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Abstract: Approximately 400 Garcinia species are distributed around the world. Previous studies
have reported the extracts from bark, seed, fruits, peels, leaves, and stems of Garcinia mangostana, G.
xanthochymus, and G. cambogia that were used to treat adipogenesis, inflammation, obesity, cancer,
cardiovascular diseases, and diabetes. Moreover, the hypoglycemic effects and underlined actions
of different species such as G. kola, G. pedunculata, and G. prainiana have been elucidated. However,
the anti-hyperglycemia of G. linii remains to be verified in this aspect. In this article, the published
literature was collected and reviewed based on the medicinal characteristics of the species Garcinia,
particularly in diabetic care to deliberate the known constituents from Garcinia and further focus on
and isolate new compounds of G. linii (Taiwan distinctive species) on various hypoglycemic targets
including α-amylase, α-glucosidase, 5′-adenosine monophosphate-activated protein kinase (AMPK),
insulin receptor kinase, peroxisome proliferator-activated receptor gamma (PPARγ), and dipeptidyl
peptidase-4 (DPP-4) via the molecular docking approach with Gold program to explore the potential
candidates for anti-diabetic treatments. Accordingly, benzopyrans and triterpenes are postulated to
be the active components in G. linii for mediating blood glucose. To further validate the potency of
those active components, in vitro enzymatic and cellular function assays with in vivo animal efficacy
experiments need to be performed in the near future.
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1. Introduction

1.1. Impact of Diabetes

Diabetes mellitus (DM) is a global health issue due to its high risk factors, e.g., obesity, physical
inactivity, ageing, bad eating habits, genetic predisposition, hypertension, and hyperlipidemia [1].
It is worth noting that DM is a metabolic disease and more than 400 million people suffered from
diabetes in 2014 [2]. Interestingly, the adult diabetic population of 2014 has risen from 4.7% to 8.5%
worldwide in contrast to the population in 1980 [2]; the morbidity and mortality were 4.95% and 4.00%,
respectively [3]. In the future, the diabetic population will increase to 642 million by around 2045 and
this population will continue to grow [3].
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1.2. Therapy Agent of Diabetes

Nowadays, many clinical medicines such as α-glucosidase and α-amylase inhibitors such as
Acarbose are applied to delay the metabolism of carbohydrates and control post-meal blood glucose
for diabetes patients [4]. Metformin and 5-Amino-4-Imidazolecarboxamide Riboside (AICAR) are
activators that increase the glucose absorption of skeletal muscles and inhibit gluconeogenesis of
the liver [5,6]. The major anti-diabetes functions of Sitagliptin increase concentrations of incretin.
Incretin can further potentiate the pancreas to produce insulin and inhibit the production of glucagon
to decrease blood glucose levels [7]. Rosiglitazone can reduce the resistance of insulin absorption in
liver cells, skeletal muscle cells, and fatty tissues [8]. Additionally, GW-9662 is an agonist that promotes
peroxisome proliferator-activated receptors gamma (PPARγ) expression, which could stimulate fat
metabolism, and trigger insulin pathways to regulate blood glucose and has anti-inflammatory
properties [9].

1.3. Distribution of Garcinia Plants and Recent Discovery of Anti-Diabetic Agents with Garcinia Plants

Approximately 400 Garcinia species are distributed around the world including Bangladesh,
China, India, Indonesia, Taiwan, Thailand, tropical Asia, Southern Africa, and Western Polynesia.
Usually, the Garcinia plants are shrubs or trees. Most of their edible fruits are used in agricultural
societies or the fruits and seeds are used to produce oils and dyes, and to treat various diseases, e.g.,
abdominal pain, food allergies, arthritis, diarrhea, dysentery, and wound infections as past research
has shown [10–16]. Most of the trunks from the Garcinia plants such as Garcinia subelliptica have been
used as building materials to prevent destruction by typhoons in ancient Japan, which is in contrast to
why G. subelliptica were planted as alley trees, in gardens, and as decorative plants [17,18]. Moreover,
East South Asian peoples usually eat the fruit of G. mangostana, G. xanthochymus, and G. cambogia
for calories or nutrition and use the extracts of G. xanthochymus and G. cambogia in curry powder to
increase the sour flavor in India. Interestingly, the extract of G. cambogia is also used as an antiseptic for
preserving food freshness [18,19].

The accumulated literature showed that metabolic syndromes gradually became public health
problems such as obesity, hyperglycemia, hyperlipidemia, and hypertension and lead to cardiovascular
diseases (i.e., atherosclerosis, stroke, or peripheral artery disease) or diabetes [20]. Hereafter, the
medicinal plants or herbs have important characteristics that resist the threat of these diseases because
the adverse side effects of natural compounds isolated from medicinal plants are reduced and often
less severe than those from clinical drugs [21]. Interestingly, previous studies have reported that the
extracts from the bark, seeds, fruits, peels, leaves, and stems of G. mangostana, G. xanthochymus, and G.
cambogia are used to treat adipogenesis, inflammation, obesity, cancer, cardiovascular disease, and
diabetes. Furthermore, these extracts could also trigger the myotubes and skeletal cells to absorb
glucose and to balance blood glucose levels [20,22–26]. Remarkably, numerous studies have indicated
that the Garcinia species, e.g., G. cambogia [10], G. xanthochymus [11], G. kola [12], G. mangostana [13,14],
G. pedunculata [15], and G. prainiana [16] contain plenty of biflavonoids and phenolic compounds.
These compounds have been found to inhibit the enzymatic activity of α-amylase and α-glucosidase
for propagating an anti-diabetic effect [27]. Concurrently, the variability of biological actions includes
anti-diabetic agents that are dependent on the constituents of plants that grow locality, differently
used parts (root, leaves, flowers), or seasonal harvests that exhibit various compositions or ratios
for each component, metabolite, or derivative including different delivery systems such as powers,
pills, or teas, among others. Generally, batch to batch control or a standard operating system via
index chemicals or fingerprints is crucial for the evaluation of the efficacy of crude extracts, the
yields in isolation, and the purification of active ingredients. In this article, the published articles
were collected and reviewed. We have addressed the isolated compounds for all Garcinia species
by molecular structure and briefly described their targeted biomolecules for anti-diabetic function
according to chemical category via PubChem such as benzophenone (one compound isolated from
G. mangostana), biflavonoids (one compound isolated from G. mangostana and seven compounds
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isolated from G. kola), xanthones (forty-four compounds isolated from G. mangostana, thirty-two
compounds isolated from G. xanthochymus, and nine compounds isolated from G. hanburyi), and
procyanidin (one compound isolated from G. mangostana). The medicinal characteristics of the Garcinia
species for the care of DM (Table 1) are listed to deliberate on the potential constituents of certain
Garcinia species. Interestingly, G. linii is one endemic evergreen tree only distributed in outlying
islands—Langyu land and Green island of Taiwan. To the best of our knowledge, active constituents
including 15 xanthones, 6 biphenyls, 2 benzopyran, and 13 known compounds isolated from the root
of G. linii have been reported with anti-tubercular activity and cytotoxicity [28,29]. However, the
medicinal values of G. linii extract as an anti-diabetic agent remain to be explored. Moreover, this
review article simultaneously offers insights into dissecting the molecular mechanism of isolated
compounds such as the three new xanthones (linixanthones A–C), five new biphenyls (garcibiphenyls
A–E), and two new benzopyran (garcibenzopyran and (S)-3-hydroxygarcibenzopyran) of the G. linii
root from Taiwan [28,29], combined with the nine known xanthones (10-O-Methylmacluraxanthone;
1,5-Dihydroxyxanthone; 1,6-Dihydroxy-3,5,7-trimethoxyxanthone; 1,6-Dihydroxy-5-methoxyxanthone;
1,6-dihydroxy-5,7-dimethoxyxanthone; 1,6-Dihydroxy-7-methoxyxanthone; 1,7-Dihydroxyxanthone;
1,7-Dihydroxy-3-methoxyxanthone; 5-Hydroxy-1-methoxyxanthone) from the Garcinia
family on various hypoglycemic targets including α-amylase, α-glucosidase, 5′-adenosine
monophosphate-activated protein kinase (AMPK), insulin receptor kinase (IRK), PPARγ, and
dipeptidyl peptidase-4 (DPP4) via the molecular docking approach with Gold program (Cambridge
Crystallographic Data Centre, Cambridge, UK).

1.4. α-Amylase and α-Glucosidase

To regulate the postprandial blood glucose level, diabetic patients took carbohydrate hydrolase
inhibitors such as α-glucosidase and α-amylase to avoid hyperglycemia. α-amylase and α-glucosidase
are the key enzymes to hydrolyze carbohydrates and help glucose ingestion [30]. Therefore, diabetic
patients have to control their blood glucose by using clinical drugs such as Precose® (Acarbose)
and Glyset® (Miglitol) [4] or other anti-diabetic natural compounds [27] to prolong hydrolysis of
carbohydrates against hyperglycemia. In cumulative studies, a few crude extracts from the Garcinia
species, e.g., G. cambogia, G. xanthochymus, G. kola, and G. mangostana [10–14], containing biflavonoids,
polyphenols, and xanthones, also inhibit the enzyme activity ofα-amylase andα-glucosidase. Therefore,
the extracts are able to help diabetic patients to control their blood glucose levels by the inhibition of
carbohydrate hydrolysis. Our docking results (Figure 1) showed that benzopyrans and triterpenes
had a higher binding affinity with α-amylase and α-glucosidase than with biflavonoid and phenolic
compounds. Additionally, α-tocopherolquinone (a kind of benzopyrans) and squalene (a kind of
triterpenes) had a high binding affinity with α-amylase and α-glucosidase to prolong carbohydrate
hydrolyzation, reduce the absorption of glucose and mediate the blood glucose level.
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Figure 1. The binding affinity of benzopyrans, triterpenes, stigmastane, biflavonoid, and phenolic on α-amylase, α-glucosidase, AMPK, insulin receptor kinase,
PPARγ, and DPP4. Molecular docking was performed by Gold program. Ranking/ChemPLP score presents the order of score value. The model setup was genetic
algorithms (GA) run 10 times, a GA search efficiency 200%, removal of water and hydrogen, and ChemPLP scoring. ChemPLP used hydrogen bonding and multiple
linear potentials to model Van der Waals and repulsive terms. α-Tocopherolquinone (a kind of benzopyrans) and squalene (a kind of triterpenes) had a higher binding
affinity than the reference drug, Acarbose with α-amylase and α-glucosidase prolonging the carbohydrates hydrolyzed to reduce the absorption of glucose and
regulate blood glucose levels. Interestingly, α-tocopherolquinone also had a higher binding affinity than reference drugs (Metformin, Chaetochromin, and GW9662)
with AMPK1, AMPK2, PPARγ, and IRK templates, respectively; and binding signals would stimulate insulin secretion in contrast to Squalene, which only had a
binding affinity with AMPK1. However, α-tocopherolquinone and Squalene still had a stronger binding affinity than Sitagliptin (reference drug) with DDP4 template
that could prevent incretins from being digested by DDP4 and promote skeletal cells’ uptake of glucose from the blood.
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1.5. 5′-Adenosine Monophosphate-Activated Protein Kinase (AMPK)

The 5′-adenosine monophosphate-activated protein kinase (AMPK) is composed of α subunits,
regulatory β subunits, and r subunits and is a sensor of cellular energy level. Cellular energy levels
were changed by the ratio of AMP:ATP and ADP:ATP that influenced cellular growth and survival [31].
Previous research indicated that AMPK was activated and the rate of ATP-generating processes
would increase while the rate of ATP-consuming processes decreased [32]. This mechanism has
revealed that AMPK could restore energy homeostasis through an anabolic pathway to consume
ATP or catabolic pathways for ATP production [33]. Hence, some clinical/reference drugs such as
Metformin and Phenformin could assist peripheral tissues or skeletal muscles to uptake or utilize
glucose and even increase insulin sensitivity [5,34]. To avoid adverse effects (diarrhea, nausea,
ketonemia, etc.) from clinical drugs such as Metformin and Phenformin [5,35], some natural
products such as curcumin [36], rutin, quercetin [37], and catechin [38] were applied to battle or
ameliorate diabetes. Notably, G. xanthochymus in South East Asia, Africa, Australia, Thailand, and
China [39] showed that it was folk medicine used for treating several diseases including diabetes.
In previous studies, there were three major compounds identified: 12b-hydroxy-des-d-garcigerrin,
1,2,5,6-tretrahydroxy-4-(1,1-dimethyl-2-propenyl)-7-(3-methyl-2-butenyl) xanthone, and
1,5,6-trihydroxy-7,8-di(3-methyl-2-butenyl)-6′,6′-dimethylpyrano (2′,3′:3,4) xanthone that were
isolated in the extract of G. xanthochymus. These compounds had a significant effect on the promotion
of glucose uptake in skeletal cells when compared with Metformin [25]. Our docking results showed
that α-tocopherolquinone, 6β-Hydroxystigmast-4-en-3-one, 1,6-dihydroxy-5,7-dimethoxyxanthone,
1,5-Dihydroxyxanthone, 1,5-Dihydroxy-3-methoxyxanthone, and Squalene were isolated from G. linii
(Figure 1) and had a higher binding affinity with AMPK α1 than Metformin. Interestingly, there is
a significant effect that increases glucose uptake in skeletal cells when compared with Metformin.
Alternatively, G. linii alone or in combination with Metformin can be more prospective to alleviate
side-effects or elevate applicable time (e.g., cumulative effect) by reducing Metformin dosage for
clinical use.

1.6. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)

The peroxisome proliferator-activated receptor (PPAR) is a nuclear receptor superfamily and
has three isotypes α, δ, and γ that can regulate lipid metabolism, inflammation, and insulin
sensitivity as well as insulin production and secretion for treating diabetes [40–42]. PPARγ
could mediate lipid mobilization, glucose metabolism, inflammatory response, and adipokines
production and secretion [41,43]. Henceforth, cumulative studies emerged and showed PPARγ
ligands that could promote triglyceride storage in fat that was implicated in insulin resistance
and control adipocyte-secreted hormones [41]. In clinical treatments, Rosiglitazone is an agonist
of PPARγ that could ameliorate the memory of Alzheimer patients and even increase insulin
sensitivity for diabetes [44]. In traditional therapy, thiazolidinedione (TZD) was usually used
to treat diabetes patients but TZD promotes triglyceride storage that causes adverse effects such as
headache, muscle soreness, obesity, edema, etc. [45]. Previously, the extract of G. cambogia contained
(−)-hydroxycitric acid (HCA), which was found to be an active ingredient used to treat obesity and
obesity-related diseases, e.g., diabetes, atherosclerosis, etc. [46]. The results (Figure 1) showed that
α-tocopherolquinone, 6β-Hydroxystigmast-4-en-3-one, 1,6-Dihydroxy-3,5-dimethoxyxanthen-9-one,
and 1,6-Dihydroxy-5-methoxyxanthone stimulated insulin sensitivity, and in virtual screening via
the binding affinity of GW9662 (reference drug), which is lower than those of compounds isolated
from G. linii.

1.7. Dipeptidyl-Peptidase 4 (DPP-4) and Glucagon-Like Peptide 1 (GLP-1)

The dipeptidyl peptidase-4 (DPP-4) could hydrolyze glucagon-like peptide 1 (GLP-1) or gastric
inhibitory polypeptide (GIP) and lead to negative effects on the concentration of incretins (GLP-1 and
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GIP), insulin secretion, and glucose tolerance due to DPP4 gene expression [47]. Consequently, some
diabetes patients may take a DPP4 inhibitor such as Sitagliptin to increase insulin secretion for diabetes
therapy and ameliorate the therapeutic effect of GLP-1 [48,49]. The GLP-1 was treated with DPP4
inhibitors against diabetes from 2005 to 2007 and still had adverse effects such as rhinopharyngitis
and upper respiratory tract infections [50]. Therefore, some cumulative studies indicated that natural
compounds, e.g., rutin, curcumin, antroquinonol, quercetin, and 16-hydroxy-cleroda-3, 13-dien-15,
16-olide (HCD), could inhibit DPP4 activity, such as the inhibitory efficacy of curcumin and quercetin,
better than Sitagliptin [36,37,51]. A previous report showed that the extract of the G. cambogia fruit,
which contains hydroxycitric acid (HCA), could decrease the serum insulin levels and prolong intestinal
tracts to absorb glucose as well as to potentially change incretins (GLP-1, GIP) secretions [10,52].
Taken altogether, the extract of G. cambogia could regulate blood glucose levels, treat metabolic
syndromes, and lead to weight loss. To increase insulin sensitivity, our docking results showed that
benzopyrans, triterpenes, stigmastane, and biflavonoids were found to act as insulin receptor agonists
and promoted glucose uptake in skeletal cells from blood. Hereafter, incretins are degraded by DPP4
and lead to pancreatic β cells to decrease secretions of insulin (Figure 1). Of note, the reference drug,
Sitagliptin, plays a major role in inhibiting the activation of DPP4. Obviously, our data indicated that
α-tocopherolquinone and squalene had stronger binding affinity with DPP4 as an inhibitor than with
Sitagliptin to prevent incretin (GLP-1) degraded by DPP4.

1.8. Insulin Receptor Kinase (IRK)

α-subunits of insulin receptors receive signal insulin, which triggers tyrosine kinase of β-subunits
(Insulin receptor kinase, IRK) to form intracellular auto-phosphorylation at Tyr1158, Tyr1162, and
Tyr1163 [53]. Once the insulin receptors are activated, they promote PI3K to phosphorylate PIP2;
and, further, PIP3 leads the PDK1/2 activation. When AKT was phosphorylated by receiving the
signal, the downstream AS160 would prompt glucose transporter 4 (GLUT4) translocation and uptake
glucose into the cells [54]. Previously, some natural compounds have been demonstrated such as
(+)-antroquinonol isolated from Antrodia cinnamomea [55], rutin (a kind of flavonoid) isolated from
Toona sinensis Roem [53], and the phenolics isolated from coffee silverskins and husks [56] that result in
lowered glucose levels. All of these compounds could enhance the activation of IRK to promote the
skeletal tissues to absorb glucose and, consequently, ameliorate insulin resistance by reducing blood
glucose levels in the diabetic patients. Therefore, in this study, we collated research from the literature
by the application of the Garcinia species for various anti-diabetes treatments. Previous literature
revealed that G. xanthochymus, G. kola, G. mangostana, G. pedunculata, and G. prainiana contained natural
compounds, e.g., biflavonoids, xanthone, HCA, and depsidone, which could augment IRK activity and
regulate the blood glucose levels for diabetic patients [10,15,16,25,57]. Accordingly, our docking data
revealed that only α-tocopherolquinone had a higher binding affinity with IRK than a reference drug
(Chaetochromin), suggesting that α-tocopherolquinone acts as an anti-hyperglycemic compound to
heighten IRK activity (Figure 1).
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Table 1. Summary of the Garcinia species on specific targets of anti-diabetes with basic findings.

Species. Molecular Targets Basic Findings

G. cambogia α-Glucosidase,
PPARγ, DPP4

Small intestinal exposure to HCA resulted in a modest reduction in
glycemia of healthy individuals [20]. Mixture (GE containing HCA as an
active ingredient, PE, anti-adipogenic activity) reduced the expression of

adipogenesis-related factors C/EBP-α, PPARγ, and FAS [46]. Insulin
resistance did not develop in HCA-SX-supplemented rats via lowered

fasting plasma insulin and glucose [58,59].

G. xanthochymus
α-Amylase,

α-Glucosidase, AMPK,
IRK

Activated PI3K/PKB/Akt signaling pathway and AMPK signaling
pathway, resulting in the translocation of GLUT4 in L6 myotubes
without affecting the expression of GLUT4 [18]. Identification of

α-amylase inhibitor from G. xanthochymus [21].

G. kola α-Amylase, IRK KV offered significant anti-diabetic relief via reduction of FBG,
α-amylase and HbA1c [22].

G. mangostana α-Amylase, IRK
MVR from G. mangostana fruit pericarp had an α-amylase inhibitor and
enhanced insulin sensitivity [23,24] GME significantly reduced the blood
glucose level in normoglycemic rats and STZ-induced diabetic rats [57].

G. pedunculata IRK Elevated insulin levels of rats [25].
G. prainiana IRK Increased insulin sensitivity of 3T3-L1 adipocytes [26].

G. cambogia extract (GE); (−)-hydroxycitric acid (HCA); Pear pomace extract (PE), CCAAT-enhancer binding protein
alpha (C/EBP-α); Peroxisome proliferator-activated receptor gamma (PPARγ); fatty acid synthase (FAS); insulin
receptor kinase (IRK); phosphatidylinositol-3 kinase (PI3K)/the serine/threonine kinase protein kinase B (PKB/Akt);
AMP-activated protein kinase (AMPK); fasting blood glucose (FBG); kolaviron (KV); mangosteen vinegar rind
(MVR); Super CitriMax hydroxycitric acid (HCA-SX), a novel calcium/potassium salt; G. mangostana pericarp
ethanolic extract (GME); glycated hemoglobin (HbA1c); Streptozotocin (STZ).

2. Conclusions and Future Remarks

In ancient societies, the Garcinia species were used as a daily supply, e.g., building material, food
additives, fruit juice, jam, and dye. However, natural compounds that are isolated from the bark, seeds,
fruits, peels, leaves, and stems of some Garcinia species such as G. kola, G. pedunculata, G. prainiana, G.
mangostana, G. xanthochymus, and G. cambogia have been reported to have a variety of medicinal values.
These compounds are applied to treat adipogenesis, inflammation, obesity, cancer, cardiovascular
diseases, and diabetes. Predominantly, the isolated natural compounds of G. linii in this study are
employed to do molecule docking with α-amylase, α-glucosidase, AMPK, IRK, PPARγ, and DPP4,
respectively. Of note, our docking data revealed that the ChemPLP scores for Benzopyrans, Flavonols,
Polyphenol, Stigmastane, and Triterpenes isolated from G. linii had a higher AMPK affinity when
compared with Metformin; and, alternatively, Garcinia linii alone or in combination with Metformin
can have a greater potential to alleviate side-effects or elevate applicable time (e.g., cumulative effect)
by reducing Metformin dosage. These results demonstrated that benzopyrans and triterpenes had
a stronger binding affinity with anti-diabetic target molecules as a template than reference drugs,
e.g., Acarbose with α-Amylase and α-Glucosidase, Metformin with AMPK, Sitagliptin with DPP4,
Chaetochromin with IRK, and GW9662 with PPARγ. According to this evidence, benzopyrans and
triterpenes are suggested to be the active components in G. linii for mediating blood glucose. To further
validate the potency of these active components, compounds purified and subsequently the enzyme
activity test, an in vitro cellular function assay and an in vivo animal efficacy experiment need to be
conducted to investigate their potential role in anti-diabetes and anti-hyperglycemia in the future.
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