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Abstract: In recent years, textile industries have focused their attention on the development of func-
tional finishing that presents durability and, consequently, controlled release. However, in the case of
methyl salicylate microcapsules supported on a textile matrix, studies indicate only the interactions
between substrate and microcapsules and the drug delivery system, not applying the release equa-
tions. This study reports the mechanism and kinetics of controlled release of microcapsules of gelatin
and gum Arabic containing methyl salicylate as active ingredient incorporated into textile matrices.
According to the results presented, it was possible to verify that the wall materials participated in
the coacervation process, resulting in microcapsules with well-defined geometry, besides promoting
the increase of the thermal stability of the active principle. The samples (100% cotton, CO, and 100%
polyamide, PA) functionalized with microcapsules released methyl salicylate in a controlled manner,
based on the adjustment made by the Korsmeyer–Peppas model, indicating a Fickian mechanism.
The influence of temperature was noticeable when the samples were subjected to washing, since with
higher temperature (50 ◦C), the release was more pronounced than when subjected to lower tempera-
ture (37 ◦C). The results presented in this study indicate that the mechanism of backbone release is
influenced by the textile matrix and by the durability of the microcapsule during the wash cycles.

Keywords: textile; microcapsules; controlled release

1. Introduction

Drugs, essential oils and fragrances have been used as essential compounds in textile
finishing, in order to meet the various requirements that the consumer presents today.
Many of these chemical compounds are highly volatile, which may present a disadvantage
in their application on the surface of the fabric, due to their rapid and uncontrolled release.
Therefore, one of the main focuses of the textile industry is the production of finishing
that has durability, that is, release the active ingredient in a controlled way, consequently
leading to an increase in its life cycle [1].

Microencapsulation aims to coat active agents, protecting them from adverse environ-
mental conditions, such as light, humidity, oxygen and other compounds, which could
result in degradation or polymerization of the active agent [2,3]. There are several microen-
capsulation techniques that can be used to improve the stability of the active ingredients,
such as simple or complex coacervation, fluidization, lyophilization and spray drying [4,5].
Among these techniques, complex coacervation is an alternative process, in which the ionic
interaction between two polymers leads to the formation of coacervates and phase sepa-
ration [6]. Such a technique can produce microcapsules applicable to the textile industry,
due to the fact that they have resistance to temperature and have favorable characteristics
for controlled release [7,8].
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Some studies show the application of microcapsules in textile articles, as in the work
of Lis et al. [9], Bezerra et al. [10] and Carreras et al. [11], indicating that microcapsules can
be used as fabric finishing, increasing their functionality. The fabrics that become supports
for the release of active ingredients are called biofunctional textiles. These can be defined
as textile substrates that have been modified to attain new properties and added value [9].
Some examples of biofunctional textiles are antimicrobial and cosmetotextiles [12].

The advantages of using biofunctional textiles are a high area of contact with the skin,
drug loading capacity, ease of application, low price, release by stimulation, biocompatibil-
ity and being non-allergic and non-toxic, among other properties [13–15]. Thus, the choice
of the active principle is of importance to the desired effect of the fabric.

Methyl salicylate is a chemical compound widely used for treatments of musculoskele-
tal pain, such as athletic injuries, swelling, tension or torsion [16,17]. Generally, the treat-
ment involves external application to the affected area of a drug that has methyl salicylate
as its active ingredient. However, it has some drawbacks, such as low water solubility
and dosage control, as well as high volatility [18–20]. This means that the concentration
of methyl salicylate should be controlled to ensure effective delivery of the drug, in or-
der to achieve anti-inflammatory and analgesic effects and, on the other hand, to ensure
that there is no risk of skin irritation or burns [17,20–22]. Yang et al. [19] carried out a
microencapsulation study in which they used chitosan as a wall material, having observed
that the microencapsulation process provided a controlled release when compared to free
methyl salicylate.

In this context, the present study aims to evaluate the behavior of methyl salicylate
microcapsules obtained by complex coacervation and incorporated in Jersey 100% cotton
and 100% polyamide textile structures, using in vitro release profiles, and when subjected
to washing at different temperatures.

2. Materials and Methods

The materials used for the development of the microcapsules were gelatin and gum
Arabic (Sigma-Aldrich, São Paulo, SP, Brazil), methyl salicylate (Induslab, Londrina, PR,
Brazil) as well as the sodium lauryl sulfate (Exodos, Sumaré, SP, Brazil). For the mi-
crocapsules cross-linking, glutaraldehyde (25%) (Sigma-Aldrich, São Paulo, SP, Brazil).
The materials used in the esterification of the finishing were citric acid (Synth, Diadema,
SP, Brazil) and sodium hypophosphite (SHIP) (Sigma-Aldrich, São Paulo, SP, Brazil).

Jersey knits were used in the compositions of 100% cotton, with a weight of 280 g m−2,
and 100% polyamide, with a weight of 200 g m−2, both produced at the Process Research
Laboratory of the University of Minho, Guimarães, Portugal.

2.1. Preparation of Microcapsules

The preparation of the microcapsules was performed through the complex coac-
ervation method based on the techniques presented in the works of Yang et al. [23],
Butstraen and Salaün [24] and Bezerra et al. [25], which presented the use of biopolymers,
pH adjustment and active principle.

Three different solutions were prepared, which used deionized water as a solvent, and
placed in a thermostated bath at 40 ◦C. The first solution was constituted by dissolving 3 g of
gelatin in 50 mL of solution, subjected to magnetic stirring at 300 rpm for 15 min. The second
emulsion was composed of 0.3 g of sodium lauryl sulfate and 3 mL of methyl salicylate
in 50 mL of solution, under stirring at 300 rpm for 15 min. Finally, the third solution was
prepared by inserting 3 g of gum Arabic into 100 mL of water, under magnetic stirring at
300 rpm for 15 min. Subsequently, the methyl salicylate solution was added dropwise to the
gelatin solution to form a colloidal emulsion system with the active ingredient, which was
mechanically stirred at 500 rpm for 10 min. The insertion of the third solution was also
performed dropwise, in order to ensure a slow interaction between the biopolymers.
Stirring occurred at 700 rpm for 10 min. In order to ensure the reaction between gelatin and
gum Arabic, positive and negative polyelectrolyte, the pH was adjusted with 5 mol L−1
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citric acid to pH 4.1, which fits into what was discussed by Duhoranimana et al. [26] as the
best interaction range, namely pH 4.0–4.5. The solution was stirred for 90 min.

For the gelation process, the solution was cooled to a range of 0 to 8 ◦C and kept
under stirring for 60 min. After this process, the microcapsules were cross-linked with 0.5 g
glutaraldehyde (25%), which was added to the solution after it was adjusted to pH 8–9
with NaOH 1 mol L−1 and kept under stirring at 700 rpm for 30 min.

The microcapsules were kept in solution to promote greater impregnation of methyl
salicylate in the textile substrates, as the active ingredient that has not been encapsulated
may also be deposited on the surface of the textile article.

2.2. Characterization of the Microcapsules

The interaction of the polymers for the production of microcapsules was evaluated
by FTIR (Nicolet Avatar, Golden Valey, MN, USA), in the range of 4000 to 500 cm−1.
For thermal stability (TG), the test was performed at a speed of 10 ◦C min−1, in the
temperature range of 30 ◦C to 800 ◦C in a nitrogen atmosphere with a flow of 50 mL
min−1 (Shimadzu, model TG-50,Tokyo, Japan). The morphology and structure of the
microcapsules were evaluated by SEM (Quanta 250, Hillsboro, OR, USA).

2.3. Functionalization of Textile Substrates

The functionalization of the textile substrates occurred by esterification with citric acid
and application of the microcapsules. The application of microcapsules was performed
through the pad-dry-cure process, followed by a drying process at 80 ◦C for 3 min and,
subsequently, the cure was performed at 120 ◦C for 2 min, a technique that has been
adapted from the work of Rodrigues et al. [27], Azizi et al. [28] and Nada et al. [29].

The textile articles, cotton and polyamide, were impregnated for 1 min in a solution
of microcapsules (30 g L−1), citric acid (30 g L−1) and sodium hypophosphite (10 g L−1)
at 25 ◦C and pH 6, and subsequently, the samples were taken to the foulard process.
The pick-up adopted was 80%.

2.4. Evaluation of the Functionalization of Textile Substrates

To evaluate the chemical modification on the surface of the textile substrates after
the functionalization with microcapsules, this study used the Fourier transform infrared
spectroscopy technique in the infrared region with attenuated reflectance (FTIR/ATR),
in the range between 4000 to 600 cm−1. The surface of the textile articles, untreated and
treated with microcapsules, was analyzed by scanning electron microscopy.

The study of the in vitro controlled release of methyl salicylate from cotton and
polyamide substrates was performed in triplicate. The functionalized samples were sent
to a water and ethanol (2:1 v/v) bath thermostated at 37 ◦C under stirring in a shaker
(Solab, Piracicaba, SP, Brazil). At predetermined times, aliquots were taken and filtered,
to determine the absorbances in the wavelength of methyl salicylate at 306 nm, by the
UV–Vis technique (Shimadzu, Tokyo, Japan).

The functionalized textile samples were subjected to the washing test with procedure
adapted from the Standard AATCC 61-2007-2A (Colorfastness to Laundering: Accelerated).
They were inserted into mugs (Kimak, Brusque, SC, Brazil) under the following conditions:
50 mL of solution with steel balls for 45 min, the temperature varying between 37 and 50 ◦C.
At each wash cycle, aliquots were taken and filtered to determine the amount of methyl
salicylate by absorbance in the spectrophotometer in the ultraviolet region (UV–Vis).

3. Results and Discussion
3.1. Evaluation of the Functional Groups of the Microcapsules (FTIR)

The interactions of the polymers used for the formation of the microcapsules were
evaluated by the FTIR technique. Figure 1 shows the spectrograms of the microcapsules
that were obtained, as well as those of the wall materials, gelatin and gum Arabic and of
the active ingredient methyl salicylate.
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Figure 1. Infrared spectroscopy (FTIR) of methyl salicylate, gelatin and gum Arabic and the micro-
capsules obtained.

Methyl salicylate has in its molecule intramolecular hydrogen bonds between hydroxyl
and carbonyl groups [20]. The bands in the regions of 3175 cm−1 and 2952 cm−1 are
attributed to the hydroxyl group and the asymmetrical stretching of the CH2, respectively.
The band at 1652 cm−1 was derived from the existence of C=O stretching vibrations of the
carboxylic acid group [30]. Likewise, the bands in the regions of 1597 cm−1 and 1443 cm−1

appear due to the asymmetrical and symmetrical stretching of the deprotonated carboxylate
group, respectively [31].

The gelatin, being a protein, is characterized by amide and amine groups in its chemi-
cal structure. The absorption band in the region of 3426 cm−1 corresponds to the vibrations
of the amino functional groups N–H [29,32,33]. The C=O stretching of peptide bonds and
the deformation of the N–H were identified in the band of 1635 cm−1, which refers to the
region of the amide I [34–36]. Another absorption characteristic of the gelatin occurs in
the region of 1531 cm−1, which can be attributed to the amide II due to the flexion of the
groups N–H and the stretching of C–N [36,37]. The absorption of the band in the region of
1234 cm−1 is caused by the stretching vibration of the groups N–H and C–N, corresponding
to the amide III [38].

The gum Arabic has in its chemical structure carboxylic groups, which justifies the
presence of negative charges. The bands at 1603 cm−1 and 1421 cm−1 are derived from the
asymmetric and symmetric stretching vibration of carboxylic acid (−COO−), respectively,
which is attributed to the carboxylate groups of the glucuronic acid present in the gum
Arabic [39–42]. To represent the elongation of the C–O bond, bands were detected in the
regions of 1077 cm−1 and 1026 cm−1. Similar results were found by [40,43–45].

For the interaction of biopolymers to occur and for the formation of microcapsules,
it is essential that both the protein and the polysaccharide have oppositely charged side
groups that will allow interaction between them, promoting the coacervation process
and the formation of amides. The spectrum of the microcapsules was compared with
that of the wall materials, and a shift of the amide I and amide II bands from 1635 cm−1

and 1531 cm−1 to 1676 cm−1 and 1536 cm−1 can be observed, which, according to the
authors Shaddel et al. [34], García-Saldaña et al. [35] and Shaddel et al. [46], evidences the
generation of an electrostatic interaction between the positively charged amine groups
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of gelatin (NH+
3 ) and the negatively charged carboxylic groups of gum Arabic (COO−).

Such interaction can also be confirmed with the emergence of the band in the region
of 1450 cm−1, which indicates the presence of an amide, corroborating the formation
of this complex [43,46]. Based on this, it can be assumed that the wall materials of the
microcapsule participated in the microencapsulation process by electrostatic interaction
and that hydrogen bonds were also involved in the coacervation of the biopolymers.

3.2. Thermal Stability (TG/dTG)

The thermal stability of the microcapsules was evaluated by thermogravimetric curves
(TG) and the curves of the first derivative of the thermogravimetric curve (dTG) with
respect to time, as shown in Figure 2a,b, respectively.
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and microcapsules.

The thermogram of methyl salicylate showed only one stage of mass loss, in a config-
uration similar to a parabola, which starts at approximately 100 ◦C until full evaporation
at 218 ◦C, a characteristic common to oils and fragrances. This phenomenon is confirmed
by the evaporation temperature of the active ingredient, which is in the range of 220 to
224 ◦C [47].

Gelatin and gum Arabic followed similar and characteristic thermal degradation
profiles, in which two stages of decomposition were presented [7,29]. The first stage is as-
sociated with the hydrolysis of the polymer chain, that is, the release of water bound to the
hydrophilic groups of the polymers [48,49], which showed a mass loss of approximately
15.9% (m/m), corresponding to the maximum peak temperature at 92 ◦C. The second
stage represents the breakdown of the molecular chains of the protein and the polysaccha-
ride [50,51], at temperatures of 318 and 296 ◦C, in that order.

As for the microcapsules, it can be observed that the behavior of thermal degradation
occurred in three stages, as was also observed by Matos et al. [52]. The first degradation
stage, with a maximum temperature of 60 ◦C, corresponded to a mass loss of 12.2% (m/m),
which is related to the complete release of water linked to the structure of the microcapsules
and to the evaporation of the methyl salicylate present on the surface of the microcapsules.
The second mass loss corresponds to the second stage, which suffered a faster decline, and it
can be explained by the rapid release of the active compound due to the high volatility of
the material, together with the decomposition of the protein and the polysaccharide used
as the wall material. This resulted in a significant mass reduction of approximately 42%
(m/m), at a temperature in the range of 324 ◦C. Complete degradation of the biopolymers
occurred in the third stage, at 584 ◦C, with a mass reduction of 38.7% (m/m) [7,22,52,53].

The results presented above confirm that the encapsulation of methyl salicylate by
complex coacervation microcapsules can significantly improve the thermal stability of the
active compound, suggesting that it was actually encapsulated.
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3.3. Morphology (MEV)

Figure 3 shows the morphology and structure of the microcapsules. According to
the micrograph presented, it can be seen that the complex coacervation process formed
microcapsules with well-defined geometry in the shape of elongated spheres, as shown
in the Muhoza et al. [54] that used the complex coacervation technique, with distribution
of the polydisperse material and with a dispersion slightly affected by agglomerates.
According to Alvim and Grosso [55], glutaraldehyde cross-linked microcapsules tend to
come together during the drying process, as the glutaraldehyde is heat activated, and the
aldehydes not bound to amino groups can be polymerized during the drying process.
However, this shape is not a problem for this work since the elongated spheres can be
deposited on the fabric surface, as well as the regular spheres. The difference in surface area
of the microcapsules allows some of them to be deposited in different regions of the fiber.
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Figure 3. Micrograph of methyl salicylate microcapsules.

3.4. Functionalization of Textile Substrates

The chemical modification of the textile substrates was evaluated by FTIR-ATR,
which allowed the detection of the presence of functional groups in the molecular structure
of cotton and polyamide fibers, untreated and treated with the microcapsules of methyl
salicylate, as shown in Figure 4.

Comparing the spectra of the untreated cotton with those from the treated samples,
the appearance of the bands in the region of 1633 cm−1 and 1529 cm−1, characteristic of
secondary amide, can be observed, which shows a new molecular interaction between
the microcapsules and the cotton fabric. Similar results were found by Bezerra et al. [25],
which verified the effectiveness of the finishing by the appearance of the band at 1540 cm−1

in the cotton fabric, subsequent to the incorporation of the gelatin and gum Arabic micro-
capsules.

It can also be noted that there was the appearance of the band at 1726 cm−1, which is
related to the esterification between the hydroxyl groups present in the microcapsule,
the carboxylic groups of citric acid and the hydroxyl group of cellulose [28,55]. The ester-
ification reaction allows the microcapsule to incorporate into the fiber, thus making the
finishing more resistant to washing, as this is one of the limiting factors for fabric finishing.

The spectra of the polyamide samples before and after the finishing are shown in
Figure 4b. The treated polyamide samples did not show to be different due to the over-
lapping of the bands of the microcapsules with the functional groups of the polyamide.
Once again, the appearance of the band in the region of 1729 cm−1, which represents the
carbonyl group of the ester group, could be observed as a result of the chemical interaction
of citric acid between the microcapsules and the polyamide.
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Figure 4. Infrared spectrum with attenuated reflectance (FTIR/ATR) of pure and treated (a) cotton
and (b) polyamide substrates.

3.5. Quantification and Controlled Release of Methyl Salicylate

The study of the release profile of an active compound from polymeric systems is
important to understand its behavior and the mechanism by which release occurs. To better
understand and evaluate the release of methyl salicylate, mathematical models were
adopted to adjust the release system, and the selected models were Higuchi [56] and
Korsmeyer–Peppas et al. [57].

Figure 5a,b presents the in vitro release profiles for cotton and polyamide samples,
respectively. For both samples, it can be observed that the methyl salicylate, when freely
impregnated into the textile structure, was completely released in approximately 60 min,
reaching 98% of the released compound. Regarding the samples functionalized with
microcapsules, the results showed release profiles in two stages: a rapid initial release
(burst effect), followed by a slower increase until the equilibrium, in which the maximum
amount of methyl salicylate released is reached after 250 min for cotton and 350 min for
polyamide. Similar behaviors were found in the works of Ma et al. [58], Aguiar et al. [59]
and Macha et al. [60]. The first release step may be explained by the release of the methyl
salicylate that was on the surface of the textile substrate due to the method of application,
that is, the part of the active compound that was not coated by the microcapsules [60].
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The kinetic adjustments of the profiles of controlled release from samples of cotton and
polyamide, considering the first 80% of release of the active ingredient [61], are presented
in Figures 6 and 7.
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The adjustment that best represented the release of both cotton and polyamide samples
was the model proposed by Korsmeyer–Peppas. This model provides information about
the release mechanism, which is evaluated using exponent n, as shown in Table 1.

Table 1. Interpretation of the release mechanisms from polymeric systems, as proposed by Korsmeyer–
Peppas et al. [57].

Surface Cylinder Sphere Diffusion Mechanism

0.5 0.45 0.43 Fickian
0.5 < n < 1.0 0.45 < n < 0.89 0.43 < n < 0.85 Anomalous

1.0 0.89 0.85 Non-Fickian

The parameters of the mathematical adjustments are presented in Table 2, and it is
possible to observe that as regards the cotton sample with free methyl salicylate, the value
of n = 0.44527 ± 0.02458 was obtained, whereas for the sample functionalized with mi-
crocapsules, the value of n = 0.22322 ± 0.00959 was obtained. According to the values
of n presented in Table 1, both profiles indicate Fickian diffusion, caused by the degree
of swelling of the matrices, which is determined by the high mobility of the polymer
chains of the polymers forming the microcapsules and by the cotton fiber chains [61,62].
Other studies have also reported values of n lower than 0.43 for spherical polymer systems.
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This assumes that a reduction of this variable can be expected when the release study occurs
by polydisperse systems with irregular geometries, indicating, nevertheless, the presence
of Fickian mechanism [63,64].

Table 2. Parameters of the mathematical adjustments for the models of Korsmeyer–Peppas, Higuchi
and Higuchi zero-order.

Model Parameter CO Untreated CO Treated

Higuchi zero-order
R2 0.99831 0.99507

K0(10−2) −0.00642 ± 0.00259 −0.02134 ± 0.00126
KHO 0.2091 ± 0.01003 0.25751 ± 0.0067

Higuchi R2 0.99614 0.81856
KH 0.18465 ± 0.00279 0.14612 ± 0.00793

Korsmeyer–Peppas
R2 0.99803 0.99741

KKP 0.2132 ± 0.01392 0.3687 ± 0.011287
n 0.44527 ± 0.02458 0.2128 ± 0.01106

PA Untreated PA Treated

Higuchi zero-order
R2 0.95992 0.99712

K0(10−2) 0.01367 ± 0.00271 −0.02178 ± 0.00228
KHO 0.000066 ± 0.01441 0.26836 ± 0.00975

Higuchi R2 0.83729 0.94503
KH 0.07143 ± 0.00567 0.1768 ± 0.00805

Korsmeyer–Peppas
R2 0.96041 0.99802

KKP 0.01211 ± 0.00491 0.31986 ± 0.01523
n 1.03572 ± 0.11702 0.28872 ± 0.0171

For the polyamide sample with free salicylate, it can be observed that the value
of the release exponent resulted in n = 1.0, indicating a zero-order release mechanism,
which can be explained by the hydrophobicity of the polyamide fibers that, in contact with
water, have resistance to swelling and consequently to the relaxation of polymer chains,
favoring the rapid release of methyl salicylate. On the other hand, as regards the polyamide
fabric treated with the microcapsules, the Korsmeyer–Peppas adjustment presented a value
of n = 0.28872, which, according to what is shown in Table 1, is represented by the Fickian
diffusion mechanism, that is, the microcapsule protects the active principle allowing the
longer release time, consequently extending the life cycle of the finishing.

In this context, the release mechanisms (the value of the exponent n) were found
according to the textile matrix, indicating that the hydrophilicity/hydrophobicity of the
fabric is a determining factor of it, as reported in the works of Bezerra et al. [25] and
Arias et al. [9], when they used cotton and polyester as a textile matrix to support encap-
sulated compounds, and the substrates influence the system release mechanism. There-
fore, the mechanism can be modified according to the textile matrix, the microcapsule and
the active principle, but in all experiments, their positive influence on controlled release
was clear.

3.6. Durability of the Finishing

The cotton and polyamide substrates treated with microcapsules and cross-linked
with citric acid were subjected to washing tests at temperatures of 37 and 50 ◦C with the
procedure adapted from the Standard AATCC 61-2007-2A. Figure 8 shows the release
profiles of the microcapsules against the number of wash cycles. Based on these data, it can
be seen that the samples presented a high resistance to washing, showing an increase in
the durability of the finishing.

Cross-linking agents, such as citric acid or polycarboxylates, increase the fabric/
microcapsule interaction through the esterification reaction, as shown by the FTIR-ATR
technique, making the finishing more resistant to washing, as observed in the work of
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Bezerra et al. [10], when they used BTCA as cross-linking agent in gelatin and gum
Arabic microcapsules.
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Comparing the esterified samples washed at 37 and 50 ◦C, the influence of temperature
on the release of the active ingredient can be observed, since the samples washed at a tem-
perature of 50 ◦C resulting in a greater release of methyl salicylate, which can be attributed
to the breakdown of the structure of the microcapsules. In the work of Sun et al. [14],
the efficiency of the impregnation of porous microgels fixed on cotton fabrics via citric acid
cross-linking reaction was evaluated, having been observed in the study that the release at
37 ◦C was higher compared to the release at 25 ◦C, indicating that the temperature has an
effect proportional to the release of the active ingredient, as observed.

These results indicate that the microcapsules were incorporated into the cotton and
polyamide structures, since after 40 wash cycles, there were still microcapsules embedded
into the substrates, as can be seen from the microscopy shown in Figures 9 and 10. These re-
sults are superior to those found by Ramya et al. [65] who, when evaluating the durability
to washing for herb extract microcapsules, found that the microcapsules presented good
resistance up to 30 wash cycles due to the sustained release of the encapsulated extracts.
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4. Conclusions

By observing the results presented, it can be seen that methyl salicylate microcap-
sules produced by complex coacervation using gelatin and gum Arabic as wall materials
were obtained. The shape of the microcapsules presented a well-defined geometry and
good dispersion; furthermore, the thermal stability of the active material improved signifi-
cantly with the microencapsulation process, that is, the compound obtained withstands
temperatures above those at which the free active ingredient resists. The microcapsules
incorporated into the fabrics release the active ingredient in a controlled manner, accord-
ing to the adjustment made by the Korsmeyer–Peppas model, and also presented a high
resistance to washing, since the release of methyl salicylate was lower in these samples
when compared to simply depositing the microcapsules. The influence of temperature was
also visible since, when subjected to the washing process at higher temperatures, namely
50 ◦C, the release was more pronounced than at 37 ◦C.

In view of the aforementioned facts, the functionalization of cotton and polyamide
substrates with methyl salicylate microcapsules can be considered as a promising alter-
native for the development of functional textile articles that will contribute to consumer
welfare, due to the results of the microencapsulation and finishing durability.
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