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Abstract

Vaccination is the most efficient means of preventing influenza infection and its complica-

tions. While previous studies have considered the externalities of vaccination that arise from

indirect protection against influenza infection, they have often neglected another key factor–

the spread of vaccination behavior among social contacts. We modeled influenza vaccina-

tion as a socially contagious process. Our model uses a contact network that we developed

based on aggregated and anonymized mobility data from the cellphone devices of ~1.8 mil-

lion users in Israel. We calibrated the model to high-quality longitudinal data of weekly influ-

enza vaccination uptake and influenza diagnoses over seven years. We demonstrate how a

simple coupled-transmission model accurately captures the spatiotemporal patterns of both

influenza vaccination uptake and influenza incidence. Taking the identified complex underly-

ing dynamics of these two processes into account, our model determined the optimal timing

of influenza vaccination programs. Our simulation shows that in regions where high vaccina-

tion coverage is anticipated, vaccination uptake would be more rapid. Thus, our model sug-

gests that vaccination programs should be initiated later in the season, to mitigate the effect

of waning immunity from the vaccine. Our simulations further show that optimally timed vac-

cination programs can substantially reduce disease transmission without increasing vacci-

nation uptake.

Introduction

Influenza continues to be a significant cause of morbidity and mortality worldwide, imposing

substantial health and economic burdens. In the United States alone, there are over 26 million

influenza infections annually, with the consequential overall economic burden estimated at

$11 billion per year [1]. In Israel, influenza is responsible for over 800,000 infections annually,

translating into an economic burden of ~ $261 million per annum [2].

Vaccination is the most efficient and cost-effective way to prevent influenza and its compli-

cations [3, 4]. As flu is infectious, vaccination also provides unvaccinated individuals with indi-

rect protection by reducing disease transmission. Thus, it has long been recommended that all
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individuals above six months of age be vaccinated against seasonal influenza, particularly the

elderly and individuals at risk [5, 6]. Nevertheless, vaccination coverage in the vast majority of

developed countries, including Israel, is suboptimal [3, 7–10]. Thus, it is essential to improve

our understanding of individuals’ vaccination behavior.

It has been established that ideas, information, and behavior can be contagious [11–15].

Survey questionnaire studies showed that advice from coworkers [16], family members or

close friends [7, 17] could affect an individual’s decision regarding influenza vaccination. Sal-

athé and Khandelwal suggested that health-related behavior is also reflected in social media,

with a strong correlation between the posting of sentiments regarding a new vaccine on Twit-

ter and estimated vaccination rates by region [18]. Therefore, to estimate the predicted vacci-

nation coverage in a population, it is important to take into account that an individual’s

vaccination decision depends in part on that of those in his or her social network [19–22].

The transmission of an idea or behavior is similar to the transmission of a biological agent

[11, 12]. Ideas and behaviors spread by social contagion, while biological agents spread

through biological contagion. Biological contagion, such as the spread of an infectious disease,

could be coupled to the social contagion of attitudes related to the disease, such as the utility of

vaccination. These two dynamic processes affect one another, and the interplay between them

may reveal dynamics that cannot be observed when assessing each process separately [11].

Biological and social contagion can be modeled using a network in which the nodes repre-

sent individuals and the links between the nodes represent biological and social connections,

respectively. The inherent relationships between infectious diseases and vaccination behavior

suggest that they should be examined together [23]. For example, Epstein et al. modeled the

coupled spread of an infectious disease and the fear of said disease [24]. Bauch and Bhattachar-

yya used evolutionary game theory and social learning alongside an epidemiological model to

explore the coupled dynamics of infectious disease and vaccination behavior during a vaccine

scare [25]. Ellsworth and Salathé modeled the negative sentiments about a vaccine that were

spread by complex social contagion and the effect of these sentiments on disease outbreaks

[26]. Mao and Yang integrated an epidemiological model to describe disease spread in con-

junction with an agent-based adaptive learning model to evaluate the impact of behavior imi-

tation on vaccination coverage [23]. Ruan, Tang and Liu developed an SIR with an

information-driven vaccination model, whereby the probability of becoming vaccinated in the

SIR model describing a disease is determined by an information transmission model [27]. Sev-

eral studies examined the spread of disease alongside the spread of information about the dis-

ease using double-layer multiplex networks [28, 29]. However, to the best of our knowledge,

no study has integrated large-scale medical and non-medical data to model the coupled

dynamics of vaccination spread and influenza transmission. Our study utilizes real-life loca-

tions from high-volume cellular data and is calibrated with longitudinal data from seven influ-

enza seasons that include specific spatio-temporal information on influenza infection and

vaccination coverage in Israel.

A comprehensive understanding of the spatiotemporal dynamics of vaccination uptake and

its effect on influenza transmission is crucial for improving health policies intended to control

the disease. One such policy is the timing of influenza vaccination, which should balance several

different considerations. Ideally, vaccination should occur before the onset of influenza activity.

However, the temporal dynamics of influenza activity (i.e., the onset, peak, and decline of each

influenza season) vary between seasons and are difficult to predict [3]. Furthermore, there is a

growing amount of evidence that immunity against influenza wanes over a single season, and a

decrease in vaccine effectiveness during a season has been observed [30, 31]. While the peak of

influenza activity is usually in January or later [3], the average vaccination coverage through Sep-

tember is 20% of the overall season vaccination coverage in the United States [30]. Individuals
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who receive vaccination too early may lose their immunity before the end of the influenza sea-

son. Therefore, while the waning of the protection conferred by vaccination suggests that vacci-

nation should be delayed, thus ensuring the immunity lasts the entire season, such a delay might

result in missed opportunities to vaccinate and in difficulty reaching a high level of vaccination

uptake. Accordingly, the U.S. Advisory Committee on Immunization Practices recommends

that the timing of influenza vaccination should balance the effects of waning vaccine-induced

immunity and the dangers inherent in vaccinating after influenza activity onset [3].

Here, we present a network-based transmission model that simultaneously describes vacci-

nation behavior, a social contagion process, and the propagation of influenza infection in the

population. We used a network that we developed from 15 billion records describing the loca-

tion of ~1.8 million Israeli cellphone users. We calibrated our model to fit high-quality longitu-

dinal data consisting of weekly influenza vaccination uptake and influenza diagnoses over

seven years. We further demonstrate how the model can be used to optimize the timing of

influenza vaccination to balance these two processes. Our findings show that this real-life net-

work-model captures the spatiotemporal dynamics of vaccination and disease propagation.

Moreover, our study underscores the importance of utilizing the coupled process to optimize

influenza vaccination timing.

Results

We developed a stochastic agent-based model for influenza transmission coupled with vacci-

nation uptake in the population. We modeled the spread of vaccination uptake using a modi-

fied Bass-SIR framework [32], wherein unvaccinated individuals could become vaccinated due

to an internally motivated decision or an externally motivated decision involving the imitation

of their contacts who had just gotten vaccinated. The vaccination uptake model was integrated

into a susceptible-vaccinated-infectious-recovered (SVIR) compartmental framework to

describe influenza transmission (Fig 1). The lattice for the spread of vaccination uptake and

Fig 1. Compartmental diagram of the coupled transmission model. In the vaccination uptake spread component

(orange), unvaccinated individuals (Sv) may either become vaccinated due to an internal decision or an external

decision involving the imitation of their contacts who recently got vaccinated (Iv). Once individuals in the Iv class

transition to the Rv class, they no longer affect their contacts. In the influenza transmission component (blue),

susceptible individuals (SV and SNV) can move to the infectious class. Susceptible individuals who have not been

vaccinated during a given season are labeld SNV and move to the vaccinated class V once they are in the Iv in the

vaccination uptake spread component. Infectious individuals can be either symptomatic (Is) or asymptomatic (Ia),

afterwhich they move to the recovered class (R). Vaccinated individuals can transition back to the susceptible class SV

as vaccine immunity wanes during the season. For clarity, the age stratification is not displayed.

https://doi.org/10.1371/journal.pone.0252510.g001
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disease transmission is based on a designated contact network we developed using mobility

data from the cellphone devices of ~1.8 million users.

We calibrated the model with datasets consisting of weekly vaccination uptake and influ-

enza diagnoses by location and age for seven influenza seasons, between 2010 and 2017. With

only three parameters for the vaccination process and two parameters per season for disease

transmission, our model simultaneously captures spatiotemporal patterns of both influenza

vaccination uptake and disease transmission dynamics (Fig 2A–2D). The model yields a high

Pearson correlation fit between the vaccination uptake data (r = 0.90) and the influenza diag-

nosis data (r = 0.87).

Our analysis of the human mobility data from cellphones revealed that people of similar

demographic groups, such as those with the same religious affiliation and sociodemographic

profile, typically travel to zones where the residents match their group. Notably, these trends

were not attributable only to geographical distance. Thus, the model with the contact network

we developed based on the human mobility data yielded a better fit than a simpler homoge-

nous model in terms of capturing vaccination spread and influenza transmission (S1

Appendix).

We used the coupled model to study the relationship between vaccination coverage and

influenza activity. We found that higher overall vaccination coverage resulted in a more rapid

vaccination process. Higher vaccination coverage also reduced the susceptibility to becoming

infected in the general population and delayed the onset of influenza. As illustrated in Fig 3A,

higher vaccination coverage prolongs the time between vaccination uptake and disease activ-

ity. Furthermore, our simulation shows that the higher the overall vaccination coverage, the

longer the time between the vaccination peak and the influenza peak (Fig 3B). Given that vac-

cine-induced immunity wanes over the course of the influenza season, our analysis suggests

that vaccination timing should be postponed if higher coverage is anticipated.

We utilized the coupled model to optimize vaccination timing for different overall antici-

pated vaccination coverage levels in Israel. We found that if the total vaccination coverage is

20%, as typically observed in Israel, the optimal timing for vaccination program initiation

should be approximately the middle of September. If the coverage level rises to 45%, the vacci-

nation process would faster and, thus, should be initiated in October, to minimize the risk of

rapidly waning immunity. Our simulation further indicates that modifying the start date can

Fig 2. Time series of medical data vs. model fit. Weekly influenza vaccination uptake and influenza cases (dots(, and

model fit (lines) between 2010–2017 for children<18 years and adults>18 years (A, B) and in two central subdistricts

in Israel (C, D) (see S4 and S5 Figs in the S1 Appendix for the model’s fit for other subdistricts).

https://doi.org/10.1371/journal.pone.0252510.g002
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lead to a substantial reduction in transmission without increasing the vaccination uptake. For

example, as our base case suggests, with 20% coverage, shifting the vaccination program’s initi-

ation from October to September would reduce the total attack rate by 7.5% (i.e., from 8.7% to

8.1%). If vaccination coverage were to increase to 45%, shifting the vaccination program’s ini-

tiation from September to October would result in a 16.3% reduction in the total attack rate

(i.e., from 4.9% to 4.1%) (Fig 4A).

We also performed the vaccination timing optimization process for different values of vac-

cine waning time. We found that if the time until the vaccine immunity wanes increases, the

start date of the vaccination program should be further postponed. For example, for a short

pre-waning time of 60 days, the early start date of the vaccination program corresponds to a

high average attack rate, as the vaccine immunity declines before the peak of the influenza sea-

son. Thus, for this case, a later start date would be more suitable (Fig 4B). On the other hand, if

the pre-waning time is long, the intra-season waning immunity is low. Opting for an early vac-

cination program start date in this scenario would allow more individuals to be vaccinated

before influenza season onset (Fig 4B). Finally, our simulations show that if a later start date is

chosen for the launch of the vaccination program, a high attack rate is anticipated for all values

of the start of immunity waning time, as the time of vaccination spread in the population

needs to be taken into account.

Fig 3. Time difference between vaccination uptake and disease spread. (A) Illustration of the coupled dynamics of

the network-based model. Higher overall vaccination coverage leads to more rapid vaccination uptake (dashed vs. solid

orange lines) and delays the influenza season (dashed vs. solid blue lines). This prolongs the time between vaccination

and disease activity when there is higher vaccination coverage (dashed red line) compared to when there is lower

vaccination coverage (solid red line). (B) A boxplot of the time difference between the peak of the vaccination spread

and the peak of disease activity for different values of overall vaccination uptake, as observed in our simulations. As

illustrated in (A), higher vaccination coverage results in a longer time difference between the peak of the vaccination

update and the peak of the disease.

https://doi.org/10.1371/journal.pone.0252510.g003
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Discussion

Our results indicate that, as vaccination is a socially contagious process, it can be modeled to

improve our understanding of influenza transmission. Furthermore, we demonstrate how

such improved understanding is beneficial for planning the timing of the initiation of vaccina-

tion programs. By modeling the coupling between vaccination spread and disease transmis-

sion, we identified complex underlying dynamics that would otherwise have remained hidden.

We found that higher vaccination coverage leads to earlier vaccination uptake. As vaccination

reduces the susceptibility to becoming infected in the general population, it postpones the start

date of influenza activity. Due to the marked rapid waning of vaccine-induced immunity, this

coupled dynamic suggests that vaccination programs should be initiated later in regions where

coverage is anticipated to be higher. The U.S. Advisory Committee on Immunization Practices

recommends balancing the season onset’s unpredictability with waning immunity throughout

an influenza season [3]. Our results further suggest that it is essential to also account for the

vaccination diffusion process. Taking Israel as a case study, we describe how our model could

be used to determine the optimal initiation date of a vaccination program.

We show that a location-based contact network can not only capture disease dynamics but

also explain decisions with social contagion aspects. We further demonstrate our model’s ability

to capture the coupled dynamics of both vaccination uptake and influenza infection using a con-

tact network we developed from large-scale cellular location data. Typically, studies have

addressed the coupled behavior-disease dynamics with a two-layered multiplex network, in which

Fig 4. Optimization of the vaccination program start date. Model predictions of the average yearly attack rate over

seven seasons for each possible program start date. The star on each line represents the optimal start date for the

corresponding line. (A) Optimization for different levels of vaccination coverage. Each line represents a different

overall vaccination coverage level, where the bold blue line represents the base case of Israel, i.e., ~20% overall

vaccination coverage. (B) Optimization for different values of vaccine-induced immunity waning time, where the bold

blue line represents the base case, with a waning time of 111 days.

https://doi.org/10.1371/journal.pone.0252510.g004
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one layer describes the topology relevant from physical contact related to the epidemic [33, 34].

While vaccination decisions may be affected by nonphysical interactions, including mass media

[33] and social media [35], we found that the contact network serves as a good proxy for social

contagion. The reason for this finding is that people belonging to a certain demographic group,

such as those with the same religious affiliation and sociodemographic profile, typically travel to

zones in which the residents match their group [36]. Thus, it is likely that their sources of infor-

mation are similar, which leads to high similarity in the timing of their decision to be vaccinated.

Our work extends previous studies by showing that the decision of whether to be vaccinated

or not is consistent across years and that individuals are more likely to be vaccinated if they

have been vaccinated in previous seasons [7]. Our study shows that the timing of an individu-

al’s decision to be vaccinated in a season can be explained by social influence. We highlight

that our work relies on correlations and associations, as we did not explicitly account for dif-

ferent external factors that could influence influenza vaccination uptake, such as mass media

coverage of the disease, healthcare providers’ vaccination campaigns, and vaccine shortages [4,

37, 38]. These factors may result in differences in vaccination uptake between different geo-

graphical areas. Nevertheless, as Israel’s healthcare system is centralized, with nationwide vac-

cination campaigns, there is a lower likelihood of a significant increase or decrease in

vaccination uptake in a specific clinic or region.

Given the growing concern regarding childhood vaccine refusal [39], which has recently

become a social contagion phenomenon [40], our work is of particular interest. Furthermore,

there have been wide-scale campaigns against future SARS-CoV-2 vaccines and wide dissemi-

nation online of pro- and anti-vaccine views [41]. We found that people in similar demo-

graphic groups, such as those with the same religious affiliation and sociodemographic profile,

typically contact each other regardless of their geographical distance, consistent with the find-

ings of other studies [36]. This high degree of clustering of both opinions and contacts suggests

that specific populations will be at elevated risk of infection. Therefore, accounting for the

spread of behaviors related to vaccination uptake is a significant step towards personalized

influenza vaccination campaigns.

The coupled model we developed in this study can also be framed as a multiplex network

with two layers, with a asymmetric dynamic interaction between them [29, 42]. In the vaccina-

tion layer, the Bass-SIR compartmental framework is used to describe the vaccination spread

in the network. In the disease layer, the revised susceptible-vaccinated-infectious-recovered

(SVIR) compartmental model is used to describe influenza propagation. The dynamic between

the layers is reflected in the transition of nodes from the disease layer to the vaccinated com-

partment, which is determined by the corresponding nodes in the vaccination layer. Specifi-

cally, when a node is infected with the idea of vaccination (i.e., transferred to the IV

compartment in the vaccination layer), its counterpart in the disease layer will be transferred

to the vaccinated compartment, where it cannot get infected with the disease.

A comprehensive understanding of the spatiotemporal dynamics of vaccination uptake and

its effect on influenza transmission is crucial for improving health policies intended to control

the disease. By modeling the decision to become vaccinated against influenza as a socially con-

tagious process, we optimized vaccination program timing. Using our approach, we show how

optimally timed vaccination programs can substantially reduce disease transmission without

increasing vaccination coverage.

Materials and methods

We hereby declare that the IRB chair of Tel-Aviv University, Prof. Meir Lahav, determined on

March 24, 2020, that there is no need for an IRB approval for this study.
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Model overview

We developed a coupled network-based model for the spread of vaccination uptake and influ-

enza transmission. The model comprises two components: one for vaccination uptake spread

and another for disease transmission (Fig 1). The lattice for the spread of vaccination uptake

and disease transmission is based on a designated contact network we developed using mobil-

ity data from the cellphone devices of ~1.8 million users. For each individual in the network,

we track the age group (0–18 years and >18). In addition, at each time step, each individual

belongs to a single vaccination-related compartment and infection-related compartment, as

specified below.

Vaccination component

Consistent with previous studies showing that vaccination uptake can be affected by an indi-

vidual’s social contacts [16], we modeled vaccination spread using methods from studies on

product adoption [32]. Specifically, we used the Bass-SIR compartmental framework, wherein

during each season, unvaccinated individuals may become vaccinated based on either an inter-

nally motivated decision or an externally motivated decision involving the imitation of their

contacts who recently were vaccinated. Thus, our compartmental framework stratifies individ-

uals in the network into the three compartments based on their vaccination-adoption status at

time t: 1) susceptible included unvaccinated individuals (SV), 2) infectious included those who

were recently vaccinated and could affect whether their social contacts choose to be vaccinated

(IV), and 3) recovered included those who have been vaccinated but are no longer likely to

affect whether their contacts choose to be vaccinated (RV). Following the Bass model [43, 44],

the probability of vaccination at time interval Δt, that is, the probability of transition from SV

to IV, for an individualm is:

Prob
m is vaccinated in

ðt; t þ DtÞ

 !

¼ pðjÞ þ bðjÞv
X

n6¼m

anm � i
V
n ðtÞ

� �
Dt; Dt ! 0; ð1Þ

where iVn ðtÞ is a state function that gets the value 1 if individual n belongs to compartment IV

and 0 otherwise, the parameter p(j) is the rate of an individual in SV being vaccinated due to

internal, non-social, influences, and b
ðjÞ
v describes the rate of vaccination due to external, social,

influences for age group j. The social contacts are given by the components or the adjacency

matrix amn, such that amn = 1 if individualm is connected to individual n, and amn = 0 other-

wise. Note that as Δt!0, vaccination due to more than one infected contact in a short time

interval is negligible.

Influenza transmission

The compartmental framework [45] stratifies the population into health-related compart-

ments. Specifically, we used a modified susceptible-vaccinated-infectious-recovered (SVIR)

model, wherein the states of the disease are classified as susceptible to infection (SV or SNV),

vaccinated (V), infected (symptomatic Is or asymptomatic Ia), and recovered (R). The SNV
compartment includes non-vaccinated susceptible individuals, while the SV compartment

includes individuals who were immune due to vaccination but are now susceptible due to vac-

cine-induced immunity wane. We distinguish between these two groups as individuals are not

getting vaccinated twice during the course of a season (i.e., no transition from SV to V). Sus-

ceptible individuals may contact an infected individual and transition to the infectious com-

partment, with either asymptomatic or asymptomatic infection. Upon recovery, individuals

transition to the recovered compartment. Due to cross-reactive antibodies elicited by previous
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exposures, we consider an age-specific fraction of each subgroup to be immune at the begin-

ning of each influenza season. This fraction of individuals remain in the immune/recovered

compartment for the duration of the influenza season (S1 Appendix). As influenza vaccine

efficacy is imperfect, we considered only a proportion of vaccinated individuals to be protected

against infection [46]. Susceptible individuals for whom the vaccine was effective, transition

from SNV to the V compartment. While an individual is unlikely to be infected with influenza

more than once, immunity from influenza vaccination may wane during a single season [30,

31]. Thus, individuals in the V compartment may transition to the susceptible compartment

SV (model equations in S1 Appendix).

Interaction between vaccination and influenza transmission

The coupling of the vaccination model to the influenza transmission model is reflected in the

transition from the SNV compartment to the V compartment in the influenza transmission

model. This rate is determined by the transitions to the IV compartment of the vaccination

model, as depicted by the dashed black arrow in Fig 1. Essentially, individuals which transition

from the SV compartment to the IV of the vaccination model (i.e., infected with the idea of vac-

cination), and belong to the SNV compartment, will be transitioned to the vaccination of the

influenza model (V). Specifically, the probability of this transition is determined by the proba-

bility of transitioning from SV to IV in the vaccination model, as described in Eq (1). Note that

to ensure that an individual can not be vaccinated twice during the same season in our model,

we explicitly distinguish between susceptible and not vaccinated individuals and those that are

susceptible and got vaccinated (i.e., the vaccine was not effective for them or the vaccine

immunity waned during the season).

Force of infection

The probability of a susceptible individual acquiring influenza depends on 1) the contact mix-

ing patterns generated from our contact network, 2) age-dependent susceptibility, 3) the infec-

tiousness of the infectious contact based on the type of infection (i.e., symptomatic or

asymptomatic) [47], and 4) seasonal variation. Influenza incidence is seasonal, with a peak typ-

ically occurring in the winter, yet the drivers for this seasonality remains uncertain [48]. We

thus included general seasonal variation in the force of infection of the model. Taken together,

the probability for an individual acquiring an influenza infection from a given contact at time

interval Δt is:

Prob
minfected in

ðt; t þ DtÞ

 !

¼ LðtÞ
X

n6¼m

anm � ðr
ðasympÞ � ia;nðtÞ þ r

ðsympÞ � is;nðtÞÞ
� �

Dt; Dt ! 0; ð2Þ

where ρ(k) is the transmissibility based on the type of infection k (symptomatic/asymptomatic),

and ia,n(t) and is,n(t) are indicating functions, and are equal to 1 if individual n belongs to com-

partments Ia and Is, respectively, and 0 otherwise. The seasonal forcing rate, Λ(t) is given by:

L tð Þ ¼ bi � 1þ cos
2pt
365
þ �

� �� �

; ð3Þ

where βi is the susceptibility rate, and ϕ is the seasonality offset (see S2 Table in S1 Appendix).

Development of the contact network

We generated a contact network based on location and demographic data from various

sources. We utilized cellular data from a Radio Network Controller covering central Israel
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provided by one of Israel’s largest cellular service providers. The data contain 17 billion rec-

ords describing the location of ~1.8 million anonymized cellphone users over two months. To

develop the network, we analyzed approximately 1 million users (accounting for approxi-

mately 15 billion records) who had a sufficient number of records and at least one week of cel-

lular data recorded in the dataset.

The data specifies 1) movement patterns within and between 3,070 zones covering Israel,

on an hourly basis, from December 2012, until January 2013, 2) the home statistical area for

each user inferred by locations identified during nights [49], and 3) age group (<18 years and

>18 years) inferred based on proximity to school locations during school hours (S1 Appen-

dix). We integrated these data with demographic data from the Israeli Central Bureau of Statis-

tics (CBS) at the statistical area level [50]. The CBS divides Israel into 3,070 statistical areas,

aggregated into cities, sub-districts, and districts. Demographic data are available for each sta-

tistical area, including population size, age, ethnicity, and socioeconomic status. We used the

CBS data to scale-up the population size to match the Israeli population.

For anonymity, we analyzed only aggregated data that details in each hour the number of

individuals that their home is in statistical area i, and that are in statistical area j and belong to

age group l. More specifically, a visit distribution matrix was calculated based on the location

distribution. In this matrix, each row represented the home statistical area and age group of

individuals, and each column represented the proportion of time they spent in each statistical

area. An attendance matrix was generated to describe the proportion of individuals from area i
and age group j in each of the statistical areas. We defined contact in a probabilistic manner,

i.e., as the probability that an individual from statistical area i, in age group j, will contact an

individual from statistical area k, in age group l. The element P(i,j),(k,l) of the contact probability
matrix is:

Pði;jÞ;ðk;lÞ ¼
XN

n¼1

Vði;jÞ;n � Vðk;lÞ;n � Aðk;lÞ;n; ð4Þ

where N is the number of statistical areas, V is the visit distribution matrix, and A is the atten-
dance matrix. Essentially, this probability is a summation over all the statistical areas of the

probability that both individuals will visit area n, multiplied by the proportion of individuals

from area k, in age group l attending area n. We normalized each row to a sum of one to deter-

mine the conditional probability that an individual from area i, in age group j will contact an

individual from area k, in age group l, given that a contact occurred. The resulting matrix is

the conditional contact probability matrix (see S2 Fig in S1 Appendix).

To examine interactions between geographical areas, the conditional contact probability
matrix was aggregated by subdistricts (S2A Fig in S1 Appendix). To examine interactions

between different socioeconomic groups, we aggregated the matrix by socioeconomic score

affiliated with each statistical area, based on the CBS socioeconomic data (S2B Fig in S1

Appendix). The socioeconomic score is measured on a scale from 1 to 20, where 1 indicates

the lowest socioeconomic status, and 20 indicates the highest socioeconomic status (aggrega-

tion by ethnic group is provided in the S1 Table in S1 Appendix).

We generated a simulation-based contact network with 100,000 nodes. The network is rep-

resented by an undirected graph in which each node represents an individual, and the edges

represent contacts between individuals. The statistical area and age group distribution of the

nodes are based on the CBS demographic data. The number of contacts for each node is gener-

ated independently from a geometric distribution, with a different average for each age group

derived from contact mixing surveys [51, 52]. The contact distribution for each node (i.e., the

number of contacts with individuals from each statistical area and each age group) was
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generated based on the node’s home statistical area and age group and the corresponding row

of the conditional contact probability matrix. The edges between nodes were connected ran-

domly under these constraints (S1 Appendix).

Model calibration

The model includes three free parameters for the vaccination component and two free param-

eters per season for the disease component (S3 Table in S1 Appendix). To estimate these

unknown parameters, we calibrated the model to weekly vaccination uptake data and influ-

enza and influenza-like-illness (ILI) diagnoses by age and geographic location. These data

were collected by the Maccabi Health Maintenance Organization (HMO), the second-largest

HMO in Israel [53]. The queried electronic medical records include longitudinal data for

250,000 members (randomly assigned) between 2010 and 2017. For each patient, a wealth of

information is available, including demographic characteristics, the diagnosis of respiratory

infections, and vaccination uptake. To account for unreported cases, the weekly influenza

diagnosis data were adjusted to fit actual attack rates by age group reported in previous studies

in Israel [2].

We assumed that the number of newly vaccinated individuals each week and the number of

newly infected individuals each week are independent variables. Given this assumption, we

used the Poisson distribution to describe these variables separately for each subdistrict and age

group pair. We then chose the set of parameters that maximizes the following likelihood func-

tion:

L yð Þ ¼
Y

s;j;w

e� l̂ sjw � ðl̂sjwÞ
dsjw

dsjw!
; ð5Þ

where θ is the set of parameters of the vaccination/disease component, dsjw represents the

weekly data (i.e., the weekly vaccination uptake/influenza and ILI diagnoses for subdistrict s,
age group j and week w), and l̂sjw is the Poisson distribution parameter estimated from the

model for each subdistrict s, age group j, and week w (S1 Appendix). We applied the Akaike

information criterion, derived from information theory, to compare the network-based model

to a homogenous model [54]. To compare the models, the homogenous model is based on the

same network with all nodes connected to each other. The probability of contact between

nodes differs by age (S1 Appendix).

Optimization of vaccination program timing

To optimize the timing of vaccination programs, we examined different program start dates

ranging from July 1 to December 1 in half-month steps. We used the coupled transmission

model to simulate the vaccination and disease propagation over the seven seasons for each of

the program start dates (S1 Appendix). We evaluated the average yearly attack rate across all

the simulations and the seven seasons. We then compared the attack rates among the different

model settings to find the optimal vaccination program start date, representing the start date

that corresponded to the lowest average yearly attack rate. Altogether, the optimization process

included 30,800 model iterations (4 vaccination coverage values, 11 vaccination programs start

dates, 7 seasons, and 100 iterations per setting). Each iteration of the coupled model takes on

average 25.4 seconds ± 300 ms, using Intel Core i9-7920X CPU (S1 Appendix).

We used the calibrated model to simulate a specific season with different values of overall

vaccination coverage. We then calculated the peak of the vaccination process, the peak of influ-

enza activity, and the distance between them (Fig 3A). We also performed this analysis for
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different values of overall anticipated vaccination coverage (10, 20, 30, and 45%) and examined

the time difference for each setting (Fig 3B). Furthermore, we performed a sensitivity analysis

of overall vaccination coverage by optimizing the vaccination program start date for four dif-

ferent levels of vaccination coverage (10, 20, 30, and 45%) and comparing the optimal dates

(Fig 4A). Different values of overall vaccination coverage were obtained by modifying the

infection probability parameters of the vaccination component (S7 Table in S1 Appendix).

Finally, we performed a second sensitivity analysis, examining the impact of different values of

vaccine-induced immunity waning time by optimizing the vaccination program start date for

four different levels of vaccination waning time (60, 111, 150, and 240 days) and comparing

the optimal dates (Fig 4B).

Supporting information

S1 Appendix. Supporting information for accounting for the spread of vaccination behav-

ior to optimize influenza vaccination programs.
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cine Scares Unfold. Salathé M, editor. PLoS Comput Biol. 2012; 8: e1002452. https://doi.org/10.1371/

journal.pcbi.1002452 PMID: 22496631
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