
0.16 0.13 0.09

3 APH 100 70 206.9 ±
0.11 0.08 0.06 10.78 ±

0.12 0.09 0.06 4.37 ±
0.17 0.14 0.10 6 ± 0.17 0.13 0.09 73.29 ±

0.11 0.08 0.06 0.21 ±
0.20 0.16 0.11

4 PHA 60 60 161.3 ±
0.21 0.17 0.12 8.40 ±

0.16 0.13 0.09 3.04 ±
0.20 0.16 0.11 4 ± 0.22 0.17 0.12 325.00 ±

0.12 0.09 0.06 1.00 ±
0.11 0.08 0.06

5 PHA 80 70 189.9 ±
0.20 0.16 0.11 9.89 ±

0.12 0.09 0.06 3.99 ±
0.13 0.09 0.06 5 ± 0.21 0.17 0.12 79.17 ±

0.05 0.04 0.02 4.54 ± 0.2 0.08 0.05

6 PHA 100 50 187.9 ±
0.11 0.08 0.06 9.79 ±

0.20 0.16 0.11 3.23 ±
0.12 0.09 0.06 4 ± 0.1 0.08 0.05 108.33 ±

0.12 0.09 0.06 5.13 ±
0.16 0.13 0.10

7 HAP 60 70 149.0 ±
0.11 0.08 0.06 7.76 ±

0.22 0.17 0.12 3.99 ±
0.16 0.13 0.09 5 ± 0.11 0.08 0.06 85.42 ±

0.18 0.14 0.10 0.28 ±
0.11 0.08 0.06

8 HAP 80 50 174.8 ±
0.16 0.13 0.09 9.10 ±

0.11 0.08 0.06 3.42 ±
0.12 0.08 0.06 5 ± 0.21 0.17 0.12 161.84 ±

0.12 0.08 0.06 0.17 ±
0.21 0.17 0.12

9 HAP 100 60 164.4 ±
0.11 0.08 0.06 8.56 ±

0.16 0.13 0.09 3.61 ±
0.13 0.10 0.07 5 ± 0.16 0.13 0.09 249.67 ±

0.13 0.10 0.07 0.16 ±
0.16 0.13 0.09
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Based upon Table 3, Figure 5 shows a graphical representation of peak load vs. experiment
number (error bars with standard error), which is well in 5% range. Similar results have been attained
for all other mechanical properties.
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3D-printed parts with high part density must have high peak load and low strain values [36–38].
As observed from experiments 1–3 (Table 3) with material combination APH, the peak load values
follow this behavior, but the peak elongation value at high density is greater, which is contrary
to the general behavior. Also, the Young’s modulus value in experiment 2 is higher compared to
experiments 1 and 3. This may be because of the fact that the multi-material printed functional
prototype has compromised properties, i.e.in tensile loading conditions, the fusion pattern of one
material layer on another material layer may have contributed to deviation in the physical-mechanical
properties (which is dependent upon many input parameters, including printing speed, rheological
properties, material combination, etc.). Similarly, comparing experiments 4–6, better Young’s modulus
was observed in experiment 4, whereas, while comparing experiments 7–9, better Young’s modulus
was observed in experiment 9. Further, based upon Table 3, Figure 6 shows the load vs. deflection
curve for virgin/single printed material as well as multi-material functional prototypes. For better
understanding of fused layer deposition, based upon Table 3, photomicrographs were observed with
the help of a Mitutoyo Tool maker’s microscope at 30× magnification (see Figure 7). As observed
from Figure 7, the single-material printed geometry of ABS, PLA, and HIPS prototypes showed
uniform layer orientation, tightly stacked layers, whereas in the case of multi-material prototypes, the
uniformity of the layers was compromised. It should be noted that the greatest values of peak load,
peak elongation, and peak strength measured by pull out test were achieved in experiment 6 (PHA,
100% infill percentage, and 50 mm/sec printing speed). From photomicrographs of the part printed
in experiment 6, it is clear that the layers are tightly stacked and uniformity is maintained (similar to
single-material). In the case of experiment 1 where peak load and peak strength had worse values than
each single/parent material, the layers were not uniformly packed (See Figure 7).
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4.3. Pull-Out Test

Pull-out testing is one of the most important considerations for structural applications.
The pull-out test was conducted (using the material combinations in Table 3) on all the samples
to evaluate the peak load, peak strength, peak elongation, and percentage changes of peak elongation.
It was observed that samples 3 and 6 resulted in values of peak load, peak strength greater than HIPS
but significantly lower than ABS and PLA. In experiment6, the value of peak elongation resulted in
values greater than all the single/parent materials (see Table 4).

Table 4. Pull-out properties of 3D-printed components.

Experiment
no.

Peak Load
(kgf)

Peak Strength
(kg/mm2)

Peak Elongation
(mm)

Percentage Elongation at
Peak (%)

OV SD SEx OV SD SEx OV SD SEx OV SD SEx

1 52.8 ± 0.15 14.83 ± 0.16 0.13 0.09 3.23 ± 0.10 2 ± 0.15 0.12 0.08

2 80.1 ± 0.16 0.13 0.09 22.49 ± 0.12 0.09 0.06 4.37 ± 0.16 0.13 0.09 2 ± 0.15 0.12 0.08

3 100.7 ± 0.11 0.08 0.06 28.27 ± 0.12 0.09 0.06 4.18 ± 0.12 0.09 0.06 2 ± 0.10 0.08 0.06

4 75.4 ± 0.11 0.08 0.06 21.17 ± 0.21 0.17 0.12 4.18 ± 0.06 0.04 0.03 2 ± 0.20 0.16 0.11

5 86.2 ± 0.11 0.08 0.06 24.2 ± 0.21 0.17 0.12 4.18 ± 0.16 0.13 0.09 2 ± 0.10 0.08 0.06

6 102.6 ± 0.21 0.17 0.12 28.81 ± 0.11 0.08 0.06 4.56 ± 0.11 0.08 0.06 2 ± 0.10 0.08 0.06

7 54.7 ± 0.16 0.13 0.09 15.36 ± 0.17 0.14 0.09 2.85 ± 0.16 0.13 0.09 1 ± 0.20 0.16 0.12

8 83.6 ± 0.11 0.08 0.06 23.47 ± 0.21 0.17 0.12 3.99 ± 0.21 0.17 0.12 2 ± 0.10 0.08 0.06

9 77.4 ± 0.16 0.13 0.09 21.73 ± 0.22 0.18 0.13 2.28 ± 0.16 0.13 0.09 1 ± 0.15 0.12 0.08

ABS 129.5 ± 0.20 0.16 0.11 36.36 ± 0.17 0.14 0.09 3.99 ± 0.11 0.08 0.06 2 ± 0.15 0.12 0.08

PLA 172.6 ± 0.21 0.17 0.12 48.46 ± 0.22 0.18 0.13 4.37 ± 0.23 0.18 0.13 2 ± 0.20 0.16 0.11

HIPs 97.6 ± 0.12 0.09 0.06 27.4 ± 0.11 0.08 0.06 2.28 ± 0.23 0.18 0.13 1 ± 0.20 0.16 0.11

Based upon Table 4, Figure 8 shows the load vs. deflection curves for of the 3D-printed
multi-material components.
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5. Concluding Remarks

The conclusions from the present study are as follows:
Multi-material 3D printing of recycled ABS, PLA, and HIPS polymers is feasible because these

thermoplastics possess similar heat capacities (13.63 mJ for ABS, 14.71 mJ for PLA, and 11.71 mJ for
HIPS).

Tensile properties investigation revealed that the peak strength of HIPS (4.21 MPa) was the lowest
of the materials. However, 3D printing of multi-materials resulted in a significant improvement of the
tensile strength (10.78 MPa) under controlled input conditions.

It was observed from the pull-out test that the peak strength of HIPS (27.4 kg/mm2) was the
lowest of the materials, but multi-material 3D printing of HIPS with ABS and PLA increased its value
to 28.81 kg/mm2 (at best settings).

Overall, it can be concluded that multi-material printing of various thermoplastics is feasible for
functional prototypes and can lead to improvement of their mechanical properties. In light of the
structural applications of multi-materials, the future scope lies in the selection of various materials
comprising the inner layer (with better compression properties), neutral layers (with moderate
compression and tensile properties), and outermost layers (with better tensile properties) selected as
per tailor-made requirements. In other words, the limited mechanical properties of some thermoplastics
can be used as an advantage in multi-material functional prototypes, e.g., in mechanical meta-materials
combining soft and hard modes [8,20]. Moreover, such materials can be also employed to print recycled
reinforcing elements to be embedded in an epoxy resin matrix [39] or in a mortar or concrete matrix in
order to realize sustainable composite materials [40–50].

With advancements in smart materials for 4D printing and self-assembly applications,
multi-material 3D printing can overcome the shortcomings of single materials. Compared to
single-material 3D printing, multi-material 3D printing gives more flexibility to functional prototypes
(with totally different/enhanced multi-dimensional properties), which basically reduces the required
mass of the component and hence the material requirement under different loading conditions.
This will help to print more complicated components and to reduce waste.
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