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Introduction
Acute myeloid leukemia (AML) is an extremely heterogeneous 
malignant disorder; in recent years, AML developed so rapidly 
by affecting children and adults, and hence it has been reported 
as one of the main causes of death in children.1-5 It is the most 
common acute leukemia in adults,6-8 with a frequency of more 
than 20 000 cases per year in the United States alone.6 It is 
characterized by genetic alterations in hematopoietic ancestor 
cells that change usual mechanisms of self-replicating.2,9 AML 
is commonly triggered by mutation in CCAAT/enhancer-
binding protein-alpha (CEBPA) gene.10-14 The CEBPA is a 
transcription element that affects immune cell density and 
diversity.15,16 Most patients with AML who have CEBPA alter-
ations simultaneously transport double mutations,17-19 never-
theless, different mutations have been reported20-24; some 
studies have been reported which claimed some related factors 
besides CEBPA mutation, such as smoking, alcohol, and expo-
sure to solvents and agrochemicals may cause AML,25-27 but no 
evidence of publication bias. Other genes have been reported 
which cause AML such as fms-related tyrosine kinase 3 (FLT3-
ITD) and nucleophosmin 1 (NMP1), which assisted to improve 

person diagnosis; furthermore, these mutant molecules charac-
terize as a potential target for molecular therapies.6,28-31 
Sometimes, patients with chronic lymphocytic leukemia can 
develop AML,32 whereas in rare cases patients with AML can 
develop esophageal cancer.33

Stem cell transplantation treatment is related to the result of 
treatment for patients with cytogenetically usual AML.34 
Nevertheless, the advantage of the transplant is exclusive to 
subcategory of patients with CEBPA mutations alone31,34; in 
spite of this hopeful recent evolution, the outcomes of patients 
with AML remain insufficient, with more than 50% of the 
patients eventually dying from this devastating disease. The 
purpose of this study is to classify functional mutations located 
in the coding region of CEBPA gene using in silico analysis.

Disease-causing single nucleotide polymorphisms (SNPs) 
are frequently found to arise at evolutionarily conserved 
regions; these have a key role at structural and functional levels 
of the protein. The capability to calculate whether a particular 
SNP is deleterious or not is very important for the prognosis of 
disorder.35-45 The practice of translational bioinformatics has 
solid influence on the identification of candidate SNPs and can 
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contribute in pharmacogenomics by identifying high-risk SNP 
mutation contributing to drug response as well as developing 
novel therapeutic elements for this deadly disease.46-54 This is 
the first silico analysis in coding and non-coding regions of 
CEBPA gene that prioritized SNPs to be used as diagnostic 
markers with a special consideration of the large heterogeneity 
of AML among different populations.

Materials and Methods
Data mining

The polymorphic data of CEBPA gene were claimed from 
National Center for Biotechnology Information (NCBI) web-
site (https://www.ncbi.nlm.nih.gov/), and the reference 
sequence of human protein was collected from UniProt55 
(https://www.uniprot.org/).

Functional analysis

Sorting Intolerant From Tolerant.  It is the first in silico func-
tional analysis that calculates whether an amino acid alteration 
affects protein function or not. Sorting Intolerant From Toler-
ant (SIFT) scores < 0.05 are expected to be damaging altered 
amino acid, otherwise it is considered to be tolerant.56 It is 
available at https://sift.bii.a-star.edu.sg/.

PolyPhen-2.  It is a trained machine learning to predict whether 
an amino acid replacement affects protein function and struc-
ture or not, by calculating position-specific independent count 
(PSIC) for each SNP at a time. There are 2 outputs whether 
probably damaging (values are more frequently 1) and possibly 
damaging or benign (values range from 0 to 0.95).57 It is avail-
able at http://genetics.bwh.harvard.edu/pph2/.

PROVEAN.  It is an online in silico functional analysis tool 
that calculates whether an amino acid replacement has an 
influence on the organic function of a protein stranded on the 
alignment-based score. If the PROVEAN score ⩽ –2.5, the 
protein variant is expected to have a “deleterious” effect, whereas 
if the PROVEAN score is >–2.5, the variant is expected to 
have a “neutral” effect.58 It is available at http://provean.jcvi.
org/index.php.

SNAP2.  It is a trained functional analysis tool that differenti-
ates between effect and neutral SNPs by taking various features 
into validation. SNAP2 got an accuracy of 83%, which has 2 
expectations: effect (positive score) or neutral (negative score). 
It is considered an important and substantial enhancement 
over other methods. It is available at https://rostlab.org/ser-
vices/snap2web/.

SNPs&GO.  It is a trained machine learning based on the tech-
nique to precisely calculate the deleterious associated altera-
tions from protein sequence. SNPs&GO collects in a unique 
framework information derived from protein sequence, 

evolutionary information, and function as coded in the Gene 
Ontology terms and underperforms other available predictive 
methods (PhD-SNP and PANTHER).59 It is available at 
http://snps.biofold.org/snps-and-go/snps-and-go.html.

PMut.  It is a web-based tool for the explanation of SNP alter-
nates on proteins, which allows the rapid and precise calcula-
tion (80%) of the compulsive features of each SNP grounded 
on the practice of neural networks.60 It is accessible at http://
mmb.irbbarcelona.org/PMut.

Stability analysis

I-Mutant 3.0.  I-Mutant is a support vector machine (SVM)-
based tool. I-Mutant predicts whether the protein mutation 
stabilizes or destabilizes the protein structure by calculating 
free energy change by coupling predictions with the energy-
based FOLD-X tool.61 It is available at http://gpcr2.biocomp.
unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi.

MUpro.  It is a structural analysis online tool for the calculation 
of protein stability variations in arbitrary SNPs. The value of the 
energy change is expected, and assurance mark between –1 and 
1 for evaluating the assurance of the expectation is calculated. A 
score of <0 means the mutant decreases the protein stability; 
conversely, a score of >0 means the mutant increases the protein 
stability.62 It is available at http://mupro.proteomics.ics.uci.edu/.

3-Dimensional clustering analysis

Mutation3D.  It is a functional calculation and visualization 
online tool for investigating the 3-dimensional (3D) plan of 
amino acid alterations in protein models and structures.63 It is 
available at http://mutation3d.org.

Biophysical validation

Project HOPE.  It is a web server to search protein 3D struc-
tures by bringing together structural information from several 
sources such as UniProt database. The main aims for the sub-
missions in Project HOPE are to analyze and confirm the 
results that we obtained earlier. It is available at http://www.
cmbi.ru.nl/hope.

Conservational analysis

BioEdit.  It is a software package proposed to stream a distinct 
program that can run nearly any sequence operation as well as 
a few basic alignment investigations. It is available for down-
load at http://www.mbio.ncsu.edu/bioedit/bioedit.html.

ConSurf server.  It is a web server that offers evolutionary con-
servation summaries for proteins of known structure in the 
protein data bank. ConSurf spots the parallel amino acid 
sequences and runs multialignment methods. The conserved 

https://www.ncbi.nlm.nih.gov/
https://www.uniprot.org/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
https://rostlab.org/services/snap2web/
https://rostlab.org/services/snap2web/
http://snps.biofold.org/snps-and-go/snps-and-go.html
http://mmb.irbbarcelona.org/PMut
http://mmb.irbbarcelona.org/PMut
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://mupro.proteomics.ics.uci.edu/
http://mutation3d.org
http://www.cmbi.ru.nl/hope
http://www.cmbi.ru.nl/hope
http://www.mbio.ncsu.edu/bioedit/bioedit.html


Mustafa et al	 3

amino acid across species flags its position using specific algo-
rithm.64 It is available at http://consurf.tau.ac.il/.

3D structural analysis

RaptorX.  The 3D structure of human CEBPA protein is not 
available in the Protein Data Bank. Hence, RaptorX was used 
to make a 3D structural model for wild-type CEBPA. RaptorX 
is a web server predicting structure property of a protein 
sequence without using any templates.65 It is available at http://
raptorx.uchicago.edu/.

UCSF Chimera.  It is a visualization analysis program of 3D 
structure prototype, docking analysis, and so many related 
analyses. A predicted model was created by RaptorX to visual-
ize and compare the amino acid alterations using UCSF Chi-
mera.66 UCSF Chimera 1.8 is free for download at http://
www.cgl.ucsf.edu/chimera/.

GeneMANIA

It is a method to  know protein function prediction integrating 
multiple genomics and proteomics data sources to make infer-
ences about the function of unknown proteins.67 It is available 
at http://www.genemania.org/.

Variant Effect Predictor

The Ensembl Variant Effect Predictor (VEP) software pro-
vides tools and methods for a systematic approach to annotate 
and aid prioritization of variants in both large-scale sequencing 
projects and smaller analysis studies.68 It is available at http://
www.ensembl.org/vep.

PolymiRTS server

It is a server for investigating functional SNPs in 3′-untrans-
lated region (3′-UTR) of CEBPA gene that may change 
miRNA binding on target sites, resulting in different func-
tional consequences.69 It is available at http://compbio.uthsc.
edu/miRSNP/.

Results
The total number of SNPs in different regions of CEBPA gene 
was retrieved from NCBI. The distribution of non-synony-
mous single nucleotide polymorphisms (nsSNPs) in coding 
and non-coding regions of CEBPA gene contained 248 nsS-
NPs, with 350 SNPs in the 3′-UTR and 11 in the 5′-untrans-
lated region (5′-UTR; Figure 1).

A total of 248 missense mutations were retrieved from the 
database of single nucleotide polymorphism (dbSNP)/NCBI 
database, and these SNPs were submitted into different  
functional analysis tools such as SIFT, polymorphism pheno-
typing v2 (PolyPhen-2), PROVEAN, and SNAP2, respec-
tively. Sorting Intolerant From Tolerant server predicted 28 

deleterious SNPs, PolyPhen-2 predicted 85 damaging SNPs 
(29 were possibly damaging and 56 were probably damaging 
to protein), PROVEAN represented 34 deleterious SNPs, 
whereas in SNAP2 we filtered the triple-positive deleterious 
SNPs from the previous 3 analysis tools, out of 53 SNPs there 
were 19 predicted deleterious SNPs by SNAP2. Table 1 rep-
resents the Quad-positive of deleterious SNPs after filtra-
tions, the number decreased rapidly to 19 SNPs, after 
submitting them into SNPs&GO and PhD-SNP, PMut and 
PANTHER, respectively, to run more investigation on these 
SNPs and their effect on the functional level. The triple posi-
tive in the 3 tools was 5 disease-associated SNPs (Table 2). 
Finally, we submitted them to I-mutant 3.0 and MUpro, 
respectively, to investigate their effect on structural level. The 
2 online tools revealed that all 5 mutations predicted a dra-
matic decrease in the protein stability, except for 2 SNPs 
(N292T and D63N) that were predicted by I-Mutant to 
increase the stability of the protein (Table 3).

Single nucleotide polymorphisms in 3′-UTR of CEBPA 
gene were submitted as batch to PolymiRTS server. The  
result shows that among 350 SNPs in the 3′-UTR of CEBPA 
gene, about 11 SNPs were predicted, namely, rs116528776, 
rs113670631, rs34017519, rs146104564, rs187516157, 
rs2376497, rs192371350, rs1049969, rs41367646, rs184965384, 
and rs187751931; among these 11 SNPs, 65 alleles disrupted a 
conserved miRNA site and 22 derived alleles created a new site 
of miRNA (Table 6).

Discussion
In vitro mutagenesis, functional and characterization studies, is 
an unwieldy task regarding workload, time, and fees. For these 
reasons, bioinformatics analysis is an appropriate, rapid, low-
cost, and dependable approach to enhance our understanding 
of how mutations could disturb the protein structure and func-
tion.53,54 Disease-causing SNPs are commonly found to arise at 
evolutionarily conserved regions. Those have a key role at 
structural and functional levels of the protein36,38; therefore, our 
focus was dedicated to the coding region, which unmasked 5 
mutations in CEBPA gene using different sequence and 

Figure 1.  The distribution of SNPs in coding and in non-coding regions 

of CEBPA gene. SNPs indicates single nucleotide polymorphisms.
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structure-based algorithms (Figure 2). The SNPs that have 
been found in this study could be used in prognostics of dis-
ease, because identification of CEBPA status in AML has a 
major clinical importance, allowing relapse risk to be stratified 
properly for post-remission treatment.70,71

All these SNPs (D63N, R288P, N292T, N292S, and 
R339W) were retrieved from the dbSNPs/NCBI database as 
untested and all were found to be pathogenic mutations.

At the functional level analysis, our results showed that all 
these nsSNP substitutions (D63N, R288P, N292T, N292S, and 
R339W) were classified as highly pathogenic mutations (Table 
1). The analysis of different SNPs on the protein structure can 
disturb interactions with other molecules, MUpro results 
showed a decrease in stability for all these SNPs (D63N, 
R288P, N292T, N292S, and R339W), whereas I-Mutant 
results showed a decrease in stability for these SNPs (R288P, 
N292S, and R339W), thus suggesting that these mutations 
could directly or indirectly destabilize the amino acid interac-
tions triggering functional deviations of protein to some point.

CEBPA offers information for building a protein termed 
CCAAT enhancer-binding protein alpha. It’s a transcription 
factor (TF) and its performance is a malignant suppressor, 
which means it is complicated in cellular mechanisms and 
could help to prevent the cells from developing and dividing 
too swiftly or in an uncontrolled mode and that is the principle 
of cancer.24,72 We also achieved analysis by Mutation3D server, 
all SNPs in red (R288P, N292S, and N292T) are clustered 
mutation, significantly, such mutation clusters are commonly 
associated with human cancers,73 whereas SNPs in blue 
(R339W) and gray (D63N) are covered and uncovered muta-
tions, respectively (Figure 3).

Project HOPE server was used to submit the most damag-
ing SNPs (R288P): interestingly, proline interrupts an α-helix 
when not positioned at 1 of the first 3 positions of that helix. If 
this happened, a major impact on the protein structure could 
occur (Figure 4). In this study, we also observed that only 1 
SNP (D63N), the residue predicted to be mutated, is evolu-
tionarily conserved across species, and this may increase the 

Table 1.  Affect or damaging nsSNPs associated predicted by various software.

dbSNP rs# SUB SIFT 
prediction

Score PolyPhen 
prediction

Score PROVEAN 
prediction

Score SNAP2 
prediction

Score

rs1358286265 G355V AFFECT 0 Damaging 1 Deleterious –7.083 Effect 48

rs1402033817 G355S AFFECT 0 Damaging 1 Deleterious –4.501 Effect 47

rs1439202716 R343C AFFECT 0 Damaging 1 Deleterious –6.702 Effect 43

rs1455027551 R339W AFFECT 0 Damaging 1 Deleterious –7.798 Effect 74

rs758726582 R333C AFFECT 0 Damaging 1 Deleterious –7.409 Effect 14

rs1422138876 V328G AFFECT 0 Damaging 1 Deleterious –6.823 Effect 51

rs1306818311 R327W AFFECT 0 Damaging 1 Deleterious –6.468 Effect 47

rs781549846 R325C AFFECT 0 Damaging 1 Deleterious –6.324 Effect 19

rs1013241741 S299C AFFECT 0 Damaging 1 Deleterious –4.866 Effect 23

rs1391793930 K298R AFFECT 0 Damaging 1 Deleterious –2.924 Effect 31

rs1392203731 K298Q AFFECT 0 Damaging 1 Deleterious –3.899 Effect 34

rs776590829 N292T AFFECT 0 Damaging 1 Deleterious –5.788 Effect 35

– N292S AFFECT 0 Damaging 1 Deleterious –4.907 Effect 29

rs1064794962 R288P AFFECT 0 Damaging 1 Deleterious –6.636 Effect 66

rs376856647 E284D AFFECT 0 Damaging 1 Deleterious –2.694 Effect 44

rs1196766447 E284A AFFECT 0 Damaging 1 Deleterious –5.588 Effect 18

rs1352573347 P233H AFFECT 0 Damaging 1 Deleterious –3.924 Effect 37

rs1267025311 R156W AFFECT 0 Damaging 1 Deleterious –2.983 Effect 71

rs1452063514 D63N AFFECT 0 Damaging 1 Deleterious –2.992 Effect 72

Abbreviations: dbSNP, database of single nucleotide polymorphism; nsSNPs, non-synonymous single nucleotide polymorphisms; SIFT, Sorting Intolerant From Tolerant; 
SUB, substitution.
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possibility of altered transcriptional and cell cycle regulation 
(Figure 5).

The 3D protein structure analysis enables mapping of 
amino acid substitutions and, therefore, RaptorX was used to 
make a 3D structure model for CEBPA protein (Figure 6) to 
support and match the results acquired from different compu-
tational tools, UCSF Chimera serves this purpose (Figures 7 
to 11), show the differences between native and mutant amino 
acids, in the green and red boxes the schematic structures of 
the native amino acids (in the left side), and the mutant ones 
(in the right side). The backbone, which is the same for each 
amino acid, is colored red and the side chain, unique for each 
amino acid, is colored black, the 3D wide-type residues colored 
green and mutant ones colored red, whereas the protein is 
colored cyan.

In Figure 7, D63N shows the native amino acid (aspartic 
acid) and the mutant one (asparagine) at position 63; the 
mutated residue is located on the surface of a domain with 
unknown function; the residue was not found to be in contact 
with other domains of which the function is known within the 
used structure; however, contact with other molecules or 
domains is still possible and might be affected by this 
mutation.

In Figure 8, R288P shows close-up angle of the native 
amino acid (arginine) and the mutant one (proline) at posi-
tion 288; the mutated residue is located in a domain that is 
important for the activity of the protein and in contact with 
residues in another domain, and it is possible that this inter-
action is important for the correct function of the protein. 
The mutation can affect this interaction and as such affect 
protein function; the mutation introduces an amino acid with 
different properties, which can disturb this domain and abol-
ish its function, the charge of the wild-type residue is lost by 
this mutation, which can cause loss of interactions with other 
molecules; the mutant residue is smaller than the wild-type 
residue; and this will cause a possible loss of external 
interactions.

In Figure 9, N292S shows the schematic structures of the 
original amino acid (asparagine) and the mutant one (serine) 
at position 292; each amino acid has its own specific size, 
charge, and hydrophobicity value. The original wild-type res-
idue and newly introduced mutant residue often differ in 
these properties; the mutant residue is more hydrophobic 
than the wild-type residue; the mutant residue is smaller than 
the wild-type residue; and this will cause a possible loss of 
external interactions.

In Figure 10, N292T shows close-up angle of the native 
amino acid (asparagine) and the mutant one (threonine) at 
position 292; the mutated residue is located in a domain that 
is important for the activity of the protein and in contact with 
residues in another domain. It is possible that this interaction 
is important for the correct function of the protein. The muta-
tion can affect this interaction and as such affect protein 
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function; the mutant residue is smaller than the wild-type 
residue; and this will cause a possible loss of external 
interactions.

In Figure 11, R339W shows the schematic structures of the 
original amino acid (arginine) and the mutant one (trypto-
phan) at position 339; the residue is located on the surface of 

the protein; mutation of this residue can disturb interactions 
with other molecules or other parts of the protein; and the 
charge of the wild-type residue (positive) is lost by this muta-
tion. This can cause loss of interactions with other molecules. 
The mutant residue is more hydrophobic than the wild-type 
residue, which can disturb this domain and abolish its 
function.

Figure 4.  The mutant residue located in an α-helix.

Table 3.  Structural investigation calculated using I-Mutant 3.0 and MUpro.

dbSNP rs# SUB I-mutant prediction RI DDG value prediction MUpro prediction Score

rs1455027551 R339W Decrease 3 –0.21 Decrease –0.24675

rs776590829 N292T Increase 2 –0.35 Decrease –1.48124

– N292S Decrease 6 –0.73 Decrease –1.46979

rs1064794962 R288P Decrease 5 –0.73 Decrease –0.66005

rs1452063514 D63N Increase 1 –0.2 Decrease –1.22302

Abbreviations: dbSNP, database of single nucleotide polymorphism; RI, reliability index; SUB, substitution.
DDG value: free energy changes value.

Figure 2.  Descriptive workflow of softwares used in SNP analysis. SNP indicates single nucleotide polymorphism.

Figure 3.  Structural simulations for mutant residues in CEBPA protein, 

demonstrated by Mutation3D.
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Figure 6.  The 3D structure of the CEBPA protein model was generated 

by using RaptorX; it could not generate the 3D structure of all amino acid 

positions; therefore, the model was done from positions 52 to 358, due to 

the lack of information. 3D indicates 3-dimensional.

Figure 7.  D63N: aspartate (green box) changes to asparagine (red box) at position 63.

Figure 5.  Alignments of 8 amino acid sequences of CEBPA representing 

that the residues predicted to be mutated are evolutionarily conserved 

across species. Sequences alignment was done by BioEdit (v7.2.5).

We also used ConSurf web server; the nsSNPs that are 
shown by black boxes located in highly conserved regions and 
predicted to cause structural and functional impacts on CEBPA 
protein (Figure 12).

GeneMANIA revealed strong functional associations 
that CEBPA gene had observed with transforming growth 
factor beta (TGFB1) and tumor necrosis factor (TNF) 
genes (Figure 13). Besides, weak interactions with less con-
fidence have been observed for prolactin regulatory element 

binding (PREB) and early B cell factor 1 (EBF1) genes. 
The genes co-expressed with, sharing similar protein 
domain, or contributed to achieve similar function are 
shown in Tables 4 and 5.

The VEP annotates variants using a wide range of refer-
ence data, including transcripts, regulatory regions, and fre-
quencies from previously observed variants, citations, clinical 
significance information, and predictions of biophysical con-
sequences of variants, and that is what makes VEP to give 
accurate results; as far as we know, the only limitation is that 
VEP annotates each input variant independently, without 
considering the potential compound effects of combining 
alternate alleles across multiple variant loci,68 and this is the 
reason why we could not predict the consequences of N292S 
mutation, whereas the predicted variant consequences are 
shown in Table 6. VEP reported regulatory consequences for 
many variants, including 5 variants within a coding region, 6 
variants within a non-coding region, 10 variants within 
upstream gene, 6 variants within downstream gene, 4 variants 
within non-coding transcript exon, and 1 variant within tran-
scription factor binding site (TFBS); in conclusion, muta-
tions within a coding region affect the protein function, 
whereas regulatory variants within non-coding genomic 
regions can greatly affect disease and could be involved in the 
specific recruitment or sequestration of spliceosome factors 
and RNA-binding proteins (RBPs)74,75; the SNPs in the 
upstream, downstream, 5′-, and 3′-UTRs might affect tran-
scription or translation process76; whereas alteration at TFBS 
has many consequences, such as variants within a TFBS dif-
ferentially influence its TF-binding affinity; another conse-
quence that could affect TFBS is that multiple variants in the 
promoter regions can “transform” an existing binding site of a 
particular TF into a site for another TF, even from a different 
TF family.77 Figure 14 illustrates the summary pie charts and 
statistics.

Single nucleotide polymorphisms in 3′-UTR of CEBPA 
gene were submitted as batch to PolymiRTS server. The result 
showed that 11 SNPs may affect microRNA binding sites. As 
an example, rs2376497 SNP containing (D) allele had 8 
microRNA sites (miRSite) as target binding site that can dis-
rupt a conserved miRNA and (C) alleles had 5 miRSites that 
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Figure 11.  R339W: the amino acid arginine changes to tryptophan at position 339; illustration was done by UCSF Chimera (v 1.8.) and project HOPE.

Figure 9.  N292S: the amino acid asparagine changes to serine at position 292; illustration was done by UCSF Chimera (v 1.8.) and project HOPE.

Figure 10.  N292T: the amino acid asparagine changes to threonine at position 292; illustration was done by UCSF Chimera (v 1.8.) and project HOPE.

Figure 8.  R288P: the amino acid arginine changes to proline at position 288; illustration was done by UCSF Chimera (v 1.8.) and project HOPE.
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disrupt a conserved miRSite. Table 7 demonstrates the SNPs 
predicted by PolymiRTS to induce disruption or formation of 
miRSite.

The limitations of this study are that it focuses on coding 
and 3′-UTRs using different numbers of tools of silico analy-
sis; yet there are number of genes responsible for AML 
although AML is frequently triggered by mutation in CEBPA 
gene10-13; in general, it is likely to achieve that computational 
approach remains as an accurate way to make a rapid analysis 
regarding the expected effect of mutations; nevertheless, the 

more factors that are taken into account, the more accurate the 
prediction will be. To take the best advantage of bioinformatics 
analysis, different computational tools could be used, trying to 
cover the major aspects influencing protein structure and func-
tion, Mutation Taster,78 SNPdryad,79 and ACES (a machine 
learning toolbox for clustering analysis and visualization).80 
The 5′-UTRs have not been analyzed in this study; these SNPs 
are likely to affect the level of gene expression; the impact of 
SNPs at the 5′-UTRs can be predicted by using some of the 
RNA assessment tools, such as PreTIS.81

Figure 12.  The conserved amino acids across species in CEBPA protein were determined using ConSurf. e: exposed residues according to the 

neural-network algorithm are indicated in orange letters. b: residues predicted to be buried are demonstrated via green letters. f: predicted functional 

residues (highly conserved and exposed) are indicated with red letters. s: predicted structural residues (highly conserved and buried) are demonstrated in 

blue letters. I: insufficient data—the calculation for this site performed in less than 10% of the sequences is demonstrated in yellow letters.
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This study is the first in silico analysis while all other 
previous studies were next-generation sequencing (NGS) 
analysis, in vitro analysis, and in vivo analysis14,71,82,83; also, 
it is the first computational analysis, which revealed that 5 
SNPs were identified as highly deleterious in the coding 
region, whereas 11 SNPs were detected to be damaging in 

the 3′-UTR, and therefore, may be used as diagnostic mark-
ers for AML and might create an ideal target for cancer 
therapy. These outcomes in combination with all earlier 
discoveries make AML a model for understanding the phi-
losophies of cancer development.84,85 Finally, clinical tech-
niques are recommended to support these findings.

Figure 13.  Interaction between CEBPA and its related genes.
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Table 4.  The CEBPA gene functions and its appearance in network and genome.

Function FDR Genes in network Genes in genome

Regulation of multiorganism process 0.375211393 4 216

Response to bacterium 0.375211393 4 167

Golgi lumen 0.375211393 3 84

Viral genome replication 0.375211393 3 64

Negative regulation of multiorganism process 0.375211393 3 79

Negative regulation of cytokine production 0.698836286 3 111

Negative regulation of fat cell differentiation 0.698836286 2 22

Regulation of viral process 0.828689471 3 134

Protein import into nucleus, translocation 0.828689471 2 26

Lipopolysaccharide-mediated signaling pathway 0.829247433 2 30

Abbreviation: FDR, false discovery rate.
FDR is greater than or equal to the probability that this is a false positive.

Table 5.  The gene co-expression, shared domain, and interaction with CEBPA gene network.

Gene 1 Gene 2 Weight Network group

TK1 PCBP2 0.00530806 Co-expression

RUNX1T1 SLC2A4 0.02216304 Co-expression

TRIM26 CEBPA 0.01914615 Co-expression

TOP2A TK1 0.00946418 Co-expression

AFP CEBPA 0.01361087 Co-expression

TK1 AFP 0.02290919 Co-expression

MMP11 CEBPA 0.00309695 Co-expression

AFP ADH7 0.00763638 Co-expression

TK1 FDPS 0.00380695 Co-expression

TOP2A TK1 0.00417671 Co-expression

TOP2A TK1 0.004765 Co-expression

TOP2A TK1 0.00795774 Co-expression

TOP2A UHRF1 0.00966428 Co-expression

TOP2A TK1 0.00797961 Co-expression

MMP11 CEBPA 0.00799819 Co-expression

TOP2A TK1 0.00777507 Co-expression

TK1 UHRF1 0.01041377 Co-expression

TOP2A UHRF1 0.01174308 Co-expression

LYZ PCBP2 0.01229207 Co-expression

AFP LYZ 0.0059269 Co-expression

AFP ONECUT1 0.01915715 Co-expression

PREB TRIM26 0.00768956 Co-expression

TRIM26 FDPS 0.01174667 Co-expression

RUNX1T1 EBF1 0.00970602 Co-expression

TK1 UHRF1 0.00909379 Co-expression

(Continued)
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Gene 1 Gene 2 Weight Network group

TOP2A UHRF1 0.01288607 Co-expression

TOP2A TK1 0.00770565 Co-expression

FDPS TNF 0.00918617 Co-localization

TOP2A TGFB1 0.00832004 Co-localization

TOP2A FDPS 0.0065701 Co-localization

TOP2A TK1 0.00696822 Co-localization

NCOA3 CEBPA 0.29423913 Genetic interactions

TGFB1 CEBPA 0.00700947 Pathway

DEFA3 CEBPA 0.17928578 Pathway

UHRF1 CEBPA 0.17928578 Pathway

MMP11 CEBPA 0.17928578 Pathway

UBP1 CEBPA 0.17928578 Pathway

ADH7 CEBPA 0.17928578 Pathway

FDPS CEBPA 0.17928578 Pathway

TRIM26 CEBPA 0.07640404 Pathway

AFP CEBPA 0.07640404 Pathway

PREB CEBPA 0.07618967 Pathway

TK1 CEBPA 0.07600352 Pathway

TOP2A CEBPA 0.07955996 Pathway

RUNX1T1 CEBPA 0.07140907 Pathway

TGFB1 CEBPA 0.3443214 Pathway

TNF CEBPA 0.3443214 Pathway

NCOA3 CEBPA 0.01949818 Pathway

SLC2A4 CEBPA 0.10226673 Pathway

EBF1 CEBPA 0.08983881 Pathway

LYZ CEBPA 0.3277232 Pathway

TOP2A UHRF1 0.02391628 Physical interactions

ONECUT1 CEBPA 1 Physical interactions

PCBP2 CEBPA 0.6985996 Physical interactions

Figure 14.  Summary pie charts and statistics.

Table 5. (Continued)
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Table 7.  SNPs and INDELs in miRNA target sites in CEBPA gene.

Location dbSNP ID miR ID Conservation miRSite Function 
class

Context + 
score change

33791117 rs116528776 hsa-miR-548aa 6 tcctttTGGTTTT D –0.032

  hsa-miR-548ap-3p 6 tcctttTGGTTTT D –0.032

  hsa-miR-548t-3p 6 tcctttTGGTTTT D –0.032

  hsa-miR-186-3p 9 tcCTTTGGGtttt C –0.11

  hsa-miR-548as-3p 6 tcctttGGGTTTT C –0.079

33791158 rs113670631 hsa-miR-5192 7 ACTCTCCgtcggc D –0.103

  hsa-miR-5739 7 aCTCTCCGtcggc D –0.234

33791211 rs34017519 hsa-miR-548aa 15 tttattTGGTTTT D –0.12

  hsa-miR-548ap-3p 15 tttattTGGTTTT D –0.12

  hsa-miR-548t-3p 15 tttattTGGTTTT D –0.12

  hsa-miR-548at-3p 15 tttattCGGTTTT C –0.179

  hsa-miR-548ay-3p 15 tttattCGGTTTT C –0.169

33791239 rs146104564 hsa-miR-3939 21 aatgTGCGCGTct D –0.344

33791250 rs187516157 hsa-miR-130a-5p 11 tgtgcAATGTGAA D –0.06

  hsa-miR-23a-3p 11 tgtgcAATGTGAA D –0.06

  hsa-miR-23b-3p 11 tgtgcAATGTGAA D –0.06

  hsa-miR-23c 11 tgtgcAATGTGAA D –0.039

  hsa-miR-25-3p 12 tGTGCAATgtgaa D –0.092

  hsa-miR-32-5p 12 tGTGCAATgtgaa D –0.102

  hsa-miR-363-3p 12 tGTGCAATgtgaa D –0.092

  hsa-miR-367-3p 12 tGTGCAATgtgaa D –0.111

  hsa-miR-92a-3p 12 tGTGCAATgtgaa D –0.083

  hsa-miR-92b-3p 12 tGTGCAATgtgaa D –0.074

  hsa-miR-513b-5p 15 tgtgcaTTGTGAA C 0.006

33791649 rs2376497 hsa-miR-1233-5p 4 acgcctCTCCCAC D –0.082

  hsa-miR-30c-1-3p 4 acgccTCTCCCAc D 0.01

  hsa-miR-30c-2-3p 4 acgccTCTCCCAc D 0.01

  hsa-miR-6731-5p 3 acgcCTCTCCCAc D –0.143

  hsa-miR-6778-5p 4 acgcctCTCCCAC D –0.101

  hsa-miR-6788-5p 4 acgccTCTCCCAc D –0.018

  hsa-miR-6878-5p 4 acgccTCTCCCAc D –0.04

  hsa-miR-8085 3 acgcCTCTCCCAc D –0.143

  hsa-miR-3153 3 acgcCTTTCCCAc C –0.046

  hsa-miR-4484 2 aCGCCTTTcccac C –0.073

  hsa-miR-4668-5p 4 acgccTTTCCCAc C 0.033

  hsa-miR-6733-5p 3 acgcCTTTCCCAc C –0.067

(Continued)
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Location dbSNP ID miR ID Conservation miRSite Function 
class

Context + 
score change

  hsa-miR-6739-5p 3 acgcCTTTCCCAc C –0.078

33791665 rs192371350  

  hsa-miR-6508-5p 21 gagggTTTCTAGt C 0.048

  hsa-miR-8067 21 gagggTTTCTAGt C 0.058

33791807 rs1049969 hsa-miR-1233-3p 2 aggaggAGGGCTC D –0.167

  hsa-miR-4290 2 aggaGGAGGGCtc D –0.177

  hsa-miR-4667-3p 2 aggAGGAGGGctc D –0.035

  hsa-miR-4687-5p 2 aggagGAGGGCTc D –0.12

  hsa-miR-5193 2 agGAGGAGGgctc D –0.083

  hsa-miR-660-3p 9 AGGAGGAgggctc D –0.143

  hsa-miR-1225-3p 2 aggaggGGGGCTC C –0.204

  hsa-miR-3943 2 aggagGGGGGCTc C –0.163

  hsa-miR-6887-3p 3 aGGAGGGGggctc C –0.117

33791883 rs41367646 hsa-miR-519d-5p 9 taTTTGGAGgttt D –0.115

  hsa-miR-3671 7 TATTTGAAggttt C –0.051

  hsa-miR-607 9 tATTTGAAggttt C 0.016

33792082 rs184965384 hsa-miR-2467-3p 4 cccttCCTCTGCg D –0.162

  hsa-miR-3125 6 cccTTCCTCTgcg D –0.003

  hsa-miR-3202 4 CCCTTCCtctgcg D –0.13

  hsa-miR-3916 6 cccTTCCTCTgcg D 0.016

  hsa-miR-4476 7 cCCTTCCTctgcg D –0.096

  hsa-miR-6847-5p 6 ccctTCCTCTGcg D –0.109

  hsa-miR-6859-5p 6 cccTTCCTCTgcg D 0.006

  hsa-miR-6876-5p 7 cCCTTCCTctgcg D –0.059

  hsa-miR-298 4 cccttCTTCTGCg C –0.146

  hsa-miR-3154 4 CCCTTCTtctgcg C –0.131

  hsa-miR-3185 5 ccCTTCTTCtgcg C 0.017

33792099 rs187751931 hsa-miR-3186-3p 7 tgctCCGCGTGtc D –0.314

  hsa-miR-151a-5p 7 tgCTCCTCGtgtc C –0.204

  hsa-miR-151b 7 tgCTCCTCGtgtc C –0.204

Abbreviations: miRSite, microRNA site; SNPs, single nucleotide polymorphisms.
D: the derived allele disrupts a conserved miRNA site (ancestral allele with support ⩾ 2). C: the derived allele creates a new miRNA site.

Table 7. (Continued)

Conclusions
In this study, the impact of functional mutations in the CEBPA 
gene was investigated through different bioinformatics analysis 
techniques, which determined that R339W, R288P, N292S, 
N292T, and D63N are pathogenic mutations, which have a 

possible functional influence, and therefore, can be used as 
diagnostic markers and may assist in genetic studies with a spe-
cial consideration of the large heterogeneity of AML among 
different populations. In addition, this study draws attention to 
11 SNPs that were identified to be deleterious in the 3′-UTR.
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