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Abstract

Radiologic images provide a way to monitor tumor development and its response to thera-

pies in a longitudinal and minimally invasive fashion. However, they operate on a macro-

scopic scale (average value per voxel) and are not able to capture microscopic scale (cell-

level) phenomena. Nevertheless, to examine the causes of frequent fast fluctuations in tis-

sue oxygenation, models simulating individual cells’ behavior are needed. Here, we provide

a link between the average data values recorded for radiologic images and the cellular and

vascular architecture of the corresponding tissues. Using hybrid agent-based modeling, we

generate a set of tissue morphologies capable of reproducing oxygenation levels observed

in radiologic images. We then use these in silico tissues to investigate whether oxygen fluc-

tuations can be explained by changes in vascular oxygen supply or by modulations in cellu-

lar oxygen absorption. Our studies show that intravascular changes in oxygen supply

reproduce the observed fluctuations in tissue oxygenation in all considered regions of inter-

est. However, larger-magnitude fluctuations cannot be recreated by modifications in cellular

absorption of oxygen in a biologically feasible manner. Additionally, we develop a procedure

to identify plausible tissue morphologies for a given temporal series of average data from

radiology images. In future applications, this approach can be used to generate a set of tis-

sues comparable with radiology images and to simulate tumor responses to various anti-

cancer treatments at the tissue-scale level.

Author summary

Low levels of oxygen, called hypoxia, are observable in many solid tumors. They are asso-

ciated with more aggressive malignant cells that are resistant to chemo-, radio-, and

immunotherapies. Recently developed imaging techniques provide a way to measure the

magnitude of frequent short-term oxygen fluctuations, but they operate on a macro-scale
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voxel level. To examine the possible causes of rapid oxygen fluctuations at the cell level,

we developed a hybrid agent-based mathematical model. We tested two different mecha-

nisms that may be responsible for these cyclic effects on tissue oxygenation: temporal vari-

ations in vascular influx of oxygen and modulations in cellular oxygen absorption.

Additionally, we developed a procedure to identify plausible tissue morphologies from

data collected from radiological images. This can provide a bridge between the micro-

scale simulations with individual cells and the longitudinal medical images containing

average values. In future applications, this approach can be used to generate a set of tissues

compatible with radiology images and to simulate tumor responses to various anticancer

treatments at the cell-scale level.

Introduction

Tumor tissues harbor regions of different levels of oxygen, including the well-oxygenated

areas (normoxia) and zones with reduced oxygen availability (hypoxia). The hypoxic regions

can arise as a result of rapid proliferation of tumor cells and tortuous tumor vasculature, which

together lead to an increased distance between some tumor cells and the nearest blood vessel.

This, in turn, results in the emergence of oxygen gradients and a diffusion-limited hypoxia,

usually at the distances of 120–180 μm from vasculature[1]. Such chronic hypoxia, with oxygen

partial pressure (pO2) below 10 mmHg, may last for a prolonged periods of time, often for

more than 24 hours[2,3]. However, hypoxic regions can also be created due to irregular blood

flow in the aberrant tumor vasculature or shutdown of small vessels. These phenomena lead to

a perfusion-limited hypoxia that is observable for shorter times, often minutes to hours, and

can be reversed when the blood flow is restored[2,3]. Several studies have demonstrated the

existence of 20–30 minute-long cycles in red blood cell flux that can vary by 2–5 fold and lead

to periodic changes in pO2 within the tumor tissue[3–5]. However, it has also been observed in

murine experiments that tumors experience very fast and sometimes quite large fluctuations

(more than 5-fold) in oxygen levels within the tissue. In particular, electron paramagnetic reso-

nance (EPR) imaging has shown that intratumor fluctuations in pO2 can reach a magnitude as

high as 30 mmHg over a period as short as 3 minutes[6,7].

EPR imaging is a spectroscopic technique that can detect molecules presenting unpaired

electrons. However, viable tissues contain insufficient amounts of radical species, so EPR

requires the injection of a paramagnetic probe to enable visualization of pO2[8]. One such a

probe, the triaryl-methyl (TAM) radicals, are injected intravascularly to serve as a tracer for

mapping and quantifying tissue pO2 in live animals[6,7]. As a result of collisions between

TAM and O2 molecules, the TAM spectral line width broadens in proportional to pO2 and can

be detected by the EPR scanner. The subsequent oxygen image reconstruction provides quan-

titative maps of pO2 distribution within the tissue[9]. The typical EPR voxel has a resolution of

1mm3, and average pO2 values from each volumetric voxel are collected in the form of 2D oxy-

genation maps (compare Fig 2 in [6]). The EPR oxygenation maps show spatial variations in

the xy-plane, but are not able to capture variations in the third dimension.

This imaging technique was used to record intratumoral pO2 fluctuations in the squamous

cell carcinoma VII (SCCVII) of size 1,200 mm3 shown in Fig 2 of [6]. In this experiment, four

regions of interest (ROIs) were selected based on an anatomical image of the tumor from the

T2-weighted magnetic resonance imaging (MRI). EPR imaging was used to record pO2 maps

that were co-registered with the MRI image and average values of pO2 in each ROI were

recorded every 3 minutes for 24 minutes. The pO2 maps correspond to the last data set (at 28

minutes). The four chosen ROIs are characterized by different initial levels of pO2, from a very
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well oxygenated Region #1 to a severely hypoxic Region #4. Regions #1 and #2 showed signifi-

cant changes in pO2 during the time of experiment (more than 10-fold), while Regions #3 and

#4 displayed more uniform levels of pO2 during the whole experiment. Since the EPR imaging

operates on the resolution of millimeters (macroscale), it is impossible to determine which bio-

logical mechanisms are responsible for such fast and relatively large (more than 5-fold) oxygen

fluctuations. To address this issue, the modeling on a cellular level (microscale) is needed.

Motivated by these experimental data, we use the hybrid agent-basedMultiCell-LF (multi-

cell lattice-free[10,11]) model to test mechanisms that could be responsible for cyclic effects in

tissue oxygenation. In general, the distribution of blood-borne compounds (oxygen, nutrients,

drugs, etc.) within the tissue depends on the localization and amount of compound entering the

tissue (vascular supply), the amount and localization of compound leaving the tissue (cellular

uptake), and compound interstitial transport. We consider here the first two mechanisms only.

Since the experiments were performed over a very short period of time (30 minutes), no signifi-

cant modifications in oxygen transport were expected. Such modifications can arise only due to

changes in the number or localization of cells or vessels, or if the extracellular matrix composi-

tion changes. In a half hour period and with no therapeutic interventions (such as radiotherapy

or surgery), no changes in the number of cells (no proliferation, no death), in the vasculature

(no angiogenesis, no vascular collapse due to tumor growth), nor in the ECM structure (no

ECM production by stromal cells) are anticipated. Additionally, in the experiments described

above, the levels of an EPR-specific tracer (TAM) were recorded, but no detectable changes in

tracer levels or distribution were observed within each ROI (compare Fig 2 from[6]). This also

suggests that the observed oxygen fluctuations are not related to changes in the interstitial trans-

port. Therefore, we tested whether the modifications in vascular oxygen supply or in cellular

oxygen absorption can contribute to the observed variations in tissue oxygenation.

The rest of the paper is organized as follows. The mathematical model is described in section 2

and used to design a collection of tumor tissues (section 3.1) with a numerically stable oxygen dis-

tribution (section 3.2). Next, for four tissues that match the average pO2 value in each experimen-

tal ROI (section 3.3), we determine optimal rates of oxygen vascular influx or oxygen cellular

uptake that fit the experimentally observable fluctuations in pO2 (section 3.4). These optimal

schedules are then applied to a larger sample of in silico tissues with initial pO2 values close to the

experimental data to assess schedules’ robustness and reproducibility (section 3.5). Finally, we dis-

cuss implications of our findings for tumor development and future applications (section 4).

Methods–mathematical model

For this study, we consider a two-dimensional tissue patch with an area of 1 mm2 that corre-

sponds to a cross section of a typical EPR imaging voxel and a single element in the EPR oxy-

gen map[12,13]. Tissue morphology and metabolism is modeled using theMultiCell-LF
model, which combines the off-lattice individual vessels and cells (tumor and stromal) with a

continuous description of oxygen kinetics. A typical example from our simulations is shown

in Fig 1. The specific oxygen distribution within the tissue depends on three factors: the

amount of oxygen supplied from individual vessels, the amount of oxygen absorbed by both

tumor and stromal cells, and the spatial localization of all cells and vessels. As a result of this

influx-outflux balance, an irregular oxygen distribution pattern can emerge.

Tissue design

Initially, the locations of tumor cells, stromal cells and vessels were chosen randomly within

the tissue domain. To ensure that the cells did not overlap with one another and with the ves-

sels, repulsive forces were applied to all cells. Let Xi and Xj represent the coordinates of two
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discrete elements (either tumor cells, stromal cells or vessels) of radii Ri and Rj, respectively.

The repulsive Hookean force f Xi ;Xj
of stiffness F acting on element Xi is given by:

f Xi;Xj
¼

F ðRi þ RjÞ � kXi � Xjk
� � Xi � Xj

kXi � Xjk
if kXi � Xjk < Ri þ Rj

0 otherwise:

8
><

>:

For the tissue that contains NV vessels of coordinates V i ¼ ðVxi ;V
y
i Þ, NT tumor cells of coor-

dinates T j ¼ ðTxj ;T
y
j Þ, and NS stromal cells of coordinates Sk ¼ ðSxk; S

y
kÞ, the repulsive forces FTj

acting on tumor cells and FSk acting on stromal cells combine contributions from all nearby

tumor cells, stromal cells and vessels, and are given by the following equations:

FTj ¼
XNT

l6¼j

f Tj ;Tl
þ
XNS

k¼1

f Tj ;Sk
þ
XNV

i¼1

f Tj ;Vi
for j ¼ 1 . . .NT

FSk ¼
XNT

l6¼k

f Sk ;Sl þ
XNT

j¼1

f Sk ;Tj
þ
XNV

i¼1

f Sk ;Vi
for k ¼ 1 . . .NS

To resolve the overlapping conditions, the tumor and stromal cells are relocated following

the overdamped spring equation, where ν is the viscosity of the surrounding medium:

dTj
dt
¼

1

n
FTj and

dSk
dt
¼

1

n
FSk:

Fig 1. Mathematical model of the tumor tissue microenvironment. A. A contour map of the simulated oxygen distribution. The color scheme corresponds to

that used in EPR imaging for the partial pressure of oxygen (cyan: low pO2; white: high pO2). B. Locations of tumor vasculature (red circles), tumor cells (purple

circles), and stromal cells (pink circles) within the same computational domain; this is used to define tissue cellularity and vascularity. The color scheme

corresponds to typical colors in histology images. C. Magnification of a quarter of the computational domain showing all model components together: the

vessels, tumor and stromal cells, and oxygen distribution. All variables are dimensional (length is in μm, oxygen partial pressure inmmHg, as listed in Table 1).

https://doi.org/10.1371/journal.pcbi.1009206.g001
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We apply these equations iteratively to all overlapping tumor and stromal cells until the equi-

librium is reached, where FTj ¼ FSk ¼ 0 (Fig A in S1 Text). The vessels are not subject to reloca-

tion, and we allow the vessels to overlap with other vessels to represent different vascular shapes

observed in tissue histologic samples that result from the angle at which the tissue slices are cut.

This algorithm is only used in the initial phase to create the tissue and thus the same spring stiff-

ness is used for all repulsive forces. Once the overlapping conditions are resolved for all cells, the

repulsive forces are deactivated. The cells and vessels are immobile during the oxygen fluctuation

period, and cell proliferation and death are neglected during the simulated 30-minute period.

Oxygen distribution

Oxygen distribution within the tissue γ(x,t) depends on its influx from vessels, diffusion

through the tissue, and the uptake by both stromal and tumor cells. Influx is determined by

the location of each individual vessel Vi and the influx rate δV(t), which can vary over time.

The influx rate represents a fraction (0�δV(t)�1) of the maximum oxygen supply γmax charac-

teristic of the oxygen content in the vessels of a given radius RV. The transport through the

interstitial space of the tumor tissue is assumed to have a constant diffusion coefficient Dg. The

oxygen uptake is defined by the Michaelis-Menten equation with a Michaelis constant κm
common for both tumor and stromal cells, the constant maximum uptake rate for stromal

cells Smax, and the maximum uptake rate for tumor cells δT(t)Tmax for which the rate (δT(t)�0)

can change over time. The oxygen kinetics is modeled using the following continuous reac-

tion-diffusion equation:

@gðx; tÞ
@t

¼
XNV

i¼1

dVðtÞgmaxwRV ðx;V iÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

influx

þDgDgðx; tÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

diffusion

�
XNT

j¼1

dTðtÞTmaxgðx; tÞ
km þ gðx; tÞ

wRT ðx;TjÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

uptake by tumor cells

�
XNS

k¼1

Smaxgðx; tÞ
km þ gðx; tÞ

wRSðx; SkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

uptake by stromal cells

Interactions between oxygen defined on the Cartesian grid x = (x,y) and the tumor cells,

stromal cells and vessels defined on the Lagrangian grid X = (X,Y) are specified by the indica-

tor function, χR(x, X), with the interaction radius R:

wRðx;XÞ ¼
1 kx � Xk < R

0 otherwise

(

To generate the initial numerically stable oxygen distribution, the oxygen influx rate for

each vessel was set up to the maximum vascular level (δV(t) = 1) and the tumor cellular uptake

was set up to the base uptake level (δT(t) = 1). However, in order to generate oxygen fluctua-

tions in the whole tissue, one or both of these rates were varied. The rates are based on experi-

mentally observable changes in red blood cell flux in tumor vasculature[4] and changes in

oxygen uptake by tumor cells grown in different microenvironmental conditions[14,15]. The

values of all other model parameters are listed in Table 1 and more information is provided in

S1 Text.

Results

The goal of this study is to identify the possible mechanisms leading to fast (within 3-minute

duration) fluctuations in oxygen level observed in in vivo tumors. To do that, we first gener-

ated a collection of tumor tissues that varied in their vascular and cellular fractions (section

3.1) and determined the numerically stable oxygen distribution within these tissues (section

3.2). Next, we identified in silico tissues for which the average pO2 values best fit the four
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specific experimental data (section 3.3). These tissues were used to investigate whether the

observed short-term oxygen fluctuations can arise as an effect of altered oxygen supply from

the vasculature or altered oxygen uptake by tumor cells (section 3.4). The identified optimal

influx/uptake schedules were then applied to a larger sample of in silico tissues with initial pO2

levels close to the experimental data to assess the schedules’ robustness and reproducibility

(section 3.5).

Generation of in silico tissues with a stable oxygen distribution

In general, the oxygen distribution within the tissue—that is, the extent and localization of

well-oxygenated vs. hypoxic regions—depend on the number and placement of vessels and

both tumor and stromal cells. Therefore, we generated a collection of in silico tissues with dif-

ferent vascularity (a fraction of the tissue that is occupied by the vessels), as well as tumor and

stromal cellularity (a fraction of the tissue populated by tumor or stromal cells, respectively).

In particular, we considered tissue vascularity to be between 0.5% and 5% of the whole tissue

area, in increments of 0.5%. The fractions of tissue inhabited by tumor cells was varied

between 10% and 95%, and by stromal cells between 5% and 95%, both in increments of 5%.

We have ensured that the total of cellular and vascular fractions does not exceed 100% of the

tissue area. The locations of all vessels and cells were chosen randomly, and we applied the

repulsive force algorithm described above to resolve overlaps between the cells and vessels. In

all of these simulations, the oxygen influx from vessels was assumed identical (with δV(t) = 1),

as was the oxygen uptake by each tumor cell (with δT(t) = 1).

For each in silico tissue, we applied the diffusion-reaction equation of oxygen kinetics to

generate a stable oxygen distribution. As a stability criterion, we calculated the L2-norm

between two consecutive oxygen distributions:

εn
g
¼ kgn � gn� 1k

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XNi ;Nj

i;j¼1

ðgnij� g
n� 1
ij Þ

2

v
u
u
t

Table 1. Model physical and computational parameters.

Physical parameters Value References

Tumor cell diameter 2RT = 15 μm [16,17]

Stromal cell diameter 2RS = 7.5 μm [18]

Vessel diameter 2RV = 40 μm [19]

Force stiffness F ¼ 50 mg=mm � s2 [20,21]

Medium viscosity ν = 250 μg/μm�s [22]

Oxygen diffusion Dg ¼ 100 mm2=s [23,24]

Vascular level of oxygen γmax = 60 σg/μm3[60mmHg] [6,19,25]

Michaelis constant κm = 134 σg/μm3 [26]

Tumor base oxygen uptake rate Tmax = 0.382 σg/s � cell volume [26]

Stromal base oxygen uptake rate Smax = 0.382 σg/s � cell volume [26]

Influx rate 0�δV(t)�1

Uptake rate 0�δT(t)�50

Computational parameters

Domain size O = [−500,500]×[−500,500] μm2

Grid width Δx = 5 μm
Time step Δt = 0.05 s
Scaling parameter σg = 0.5×10−19g = 0.05 ag

https://doi.org/10.1371/journal.pcbi.1009206.t001
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where, gnij ¼ gðxij; tnÞ is the oxygen value at the grid point xij at time tn = t0+nΔt, and Ni�Nj are

the total number of grid points. A numerically stable oxygen distribution was achieved when

the normalized error reached a small enough value (εn
g
� 10� 10), where

εn
g
¼

εn
g

Ni � Nj

An example of the numerically stable oxygen distribution is shown in Fig 2. The tissue mor-

phology with 3.5% vascularity, tumor cell fraction of 55%, and stromal cellularity of 30% is pre-

sented in Fig 2A, and the final oxygen distribution in Fig 2B. The initial oxygen level was set

up to g0
ij ¼ 0 mmHg uniformly in the whole tissue domain. The average oxygen level in the

whole tissue stabilized at the level of 29.89 mmHg in about 2x104 iteration steps, reaching a

normalized error of 9.99x10-11 (Fig 2C). The final stabilized oxygen level is independent of the

oxygen concentration chosen to initiate this process (Fig B and Table A in S1 Text).

Classification of tissues with specific saturation levels

The generated library contains 1,530 tumor tissues of different morphologies with a numeri-

cally stabile oxygen distribution. The minimum and maximum average pO2 values were

achieved at the levels of 2.06 mmHg and 55.55 mmHg, respectively. All tumor tissues were

divided into five classes according to their average pO2 (from 0 to 60 mmHg with increments

of 12 mmHg).

The parameter space corresponding to each class is shown in Fig 3A in a form of a 3D con-

vex hull, that is, the smallest convex set containing all data points from a given class (color-

coded in blue, red, orange, yellow and white). Almost 1/3 of all tissues (506 cases) stabilized at

a high level of 36–48 mmHg (yellow region). Moderate pO2 levels of 24–36 mmHg were

achieved in 340 tissues (orange region). Low pO2 levels of 12–24 mmHg were reached in 284

tissues (red region), and a similar number of tissues (270) had hypoxic levels of 0–12 mmHg

(blue region). The smallest number of tissues (130) reached a very high pO2 level, above 48

mmHg (white region). In general, the higher tissue vascularity and lower cellularity, the higher

Fig 2. Stabilized oxygen distribution for an exemplary tissue morphology. A. In silico tissue morphology comprised of 3.5% of vasculature (red circles), 55% of

tumor cells (dark purple circles), and 30% of stromal cells (light pink circles). B. The stabilized oxygen distribution color-coded using the EPR imaging color

scheme, with high oxygen levels (yellow) near the vessels and low oxygen levels (cyan) in poorly vascularized regions. C. Changes in the average oxygen

concentration over time from initial 0 mmHg to the stable level of 29.89 mmHg.

https://doi.org/10.1371/journal.pcbi.1009206.g002
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level of average tissue pO2. However, the vascularity and cellularity values need to be tightly

balanced to achieve a desired level of pO2, which is illustrated by three examples in Fig 3B–

3D. Each tissue reached an average pO2 level near 33 mmHg, although the increased tissue vas-

cularity (from 1.5% to 2.5%, to 4%) is accompanied by increased total tissue cellularity (from

30% to 65%, to 95%). The time required for the pO2 levels to numerically stabilize is different

in each case. Less dense tissues require more time (Fig 3B–3D last column), since it takes lon-

ger for the oxygen to reach sparsely located cells. Thus, initial changes in oxygen spatial distri-

bution result mostly from diffusion, before cells start consuming oxygen contributing to the

influx-outflux balance. We also analyzed how the numerically stabilized levels of oxygen

depend on the random locations of vessels and cells by generating 25 different tissues with vas-

cularity and cellularity corresponding to those in Fig 3B–3D. They stabilized at the levels of

32.63, 29.98, and 36.15 mmHg, respectively, with a standard deviation of 2–3 mmHg (Fig C in

S1 Text).

Selection of tissues best fitted to experimental data

For further analysis, we selected computational tissues with stabilized oxygen levels that closely

matched the maximum experimental measurement recorded in each of the four ROIs from

Fig 2 in[6]. In particular, region #1 (black) has an initial pO2 of 36.312 mmHg, and the gener-

ated tissue with the pO2 closest to it, 36.315 mmHg, contains a vascular fraction of 4%, tumor

cell fraction of 15%, and stromal cell fraction of 75% of the tissue area (Fig 4A). The experi-

mental region #2 (red) has a maximum pO2 of 22.89 mmHg, and our in silico tissue configura-

tion with a vascular fraction of 2.5%, tumor fraction of 45%, and stromal fraction of 40%

reached oxygenation of 22.22 mmHg (Fig 4B). The third experimental region (blue) has a pO2

Fig 3. Classification of tissue oxygenation. A. A parameter space (convex hulls) of tissues characterized by vascularity, tumor cellularity and stromal

cellularity classified into five classes with respect to the stabilized average oxygen level. For every tissue characteristic only one tissue morphology was included.

B-D. Three examples of tissues with similar oxygen saturation levels: B. A tissue with vascularity 1.5%, tumor cellularity 15%, stromal cellularity 15%, and

stable oxygen of 33.43 mmHg. C. A tissue with vascularity 2.5%, tumor cellularity 30%, stromal cellularity 35%, and stable oxygen of 33.53 mmHg. D. A tissue

with vascularity 4%, tumor cellularity 75%, stromal cellularity 20%, and stable oxygen of 33.16 mmHg.

https://doi.org/10.1371/journal.pcbi.1009206.g003
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of 13.99 mmHg, while the computational tissue with a numerically stabilized oxygen level of

14.01 mmHg contains a vascular fraction of 1.5%, tumor fraction of 40%, and stromal fraction

of 45% of the tissue area (Fig 4C). Finally, the fourth experimental region (magenta) has a

maximum pO2 near 1.83 mmHg, and the closest generated configuration has an oxygenation

level of 2.06 mmHg and a vascular fraction of 0.5%, tumor fraction of 20%, and stromal frac-

tion of 75% of the tissue area (Fig 4D).

For each case, our goal was to reproduce the oxygen fluctuations shown in Fig 2 from [6].

Our approach was to alter either the oxygen influx rates or the oxygen cellular uptake rates

every three minutes to match each data point that was recorded in in vivo experiments. Since

the fluctuations in the four selected regions have different magnitudes, this would allow us to

assess whether the given mechanism may be responsible for the observed changes in tissue

oxygen levels. Once these rates were determined for the selected in silico tissues, we applied the

same schedules to a set of tissues that stabilized at the similar oxygen levels to show how robust

these optimal schedules are in reproducing oxygen fluctuations.

Fig 4. Reconstruction of oxygen fluctuations in ROIs #1–4. Tissue configurations (top row) for which numerically stabilized

oxygen distributions matched the maximum average pO2 level in each of the region of interests and the reconstructed pO2

fluctuations when either vascular influx rates (middle row) or cellular uptake rates (bottom row) were varied. Straight lines

connect experimental data recorded every 3 minutes. Blue triangles (top, influx) and red stars (bottom, uptake) denote

computational data recorded each minute. Tissue characteristics: A. ROI#1 (black): vascularity 4%, tumor cellularity 15%, and

stromal cellularity 75%. B. ROI#2 (red): vascularity 2.5%, tumor cellularity 45%, and stromal cellularity 40%. C. ROI#3 (blue):

vascularity 1.5%, tumor cellularity 40%, and stromal cellularity 45%. D. ROI#4 (magenta): vascularity 0.5%, tumor cellularity 20%,

and stromal cellularity 75%.

https://doi.org/10.1371/journal.pcbi.1009206.g004
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Reconstruction of experimentally measured oxygen fluctuations

To test the impact of vascular supply on tissue oxygenation, we simultaneously adjusted the

vascular influx of oxygen in each vessel by assigning a fraction δV(t) (between 0 and 1) of the

default maximum influx value γmax. To test the role of tumor cell metabolism on tissue oxy-

genation, we adjusted cellular uptake in all tumor cells by multiplying the default absorption

value Tmax by a constant ratio δT(t) (between 0 and 50) to account for either decreased or

increased cellular uptake. The rates δV(t) and δT(t) were determined using the Mesh Adaptive

Direct Search (MADS) method as implemented in MATLAB1 by the patternsearch routine

[27]. This optimization algorithm utilizes a value calculated at a given time point by a simula-

tion of the underlying deterministic system and does not require derivatives of the objective

function.

Our optimization goal was to minimize the difference between the average tissue pO2 level

recorded experimentally, gEðtkÞ, and the one computed by our model, gCðtkÞ; at the end of

each 3-minute interval (i.e., for tk2{4, 7, 10, 13, 16, 19, 22, 25, 28} minutes, N = 9 intervals in

total), where x(tk−1) is a value of either the vascular influx rate δV(tk−1) or the tumor cell uptake

rate δT(tk−1) at the beginning of each 3-minute time interval (i.e., for tk−12{0, 4, 7, 10, 13, 16,

19, 22, 25} minutes):

min
XN

k¼1

jgEðtkÞ � gCðtkÞj

x ¼ fxðt0Þ; � � � ; xðtN� 1Þg

Once the final optimal schedule (influx or uptake) is determined, the normalized L2-norm

L2 between the simulated and experimental data points is reported as an indication of the

goodness of fit (GoF) of the optimal schedule:

L2ðg
optÞ ¼

1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

ðgEðtkÞ� goptðtkÞÞ
2

s

The optimal influx and uptake rates together with the normalized L2-norms for all ROIs are

listed in the Table 2. Method convergence for the cases with best and worst GoF (both from

ROI#1) is shown in Fig D in S1 Text.

Table 2. Influx and Uptake Schedules for four considered ROIs.

Time intervals GoF

0–4 4–7 7–10 10–13 13–16 16–19 19–22 22–25 25–28 L2ðγoptÞ

Region #1 Black

Influx δV(t) 1 0.832 0.096 0.592 0.410 0.857 0.363 0.602 0.711 0.0013

Uptake δT(t) 1 4.625 50 15.75 50 4.125 50 14.875 9 0.9078

Region #2 Red

Influx δV(t) 0.84 0.709 1 0.1875 0.432 0.850 0.799 0.7168 0.887 0.0754

Uptake δT(t) 1.875 3.125 0.875 50 14.25 1.875 2.25 3 1.165 0.1986

Region #3 Blue

Influx δV(t) 1 0.598 0.676 0.729 0.908 0.629 0.787 1 0.832 0.0757

Uptake δT(t) 1 6.375 4.375 3.375 1.5 5.375 2.625 0.875 2.125 0.0779

Region #4 Magenta

Influx δV(t) 0 0.738 0.762 0.121 0 0.926 0 0 0 0.0003

Uptake δT(t) 50 6.875 6 50 50 2 50 50 50 0.1769

https://doi.org/10.1371/journal.pcbi.1009206.t002
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The resulting simulated fluctuations are shown in Fig 4, and the exemplar oxygen distribu-

tions at each stage are shown in Fig D in S1 Text. The presented results indicate that changes

in vascular influx can reproduce experimentally observed fluctuations in pO2 levels in all four

ROIs (the normalized L2-norms are below 0.1 in all cases). In the case of ROI#3, these influx

alterations are moderate, not exceeding 40%. However, the sudden drops in pO2 level observed

in ROI#1 and ROI#2 requires a substantial decrease in oxygen influx, as much as 80% and

99%, respectively. In the case of ROI#4, when the pO2 level reaches a value near 0, the oxygen

influx must be completely shut down. These changes in intravascular oxygen content are

physiologically plausible, as cases with low or even zero arterial oxygen supply (anoxemia)

have been observed[28]. Here, we showed that short-term fluctuations in tissue oxygenation

can be achieved by temporal alterations in intravascular oxygen supply.

The changes in tumor cell metabolisms (modeled as an increase in oxygen uptake) can

explain smaller fluctuations in tissue oxygenation (ROI#3, the normalized L2-norm below 0.1).

It required up to 6-fold changes in the cellular uptake rate to match these fluctuations. This

mechanism can also fit cases with near-zero oxygen depletion in the whole tissue patch

(ROI#4 and ROI#2, with L2-norms near 0.2). However, it failed to reproduce large (more than

5-fold) and rapid fluctuations (ROI#1, with normalized L2-norm near 1), even considering

changes in cellular uptake of up to 50-fold. Thus, in general, oxygen fluctuations were not cap-

tured by changes in cell metabolism.

Robustness of optimal schedules

The optimal influx/uptake schedules described above were determined using four particular

tissues for which the average oxygen level has stabilized at values closest to the maximum value

recorded for each of the four ROIs from Fig 2 in[6]. Here, we investigated whether these opti-

mal schedules applied to other tissues will reproduce oxygen fluctuations recorded experimen-

tally. One motivation was to test whether tissues of various morphologies but similar average

pO2 levels will respond in a similar way to the schedules that were optimized using one of

these tissues. If fluctuations in the average pO2 level are not sensitive to tissue morphology,

any of these tissues or a small subset of these tissues can be used for further simulation studies

of diffusive therapeutic agents and their impact on tumor progression. Another motivation

was to provide a link between the average data value recorded for radiologic image voxels and

the structure of the corresponding tissues. Potentially, a very large number of tissue structures

may result in the same average pO2 level. Our goal here was to investigate whether additional

information, such as temporal data recorded for the same voxel, will result in a reduced num-

ber of tissue morphologies that reproduce that data. If this tissue number is smaller, we can

determine better conditions for selection of tissue morphologies for further studies of intratu-

moral drug or biomarker distribution. Taken together, we can identify which mechanisms can

reproduce the experimentally observed fluctuations, and to provide criteria for selection of dif-

ferent tissues for which these fluctuations can be reproduced.

To achieve our goals, we first identified four sets of tissues with oxygen levels that stabilized

within +/- 3.5 mmHg of the maximum value recorded for each ROI (#1-black, #2-red, #3-blue,

and #4-magenta). The number of such representative tissues is listed in Table 3 for each ROI.

Next, we applied the optimal influx schedules that were determined for each ROI to the corre-

sponding set of representative tissues. Separately, we also applied the optimal uptake schedules

to these tissues. To measure how well the applied schedules reproduced the experimentally

observed oxygen fluctuations, we recorded the normalized L2-norms (L2ðg
optÞ), as described

above. The total number of tissues considered and the numbers of tissues with L2-norms

below a threshold value of 0.2 are listed in Table 3 for each ROI.
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The obtained results are also summarized graphically in Fig 5. The convex hulls represent a

range of tissue characteristics (i.e., vascularity, tumor cellularity, and stromal cellularity) that

satisfy a particular condition under consideration. The cyan convex hulls in Fig 5A represent

all tissues with the oxygen level that stabilized within +/- 3.5 mmHg of the maximum value

recorded for each ROI. A subset of tissues for which the optimal influx schedule resulted in

oxygen fluctuations that fitted the experimental data with a normalized L2-norm below 0.2 are

shown as green convex hulls. Similarly, a subset of tissues for which the optimal uptake sched-

ule fitted the experimental data with the L2-norm below 0.2 are shown in black. The scatter

plots in Fig 5B show the relationship between the initial numerically stable pO2 (the x-axis

shows the deviation of the simulated pO2 level from the experimental measurement) and the

normalized L2-norm value for each tissue (y-axis). The green dots represent data for the opti-

mal influx schedule and grey dots show data for the optimal uptake schedule. The red dashed

lines represent the normalized L2-norm value of 0.2.

In general, the closest the simulated stabilized oxygen level is to that measured experimen-

tally, the more successful the optimal influx schedule is, since all green dots located below

the red threshold line are concentrated near the 0 value in Fig 5B. These tissues are also

co-localized in Fig 5A, although the tissue characteristics shown as the green convex hulls

span a broader range of values. The exception is ROI#4, for which almost all considered tissues

responded to influx and uptake schedules by following the experimental fluctuations (the

Table 3. Number of tissues representing each ROI and tissues fitting each fluctuation.

Number of representative tissues: ROI#1 ROI#2 ROI#3 ROI#4

within +/- 3.5 mmHg from experimental value 277 189 147 123

with L2-norm<0.2 for the influx schedule 42 38 40 61

with L2-norm<0.2 for the uptake schedule 0 6 15 73

https://doi.org/10.1371/journal.pcbi.1009206.t003

Fig 5. Robustness of optimal influx and uptake schedules. A. Parameter spaces of all tissues with oxygen levels within +/- 3.5 mmHg of the

maximum experimental value for each ROI; 3D convex hulls shown in cyan, together with convex hulls for optimal influx schedule (green) and

optimal uptake schedule (black) that fit experimental data with normalized L2-norm smaller than 0.2. B. Normalized L2-norms for influx schedule

(green dots) and uptake schedule (grey dots) for each tissue from the cyan convex hull. The red dashed line represents the L2-norm value of 0.2. The

results are shown from left to right for: ROI#1 (black), ROI#2 (red), ROI#3 (blue), and ROI#4 (magenta).

https://doi.org/10.1371/journal.pcbi.1009206.g005
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green and black convex hulls almost overlap with the cyan one). The fluctuations in this region

were very small, so they were easier to reproduce by both schedules. As oxygen fluctuations

increased (from ROI#3 to ROI#2, to ROI#1), the numbers of representative tissues that fol-

lowed the experimental data was decreased, and there was no tissue in ROI#1 for which the

optimal cellular uptake schedule resulted in fitting with the normalized L2-norm below 0.2 (no

black convex hull).

Several interesting observations can be made based on these results. We showed that only a

fraction of the tissue morphologies with oxygen levels that stabilized near the given experimen-

tal data are able to reproduce temporal changes in tissue pO2 when the vascular influx of oxy-

gen is varied. These well-fitted tissues have numerically stabile pO2 levels within +/- 1mmHg

of the experimental data. Thus, for future applications we can reduce the searching radius

from 3.5 to 1 mmHg in order to find plausible tissue morphologies.

By comparing simulation results with the vascular influx schedule vs. the cellular uptake

schedule, we conclude that alterations in vascular oxygen levels were able to reproduce the

observed fluctuations. On the other hand, in order to achieve the same effect when the meta-

bolic changes in tumor cells are considered, the cells would need to increase their oxygen

absorption by 50-fold over a span of 3 minutes, which may not be biologically feasible. While

it has been reported in the literature that cellular oxygen uptake can vary greatly between cell

lines (i.e., 1–350 amol/s per cell[29], and 1–120 amol/s per cell[30]), changes reported in the

same cells varied no more than 10-fold when the culture conditions were modified[14,31].

Discussion

Motivated by published experimental data that showed frequent fast fluctuations in tissue oxy-

genation (as high as 30 mmHg over 3-minute intervals), we investigated plausible biological

mechanisms that could explain these results. The first hypothesis we tested was that pO2 fluc-

tuations are related to changes in vascular oxygen supply. We generated a large number of in

silico tumor morphologies and selected those for which numerically stable pO2 levels were the

closest to the experimental data in each region of interest (ROI). Next, we used computational

optimization techniques to determine influx schedules that best fitted the experimental fluctu-

ation data. Finally, we applied these optimal schedules to other tissues with similar pO2 levels

to test whether they will respond in a similar way to the same influx schedules. This procedure

showed that rapid changes in vascular oxygen supply can explain the fluctuations observed in

[6] in all considered ROIs.

However, the same mouse experiments showed no differences in the intensity of an EPR-

specific imaging tracer in the same ROIs. Since this tracer is supplied intravenously but is not

absorbed by the cells, this suggested that blood flux in the tumor vasculature is steady and that

the pO2 fluctuations may be a result of increased oxygen uptake by the tumor cells. Therefore,

we also tested the hypothesis that modulations in cellular oxygen absorption are responsible

for the observed pO2 fluctuations within the tissue. Using the same set of in silico tissues, and

applied computational optimization techniques to determine most optimal uptake schedules

that fitted the experimental fluctuation data. Again, we applied these optimal schedules to

other tissues with similar pO2 levels to test schedule robustness. This procedure showed that in

order to fit fluctuations with more than 5-fold magnitude, the 50-fold changes in cellular oxy-

gen absorption would have to occur over 3-minute intervals, which may not be biologically

feasible. Thus, we showed computationally that changes in oxygen influx are the most probable

explanation of cyclic hypoxia observed in EPR imaging experiments reported in[6].

Moreover, we provided a link between the average data value recorded by radiologic images

and the cellular/vascular architecture of the tumor tissue. Since a cross section of a single EPR
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voxel has an area about a millimeter square, the underlying tissue patch is large enough to con-

tain subregions of different characteristics. For example, it may include zones with no vascula-

ture, with severe hypoxia, or high cellular density that is poorly penetrated by drugs, or may

harbor resistant tumor cell subpopulations. Such cellular-scale phenomena will not be

reflected in the average values reported by radiologic images. To capture information on the

cellular scale based on average values novel computational approaches are needed. Potentially,

a very large number of tissue architectures may result in the same average pO2 level. However,

by adding a series of temporal data recorded for the same voxel, we showed that the number of

tissue morphologies capable of reproducing the underlying temporal dynamics of oxygen is

greatly reduced. In the cases discussed here, we were left with about 40 different tissues for

each ROI out of over 1,500 distinct tissues generated initially. This remaining number of tis-

sues is computationally manageable for any further analysis or simulations, giving us a tool for

microscale modeling (at the individual cell level) based on macroscale data (average value in

tissue voxel).

The model presented here was developed with some simplified assumptions. All vessels in

the model are of the same size and contain identical levels of oxygen. Similarly, all tumor cells

are of the same size, as are the stromal cells. This was done to reduce model complexity, since

the spatial variations in tissue morphology (vascular, tumor and stromal fractions) already

introduced a fair amount of heterogeneity. However, in future research, we will incorporate

variable sizes of structural tissue elements, as well as non-uniform oxygen influx and con-

sumptions rates in tumor and various stromal cells. It was discussed in[6] that oxygen fluctua-

tions are correlated with local vascular functionality within the tumor. While currently this is

not included, in future applications we can add a possibility to model whether the vasculature

is patent. In addition, the voxels of radiologic images are volumetric, and we only model the

2D voxel cross section here. Our model can be adapted to full 3D space and can incorporate

3D spatial heterogeneities. All mathematical equations, both the agent-based model rules and

the reaction-diffusion equation for oxygen kinetics, can be easily extended to a 3D space.

Tumor and stromal cells can be represented as spheres (as we have done in[11,32] and others

were reviewed in[33,34]), and tumor vasculature as collections of branched tube segments (as

in[35,36,37] and in models reviewed in[33,34]). The only difficulty in 3D models is in visuali-

zation of irregular patterns of diffused oxygen and in the time required to complete these sim-

ulations, since smaller time steps may be needed to assure computational code stability and

convergence.

To our knowledge, this is the first model that generates tissue morphologies corresponding

to voxels of radiologic images. The topic of connecting radiology and histology images is of

increasing interest since cellular-resolution images harbor detailed information about tumor

composition, spatial heterogeneities, and molecular or metabolic landscapes. However, histol-

ogy samples are collected from tumor biopsies or resections, and thus can only be acquired a

limited number of times. In contrast, radiologic images provide non-invasive longitudinal

information of tumor states and responses to treatments. Several co-registration methods

between these two imaging modalities have recently been developed[38–40]. While mathemat-

ical modeling has been previously used in connection with radiologic images[41–46], only

continuous models were utilized. Several different agent-based models were, in turn, used to

model analogues of in vivo tumor histology[47–50], but were not extended to radiologic imag-

ing data. Fluctuations in the tumor microenvironment have been addressed in the context of

long-term evolutionary dynamics, but have not compared to experimental data[51,52].

While we used pre-clinical data collected using EPR imaging here, our goal for future stud-

ies is to develop a similar macro-scale to micro-scale model based on clinically-relevant radio-

logic imaging. Several different minimally invasive imaging tests can be used for longitudinal
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monitoring of tumor response to therapies, such as computed tomography (CT), magnetic res-

onance imaging (MRI), or positron emission tomography (PET). Of particular interest to our

studies are methods that can provide additional information related to tissue structure or oxy-

gen/drug pharmacokinetics. The dynamic contrast-enhanced MRI (DCE-MRI) can capture

temporal information on tissue perfusion, microvascular permeability, vascular volume frac-

tion, extracellular-extravascular volume fraction, and diffusivity of tissue water, which, com-

bined, can predict outcomes and guide therapy[53,54]. To augment temporal resolution, new

under-sampling techniques coupled with parallel imaging methods (GRASP, Golden-angle

Radial Sparse Parallel imaging) can be used to continuously acquire images over a long-term

continuum (i.e. 5 minutes) at repeatable, small time intervals (i.e. 2.5 seconds), generating a

detailed library of exquisitely time-resolved data[55]. Two other non-invasive imaging

approaches, TOLD MRI (Tissue Oxygenation Level Dependent MRI) and BOLD MRI (Blood

Oxygenation Level Dependent MRI), can be used to visualize information on tumor oxygen-

ation and vascular hemodynamics[56,57]. This additional information at a voxel level can be

used to reduce the number of representative tissue morphologies in our micro-macro scale

mechanistic link for cell-scale simulations of various anti-cancer treatments (e.g., chemother-

apy, hypoxia-activated targeted therapy, radiotherapy, or immunotherapy). These micro-

scopic-level predictions can be compared to longitudinal radiologic data on a tissue voxel

scale. This can give us an insight into heterogeneities of intratumoral drug distributions or

immune cell penetration patterns, and on the emergence of tissue subregions that can harbor

chemo-, or radio-resistant cells. Thus, the mechanistic models of the tumor, such as the one

we have described here, will enable patient-specific simulations to predict the trajectory of

tumor response to specific interventions.

Supporting information

S1 Text. This supporting information includes the computational procedure for resolving

cell overlaps, discussion on the choice of model parameters, description of an algorithm

for stabilizing oxygen gradient, and details of the optimization protocol used for fitting

experimentally observed fluctuations. Fig A. Resolving cell overlapping conditions using

repulsive forces. A left-top quarter of the tumor tissue domain characterized by 2% vascular-

ity, 30% tumor cellularity, and 35% stromal cellularity with tumor cells represented by purple

circles, stromal cells as pink circles, and vessels as red circles. A. An initial iteration 0 before

repulsive forces are applied, showing overlapping cells and vessels. B. By iteration 25, repulsive

forces have been applied and cell relocation has begun; only some cells remained overlapped.

C. In iteration 100, all overlapping conditions have been resolved and cell positions have stabi-

lized to reflect no overlapping. We allow vessels to overlap to represent irregular vessels shapes

often seen in histology images.Fig B. Oxygen stabilization within the tumor tissue and the

role of initial oxygen concentration. A-D. Snapshots showing oxygen distribution during the

stabilization process, at iterations 0, 2000, 10000, and 18970. E. Temporal evolution of the

average oxygen level from 0 mmHg until is stabilizes at the 29.89 mmHg with the stabilization

error below 10−10. F. Tissue morphology with 3.5% vascular fraction, 55% tumor cellularity,

and 30% stromal cellularity; vessels are represented by red circles, tumor cells by purple circles,

and stromal cells by pink circles. G. Temporal evolution of average oxygen levels for 21 simula-

tions of the same tissue shown in F. Each simulation is indicated by a different color that corre-

sponds to initial uniform tissue oxygenation. All simulations stabilized around the 29.89

mmHg, however, simulations with lower initial oxygen concentrations have stabilized faster

(cyan and blue lines) than those that started with higher initial oxygen concentrations (red and

yellow lines). Table A. Initial tissue oxygenation vs. final stabilized oxygen level. Stabilized
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average oxygen levels for tissue of characteristics: 3.5% vascular fraction, 55% tumor cellular-

ity, and 30% stromal cellularity, and initial uniform oxygen concentration reported as % of the

maximal value of 60 mmHg. The stabilized oxygen levels units: mmHg. Fig C. Analysis of

oxygen stabilization for tissues of identical characteristics but different morphologies. A.

Levels of oxygen stabilization for 25 tissues of vascularity: 1.5%, tumor cellularity: 15%, stromal

cellularity: 15%, with an average oxygenation level of 32.63 mmHg +/- 3.3 mmHg. B. Levels of

oxygen stabilization for 25 tissues of vascularity: 2.5%, tumor cellularity: 30%, stromal cellular-

ity: 35%, with an average oxygenation level of 29.98 mmHg +/- 2.4 mmHg. C. Levels of oxygen

stabilization for 25 tissues of vascularity: 4%, tumor cellularity: 75%, stromal cellularity: 20%,

with an average oxygenation level of 36.15 mmHg +/- 2.4 mmHg. D. Spatial gradient of oxy-

gen with lowest average level among tissues in A. E-I. Spatial gradients of oxygen with highest

(left) and lowest (right) average levels among tissues considered in A-C. Fig D. Convergence

of the MABS method for influx and uptake schedules for ROI #1 (black). A. Experimental

fluctuations (solid line) and simulated fluctuations (blue triangles) for the influx schedule with

corresponding oxygen distributions at each time point (above the arrows). An inset shows tis-

sue morphology. B. The convergence graphs for each of the 8 time segments with the converg-

ing influx rates (red pins) and the converging objective function values (blue pins). C.

Experimental fluctuations (solid line) and simulated fluctuations (red stars) for the uptake

schedule with corresponding oxygen distributions at each time point (above arrows). D. The

convergence graphs for each of the 8 time segments with the converging uptake rates (red

pins) and the converging objective function values (blue pins).
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