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ABSTRACT: The development of unconventional strategies for the
activation of ammonia (NH3) and water (H2O) is of capital
importance for the advancement of sustainable chemical strategies.
Herein we provide the synthesis and characterization of a radical
equilibrium complex based on bismuth featuring an extremely weak
Bi−O bond, which permits the in situ generation of reactive Bi(II)
species. The ensuing organobismuth(II) engages with various amines and alcohols and exerts an unprecedented effect onto the X−H
bond, leading to low BDFEX−H. As a result, radical activation of various N−H and O−H bonds�including ammonia and water�
occurs in seconds at room temperature, delivering well-defined Bi(III)-amido and -alkoxy complexes. Moreover, we demonstrate
that the resulting Bi(III)−N complexes engage in a unique reactivity pattern with the triad of H+, H−, and H• sources, thus providing
alternative pathways for main group chemistry.

■ INTRODUCTION
Compounds bearing N−H and O−H functionalities are
prevalent motifs in both the natural and the synthetic world.
Among them, ammonia (NH3) and water (H2O) occupy the
most prominent positions; indeed, they have been identified as
energy units or economic building blocks en route to high-
value compounds.1,2 However, chemical manipulation of N−H
and O−H bonds is nontrivial, as a result of the high bond
dissociation free energy (BDFE), e.g., BDFEO−H in H2O =
113.0 kcal·mol−1; BDFEN−H in NH3 = 100.3 kcal·mol−1.3

Indeed, the majority of the approaches toward X−H cleavage
focus on polar pathways; for example, both d- and p-block
elements undergo oxidative addition4 or deprotonation
through metal−ligand cooperation4,5 using the two electrons
of the respective d- and p-orbitals (Figure 1a). More recently,
the activation of the X−H bonds through radical pathways has
become feasible, albeit comparatively fewer examples are
known. Although s-block elements can activate X−H bond
through single-electron transfer (SET),6 milder strategies
capitalizing on the concept of coordination-induced bond
weakening have recently arisen (Figure 1b).7 Examples of this
reactivity are found in biology,8 catalysis,9 coordination
chemistry,7a or ammonia synthesis.10 Yet, such reactivity is
largely dominated by transition metals, and examples dealing
with main group elements remain rare.11,12 For example, a
(corrolato)germanium-TEMPO complex (group 14) has been
reported to activate N−H and O−H bonds under visible
light.11,13 Without irradiation, low yields were obtained at
higher temperatures and extended reaction times. In group 13,
boron-containing compounds have been shown to lower the
BDFE of E−H, including H2O and NH3.

11b−e Despite these
examples, complexes based on group 15 elements that enable
selective, fast, and mild radical activation of O−H and N−H

bonds through coordination-induced bond weakening proper-
ties are rare.

As the heaviest stable element,14 the electronic structure of
bismuth (Bi) is strongly influenced by relativistic effects, thus
decreasing the energies of its 6s and 6p orbitals. Consequences
of these unique electronic features are the well-known inert-
pair effect15 or strong Lewis acidity.16 In certain cases,
homolysis of LBi−X bonds becomes feasible due to the
preferential stability of the LBi radical over the ionized
heterolysis product LBi+.17 In principle, if the LBi· and X·
generated from homolysis are stable, it is possible that this
complex exists in both diamagnetic and paramagnetic form: a
radical equilibrium complex (REC) (Figure 1c).18 Examples of
Bi REC are scarce, and the few reported homolysis cases of the
Bi−X bond are mainly irreversible, due to the high reactivity of
the ensuing Bi radical species.19 Fundamental studies on a Bi−
Mo catalyst for the SOHIO process conducted by Hanna
suggested that Bi(II) intermediates�formed after thermal
homolysis of the Bi(III) bearing bulky phenolates�could be
responsible for the formation of allyl radicals from propene.19c

Similar reactivity with bulky phenolate anions was later
observed by Evans in a unique C−H bismuthylation of
phenols.19a In 2018, Coles demonstrated that the Bi(III)−O
bond in a R2Bi−OTEMP compound is in equilibrium with the
corresponding R2Bi(II) and TEMPO·.20 Collectively, these
precedents pointed to a facile thermal Bi−O bond scission of
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bulky oxy-type anions that can stabilize O centered
radicals.19d,g Yet, the origin and factors that influence this
process still remain unclear, and investigations on such unusual
chemical properties would be desirable. Herein we report on
the synthesis, reactivity, and structural characterization of a Bi
REC, whose Bi−O homolyzes reversibly at room temperature
without the need of irradiation (Figure 1d). We demonstrate
that such a complex permits fast and mild activation of
ammonia and water�among other alcohols and amines�
resulting in well-defined Bi(III) amido and alkoxy compounds.
We suggest that upon coordination to Bi(II), amines and
alcohols undergo X−H bond weakening, thus permitting their
facile radical activations. In addition, we propose that the novel
pincer-based Bi(III)−NR2 compounds show reactivity with a
triad of H+, H−, and H• sources.

■ RESULTS AND DISCUSSION
Reaction of N,C,N organobismuth(I) 1 with 2.0 equiv of
alkoxide radical 2 in THF led to the isolation of 4 in 95% yield
as an orange solid, with concomitant formation of 3 (Figure
2a). Single crystal XRD reveals 4 as a monomeric structure and
a 4-fold coordinated Bi center (Figure 2b, and SI). The bond
distances of C7−C8 (1.355(6) Å) and C7−N1 (1.379(5) Å)
clearly indicate a C�C double bond and a C−N single bond,
respectively. The angles between Bi and the distinct three
anionic ligands (C1, N1, O) vary from 75.48(13)° to
95.07(12)°, with a sum of angles up to 256.2°, pointing to a
major contribution of the 6p Bi orbitals in the Bi−X bonds (X
= C1, N1, O).21 Importantly, the Bi−O distance (2.178(3) Å)
and the angle of C47−O−Bi (136.2(3)°) are larger than the
closely related BiCl(O-2,4,6-tBu3C6H2)2 (Bi−O: 2.091(3) and
2.094(3) Å; C−Bi−O: 123.8(2) and 118.0(3)°).22 This
implies a poor overlap between the lone pair in the sp2

Figure 1. Overview of N−H and O−H activation modes. (a) State-of-the-art modes for X−H activation by transition metals and main group
elements; example of amines. TM, transition metal; MG, main group element. (b) Bond weakening of N−H and O−H by coordinating to
transition metal complexes. (c) Top: reversible homolysis of MG−X single bond in radical equilibrium complex (REC). Bottom: an example of a Bi
REC (right).20 (d) This work: activation of N−H and O−H by a Bi−O REC complex, and reactivity of the new Bi−amido compounds. TM:
transition metal; MG: main group element.
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Figure 2. Synthesis and characterization of a bismuth radical equilibrium complex. (a) Synthesis of complex 4. (b) Solid-state structure of 4,
illustrated using 30% probability ellipsoids except hydrogen atoms. Solvents, hydrogen atoms, and disordered parts have been omitted for clarity,
except those on C8. (c) Top: (blue line) EPR spectrum of complex 4 (after dissociation) at 25 °C, showing the presence of 2; (red line) spectral
simulation of 2. Parameters: g = 2.00854, 2×1H-Aiso = 4.76 MHz, 9×1H-Aiso = 1.04 MHz, 18×1H-Aiso = 0.2 MHz. Bottom: van’t Hoff plot of 4 in
PhMe between −30 and 20 °C. (d) Computational analysis of the Bi−O bond cleavage: potential energy profiles of the Bi−O bond dissociation of
4 at (ZORA) PBE0-D3/Def2-TZVP (SMD:Toluene) level of theory. Black and red color denote singlet (heterolytic bond cleavage) and triplet
(homolytic bond cleavage) potential energy surface, respectively. Frontier molecular orbitals both in singlet (a,c) and triplet states (b,d) are plotted
at equilibrium (left panel) and dissociated (right panel) geometries.
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hybridized orbital of the O atom and the diffuse p orbital of the
Bi center, indicating a weak Bi−O bond. EPR analysis of 4 at
room temperature resulted in the clear detection of the signal
for the known radical 2 (Figure 2c, top),23 which could be
characterized with high resolution. Due to the relatively high
temperature (>100 K) for the Bi−O bond homolytic cleavage,
only 2 was detected, as the EPR signal for Bi(II) (5) is
assumed to be too broad to be detectable, because of a fast
relaxation caused by large spin−orbit coupling.19f When 4
(13.08 mM) was subjected to successive cycles of temperature
changes within the range of 243−293 K, the concentration of 2
remained constant at a given temperature, supporting the

reversibility of the homolytic cleavage (see SI). The
thermodynamic parameters of the equilibrium in PhMe (ΔH
= +28.0 ± 0.3 kcal·mol−1 and ΔS = +58.7 ± 1.2 cal·mol−1·K−1)
are consistent with a dissociative mechanism (Figure 2d,
bottom).19f Importantly, the large contribution of the entropy
compensates for the unfavorable enthalpy and results in ΔG =
+10.5 ± 0.67 kcal·mol−1 at 298 K between the diamagnetic and
the paramagnetic species. Computed singlet and triplet bond
dissociation potential energy profiles of 4 at the PBE0/Def2-
TZVP (ZORA)24 level of theory are shown in Figure 2d. Upon
elongation of the Bi−O bond, the triplet state crosses the
singlet state at around ∼3.1 Å, indicating that splitting into two

Figure 3. Activation of O−H and N−H bonds: synthesis of 7, 9, 11, 13, 15, 17 (top), and solid-state structure of 15 (bottom, left) and 17
(bottom, right), illustrated using 30% probability ellipsoids except hydrogen atoms. Solvents, hydrogen atoms, except those on C8 and N3 in 15
and 17, and disordered parts have been omitted for clarity. All yields are of isolated pure material.
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radical species is energetically favorable by 37.2 kcal·mol−1.
Spin density analysis indicates a considerable spin polarization
on the Bi center when the Bi−O bond is elongated to 2.3 Å
(see SI). Orbital analysis of the singlet state for 4 shows that
the HOMO is predominantly located on the alkoxide ligand
and the LUMO on the N,C,N ligand and neighboring Bi. The
Bi−O cleavage is essentially completed at ca. 4.5 Å.
Importantly, values of ΔH = +25.0 kcal·mol−1 and ΔS =
+62.1 cal·mol−1·K−1 for the Bi−O scission are in good
agreement with the experimental thermodynamic data
obtained by EPR. The considerable entropic contribution is
attributed to high translational and rotational entropy
components resulting in a rather small computed ΔG = +6.5
kcal·mol−1 (ΔGexp = +10.5 ± 0.67 kcal·mol−1). In comparison,
the heterolytic bond cleavage of the Bi−O bond, is highly
endergonic with ΔG = +43.7 kcal·mol−1, supporting the
energetic preference for the formation of radical 2 and 5. It is
important to highlight that the weak Bi−O bond is a
consequence of the relativistic effect of Bi, which combined
with the stability of the Bi(II) by the pincer framework, the
stability of radical 2, and the large entropic gain, results in a
mild reversible homolytic cleavage.

The BDFE of X−H on a ligand is influenced by the
oxidation potential at the metal center and the pKa value of X−
H.3 Therefore, putative coordination to Bi(II) would increase
the population of the antibonding orbitals, making LBi(II)−
X−H a strong reductant.13 Hence, the Bi(II)/Bi(III) redox
couple presents itself as a good candidate for coordination-
induced bond weakening. When 4 was mixed with 1.0 equiv of
phenol (6, BDFEO−H = 79.8 kcal·mol−1),3 7 was formed
quickly and obtained in a 92% isolated yield (Figure 3).
Interestingly, the reaction with 1.0 equiv of H2O (BDFEO−H =

113.0 kcal·mol−1) led to rapid conversion to the corresponding
hydroxy bismuth 9 (86%), which has recently been
characterized in the context of N2O activation.25 Cyclohexanol
afforded the corresponding bismuth alkoxide 11 in 98% yield.
Similarly, when primary α-monoalkyl (12, BDFEN−H = 95.0
kcal·mol−1) and α-dialkyl amines (14, BDFEN−H = 90.7 kcal·
mol−1) were mixed with 4, the corresponding bismuth amides
were obtained in 78% (13) and 95% (15) yields, respectively.
Similar yields were observed in apolar nonprotic solvents, as
shown for the 95% yield of 15 in PhMe. Finally, when 4 was
mixed with 1.0 equiv of dry ammonia, 17 was isolated in 76%
yield. It is important to mention that Bi(III) complexes bound
to a free NH2 group are rare,26 and therefore, 17 represents a
unique example of such a pnictogen−pnictogen bond. In all
cases, solid-state structures reveal the bismuth center to be 4-
fold coordinated, and residing in a distorted plane formed by
the imine, amido and phenyl ring (see SI). The −OH, −OPh,
−NHCy, and −NH2 groups in 7, 9, 15, and 17 are
perpendicular to this plane, and they localize on either side.
The bond distances of C7−C8 and C7−N1 clearly indicate
that the C�C double bonds and C−N single bonds are
preserved. It is important to mention that no EPR signal was
detected from 7, 9, 11, 13, 15, and 17 in toluene at various
temperatures. Moreover, the reaction of 7 with CyOH (10)
produced <5% of 11, thus highlighting the unique reactivity of
4.

Generally, main group elements beyond group 14 have a
reduced tendency to form stable complexes with NH3,

5b and
therefore represent excellent candidates for NH3 activation and
direct conversion to added-value chemicals beyond the stable
MG−NH2 compounds.27 In order to explore their reactivity,
15 and 17 were mixed with various X−H sources (Scheme 1).

Scheme 1. Reactivity of Bismuth(III) Amido Complexes 15 and 17 with H+, H−, and H• Sourcesa

aAr = 2,6-diphenylphenyl.
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Initially, the basicity of the Bi−NH2 and Bi−NHCy bond was
confirmed by the immediate reaction at −80 °C with 6, leading
to 7 and 14/16. Such basicity is also demonstrated by the
reaction with H2O, leading quantitatively to 9. When 6 was
replaced by 6-d, no deuteration of the ligand was observed,
pointing to reactivity occurring solely at the Bi center.
Additionally, when 15 and 17 were mixed with a chromium
hydride (18) with aweak Cr−H bond (BDFECr−H = 53.0 kcal·

mol−1),28 reduction to 1 rapidly occurred at −80 °C, with no
intermediates detected. Concomitantly, Cr−Cr dimer 19 and
14/16 resulted, which point to a radical reaction of 15 and 17
with a weak H• source.19d,e 1 was also produced selectively
when 15 and 17 were mixed with 2 equiv of 2-
naphthalenethiol (20) (BDFES−H = 75.9 kcal·mol−1, see SI),
which formed 2-naphthyl disulfide (21) and 14/16.29

Interestingly, when 15 and 17 were mixed with HBpin, an

Figure 4.Mechanistic investigations. (a) Deuterium labeling experiments at various temperatures. (b) Computational analysis of the mechanism of
the radical activation of N−H bond in ammonia. Computed free energy (ΔG, in kcal·mol−1) profile for the N−H bond cleavage of NH3 by 5/OAr
pair. Relative free energies (in kcal·mol−1) are computed based on (ZORA) PBE0-D3/Def2-TZVP (SMD:Toluene) single point energies, and gas-
phase free energies corrections at 298.15 K obtained at the (ZORA) BP86-D3/Def2-TZVP level of theory. (c) Calculated BDFE of N−H and O−
H bonds after coordination with Bi(II). OAr* = 2,4,6-(tBu)3C6H2O.
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alternative hydride source with a much larger BDFEB−H =
108.6 kcal·mol−1,30 reduction to 1 occurred with the formation
of 23/24. In this case, a Bi(III)−H (int-BiH) could be detected
at −50 °C, featuring the characteristic signal in the 1H NMR at
+26.0 ppm.31 Int-BiH slowly converted into 1 at −50 °C, with
the migration of the H atom to the methylene backbone.
Incorporation of one deuterium in the methyl groups on the
backbone using DBpin further confirmed such migration (see
SI). Moreover, reduction of 15 and 17 to 1-d could also be
accomplished using BD3. Collectively, these bismuth-amido
complexes feature chemically noninnocent reactivity (ele-
ment−ligand cooperation),32 as well as reactivity toward
radical species.

As shown in Scheme 1, element−ligand cooperation through
the methylene unit is feasible during radical and hydride
processes involving H. To evaluate whether similar reactivity is
involved in the activation of N−H bonds, we carried out the
activation of deuterated cyclohexylamine (14-d2, 90% D) using
4. As shown in Figure 4a, both methyl and methylene moieties
resulted in an enrichment of deuterium (46% D) after 25 h at
25 °C. However, when the reaction was carried out at −40 °C
and monitored by NMR, no obvious incorporation of D in the
backbone was detected after complete conversion to 15. Only
upon warming the reaction mixture to 25 °C, a clear exchange
of H for D in the CH3 and CH2 could be detected. These
experiments confirm the following: (1) the absence of H/D
exchange on the ligand by 14-d2 during X−H activation; and
(2) that ligand noninnocent reactivity with 3-d is triggered at
higher temperatures from amido complex 15. Figure 4b
contains the computed free energy profile for the N−H bond
activation step (green-dotted line). Based on the combined
experimental evidence and the computational analysis, it is
proposed that upon reversible homolysis of the Bi−O bond in
4, NH3 coordinates to the Bi(II) radical through the
semioccupied 6pz orbital to generate II. HAT from II to
OAr radical (2) proceeds with a very low energy barrier
(TSII−III, ΔG = +1.3 kcal·mol−1), resulting in III (ΔG = −4.3
kcal·mol−1). The low energy barrier associated with TSII−III is
the result of the remarkably low BDFEN−H = 47.0 kcal·mol−1

calculated for the N−H bond once coordinated to the Bi(II)
center. Such a coordination-induced bond weakening effect of
the Bi(II) was also observed for H2O, CyNH2, and CyOH,
with BDFEX−H = 52.1, 59.1, and 52.3 kcal·mol−1, respectively
(Figure 4c, left). Without hydrogen bonding with HOAr* (3),
17 is significantly lower in energy (−14.1 kcal mol−1),
permitting its isolation. The hydrogen exchange observed
experimentally at the vinylic C−H bonds after the N−H
activation was also computationally evaluated (Figure 4b, blue-
dotted line). The computed barrier for the radical hydrogen
exchange between III and IV raises to ΔG‡ = +10.5 kcal·mol−1,
due to the energetic mismatch between IV (BDFEC−H = +51.1
kcal·mol−1) and 2 (BDFEO−H = +76.8 kcal·mol−1)3 (Figure 4c,
middle). Upon single electron transfer (SET) between 1 and 2,
the Me C−H bond in the backbone in V also undergoes bond-
weakening (Figure 4c, right, BDFEC−H = +60.4 kcal·mol−1),33

resulting in feasible H-abstraction by 2 en route to starting
complex 4 (Figure 2a). The small energy difference between 4
and III indicates that NH3 activation might be reversible,5b

which was confirmed by the incorporation of deuterium in the
CH2 groups of 4 in the presence of ND3 (see SI). Finally,
alternative pathways such as direct HAT from 2 to NH3
without the involvement of Bi, or reaction between 4 and NH3
through heterolytic bond cleavage, were discarded due to high

energy transition states obtained in the free energy profile (>40
kcal·mol−1, see SI).

■ CONCLUSIONS
In this article, we disclose the design, synthesis, and reactivity
of a bismuth REC (4), featuring a weak Bi−O bond. The facile
homolysis at room temperature leads to a highly reactive Bi(II)
species (5) with unusual chemical properties. Under mild
conditions, compound 4 is able to perform a rapid and
selective activation of amines and alcohols�including
ammonia and water�resulting in exclusive alkoxy- and
amido-bismuth(III) complexes. A combined experimental
and computational analysis of the system suggests that upon
homolysis, coordination of the lone pair in X−H to 5 occurs,
resulting in a dramatic reduction of the BDFEX−H, which
enables its cleavage by the phenoxy radical. Reactivity studies
of the novel Bi(III)−NHR resulted in engagement with the
triad of proton, hydride, or radical hydrogen sources, a rather
unique feature for main group elements. Although Bi(III)−
NHR have shown reactivity involving the ligand framework,
deuteration experiments and kinetic analysis indicate that no
element−ligand cooperation occurs during the activation, in
agreement with the mechanistic hypothesis from a computa-
tional analysis. Properties such as coordination-induced bond
weakening at bismuth combined with the rich reactivity
pattern offered by the Bi(III)-amido complexes (at metal and
ligand) provide a platform for further exploration in the area of
bismuth radical catalysis.
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