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1  | INTRODUC TION
The evolution of resistance to antibiotics in bacterial pathogens 
is an example of rapid evolution in action. Since the introduc‐
tion of antibiotics in the 1940s, resistances to multiple antibi‐
otics have emerged and spread in bacterial species. Antibiotic 
resistance in bacteria is an important public health problem 

(Antimicrobial resistance global report on surveillance: 2014 sum‐
mary, 2014), as infection with resistant strains leads to pro‐
longed hospital stay and increased risk of death (Chang et al., 
2011; Cosgrove et al., 2003; de Kraker, Davey, & Grundmann, 
2011; De Kraker et al., 2010; DiazGranados, Zimmer, Mitchel, & 
Jernigan, 2005).
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Abstract
The evolution of resistance to antibiotics is a major public health problem and an 
example of rapid adaptation under natural selection by antibiotics. The dynamics of 
antibiotic resistance within and between hosts can be understood in the light of 
mathematical models that describe the epidemiology and evolution of the bacterial 
population. “Between‐host” models describe the spread of resistance in the host 
community, and in more specific settings such as hospitalized hosts (treated by anti‐
biotics at a high rate), or farm animals. These models make predictions on the best 
strategies to limit the spread of resistance, such as reducing transmission or adapting 
the prescription of several antibiotics. Models can be fitted to epidemiological data 
in the context of intensive care units or hospitals to predict the impact of interven‐
tions on resistance. It has proven harder to explain the dynamics of resistance in the 
community at large, in particular because models often do not reproduce the ob‐
served coexistence of drug‐sensitive and drug‐resistant strains. “Within‐host” mod‐
els describe the evolution of resistance within the treated host. They show that the 
risk of resistance emergence is maximal at an intermediate antibiotic dose, and some 
models	successfully	explain	experimental	data.	New	models	that	include	the	complex	
host population structure, the interaction between resistance‐determining loci and 
other loci, or integrating the within‐ and between‐host levels will allow better inter‐
pretation of epidemiological and genomic data from common pathogens and better 
prediction of the evolution of resistance.
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1.1 | The evolution of antibiotic resistance, an 
interesting challenge for evolutionary biology

Understanding	the	evolution	of	antibiotic	resistance	is	an	interest‐
ing challenge for evolutionary biology for two main reasons. First, as 
resistance is an important public health concern, a lot of data on the 
evolution of resistance is collected. These data can be used to pre‐
cisely inform and test models. For example, surveillance programmes 
provide data on the frequency of different types of resistance in var‐
ious bacterial species infecting humans, in many countries and over 
several decades. Genomic data sets reveal how and when genetic 
determinants of resistance evolve by mutation and horizontal gene 
transfer	(Baker,	Thomson,	Weill,	&	Holt,	2018).	Experiments	in	vitro	
or in animal models can be used to follow the within‐host evolu‐
tion of resistance over a few days or weeks (Singh & Tam, 2011). 
Second, models of resistance evolution are conceptually interesting. 
As already argued elsewhere (Read & Huijben, 2009), the evolution 
of drug resistance is not a simple process of mutant emergence and 
fixation. Instead, models of resistance evolution need to consider 
various heterogeneities in the host population, different levels of 
selection (within and between hosts), and the interplay between 
the demography of the pathogen (prevalence of the infection at the 
population level; demography within the host) and the evolution of 
resistance. These processes generate complex and interesting dy‐
namics described in this review.

1.2 | Early models of antibiotic resistance evolution

The concepts of evolutionary biology can be used to understand and 
predict the emergence and spread of antibiotic resistance in bac‐
teria. These concepts can be formalized into mathematical models. 
Models generate predictions that can be compared with data and 
extrapolated to predict, for example, the future evolution of resist‐
ance	or	 the	 impact	of	public	health	 interventions.	Early	models	of	
antibiotic resistance evolution have been designed from the 1970s 
(Krus & Rvachev, 1971; Massad, Lundberg, & Yang, 1993), but more 
influential models were formulated from the late 1990s (Bonhoeffer, 
Lipsitch, & Levin, 1997; Levin et al., 1997; Lipsitch & Levin, 1997). 
Since then, models of antibiotic resistance evolution have flourished, 
often building on classical differential equation compartmental epi‐
demiological models (Kermack & McKendrick, 1927) popularized by 
Anderson and May (1991). These models describe the evolution of 
a bacterial population composed of a sensitive (“S”) and a resistant 
(“R”) strain colonizing a host population (Box 1). Models have been 
developed to describe the epidemiology and evolution of antibiotic 
resistance both at the within‐ and between‐host levels. These mod‐
els are primarily concerned with “microevolutionary” timescales of a 
few days to months (within host) to decades (between host).

Two pioneering studies defined the major questions in math‐
ematical models of antibiotic resistance evolution: what are the 
factors favouring the sensitive and resistant strains? What are the 
conditions for their coexistence? What is the equilibrium frequency 
of resistance as a function of the treatment rate in the population? 

The first study (Levin et al., 1997) considered the evolution of a 
bacterial species that colonizes human hosts and multiplies in the 
environment, with a low rate of exchange between these compart‐
ments. The host‐environment structure maintains both the sen‐
sitive	 and	 resistant	 strain.	Upon	 treatment,	 bacteria	within	 a	 host	
instantaneously become fully resistant because of rapid within‐host 
evolution or replacement of the majority sensitive strain with a mi‐
nority resistant strain. After treatment, bacteria evolve back to full 
sensitivity because resistance is costly. Similarly, the frequency of 
resistance in the environment constantly declines. In this model, the 
evolution and reversion of resistance are both extremely rapid, and 

Box 1 The structure of evolutionary epidemiology 
models

What trait is being modelled? Models often consider the evolu‐
tion of two strains, the resistant and the sensitive strain. The 
resistance status of a strain can be experimentally determined, 
for example by growing the strain on a gradient of antibiotic 
concentrations. The lowest concentration above which a bacte‐
rium does not multiply to form a colony is called the minimum 
inhibitory concentration (MIC), and a strain is classified as 
“Resistant” if its MIC is above a breakpoint. The breakpoints are 
not standardized: for example a set of breakpoints is defined by 
the	 European	 Society	 of	Clinical	Microbiology	 and	 Infectious	
Diseases	 (EUCAST),	 another	 by	 the	 Clinical	 and	 Laboratory	
Standards Institute (CLSI). The distribution of MIC across 
strains in a population is often bimodal, justifying the classifica‐
tion in the two discrete categories sensitive “S” and resistant 
“R” (Figure 1) in most modelling studies (but see Opatowski et 
al., 2010; Temime, Boëlle, Courvalin, & Guillemot, 2003 model‐
ling the evolution of the whole MIC distribution).
The epidemiology of the bacteria is typically described using 
classical compartmental models (Anderson & May, 1991; 
Kermack & McKendrick, 1927). Specifically, the host population 
is compartmented in susceptible and colonized hosts and the 
densities of different types of hosts are modified by the events 
of transmission and natural clearance of bacteria. Hosts colo‐
nized by bacteria are not necessarily infected, as many species 
of interest live most of the time a commensal lifestyle and are 
asymptomatic. Models assume there is no specific immunity 
preventing further colonization, so there is no “recovered” com‐
partment. A system of ordinary differential equations describes 
the dynamics of the densities of each type of host. To specifi‐
cally study the evolution of antibiotic resistance, the hosts are 
subdivided into hosts colonized by a resistant strain and those 
colonized by a sensitive strain, and all hosts may be subdivided 
into untreated hosts and hosts treated with antibiotics (Figure 
2a). Some studies consider stochastic versions of this type of 
model, particularly those interested in the small populations in 
intensive care units or hospital wards (see paragraph 1.2).
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F I G U R E  1  The	distribution	of	minimum	inhibitory	concentration	(MIC),	temporal	and	spatial	trends	in	resistance	in	Europe	over	the	last	
30	years	(data	from	the	European	Center	for	Disease	Prevention	and	Control	or	ECDC),	for	two	example	bacterial	species	and	resistances.	
On the left panels (a, c, e), resistance to ciprofloxacin (a quinolone) in Escherichia coli, a Gram‐negative commensal colonizing the gut 
of virtually all humans, as well as domestic and wild animals and persisting in the environment, and an opportunistic pathogen causing 
infections	responsible	for	about	a	million	death	each	year	(Denamur,	Picard,	&	Tenaillon,	2010).	On	the	right	panels	(b,	d,	f),	resistance	to	
erythromycin (a macrolide) in Streptococcus pneumoniae, a Gram‐positive colonizing the nasopharynx of children and the elderly, specialized 
on humans, causing infections responsible for about a million death each year (O'Brien et al., 2009). The top panels (a, b) show the 
distribution of the minimum inhibitory concentration at year 2016. The colour of the bar denotes the resistance status (I: intermediate; R: 
resistant;	S:	sensitive)	according	to	the	EUCAST	breakpoints	(vertical	dashed	lines).	The	resistance	status	may	not	match	exactly	because	
of misclassification and/or conflicting results between different tests. The middle panels (c, d) show the temporal trends in the frequency 
of	resistance	in	five	large	European	countries	(vertical	lines	show	the	95%	binomial	confidence	intervals).	The	bottom	panels	(e,	f)	show	the	
correlation	between	the	frequency	of	resistance	and	the	consumption	of	the	relevant	class	of	antibiotic	in	the	community	across	European	
countries	(vertical	lines	show	the	95%	binomial	confidence	intervals)
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the epidemiological dynamics are not explicitly modelled, which may 
explain why the structure of this model was rarely adopted in sub‐
sequent studies. In contrast, the second study (Austin, Kakehashi, 
& Anderson, 1997) more explicitly formalized the epidemiologi‐
cal dynamics within a compartmental model and defined the basic 
structure that most models of resistance evolution subsequently 
adopted. It describes the dynamics of untreated and treated hosts 
colonized by sensitive and resistant commensal bacteria. Antibiotic 
treatment is assumed to be independent of colonization by the focal 
species. Thus, the focal species experiences “bystander selection” 

by antibiotics that are prescribed to treat other viral or bacterial in‐
fections, a scenario relevant to many commensal bacterial species 
(Tedijanto, Olesen, Grad, & Lipsitch, 2018). In this model, coexis‐
tence between the two strains is possible in a narrow window of 
treatment rates, because the treated hosts form a niche in which the 
resistant strain can multiply. When the treatment rate exceeds the 
upper value of this narrow window, resistance fixes in the popula‐
tion. Later on, this model was fitted to data to quantify the impact 
of a change in antibiotic consumption on the dynamics of resistance 
(Austin, Kristinsson, & Anderson, 1999).

These two models, and in fact the vast majority of models of 
resistance evolution, include a cost of resistance. If resistance only 
conferred a benefit under antibiotic treatment, resistance variants 
would eventually sweep to fixation. Fixation of resistant strains 
is prevented in models by assuming that resistant strains transmit 
less, are cleared faster by the host or are less able to super‐colonize 
an already colonized host. The cost of resistance mutations on the 
growth rate of bacteria can be measured in vitro. A cost was often 
found, but not always (Melnyk, Wong, & Kassen, 2015), perhaps 
because it sometimes acts on components of fitness that are not 
revealed by these assays.

1.3 | Aim of the review

Models similar to Austin et al.’s have rapidly been developed to 
study a diversity of questions at different scales, including the 
spread of resistance within and between hospitals (Austin & 
Anderson, 1999), best treatment strategies to limit the spread of 
resistance (Bonhoeffer et al., 1997) and the evolution of resist‐
ance within the host (Austin & Anderson, 1999; Lipsitch & Levin, 
1997). This family of models is the main focus of this review (Box 
1). The first part reviews models of the transmission and evolution 
of resistance at the epidemiological level (between hosts). The 
second part reviews the models of resistance evolution within the 
host. I particularly focus on the conceptual contributions of these 
models, and how they allow the interpretation of epidemiological, 
genomic and experimental data, the design of strategies to limit 
the spread of resistance, and the prediction of the dynamics of 
resistance.

2  | BET WEEN‐HOST MODEL S OF 
ANTIBIOTIC RESISTANCE E VOLUTION

2.1 | Models of resistance evolution in the 
community

Many models have been developed to describe the transmission of 
sensitive and resistant bacterial strains between hosts (reviewed in 
Opatowski, Guillemot, Boëlle, & Temime, 2011; Spicknall, Foxman, 
Marrs,	 &	 Eisenberg,	 2013;	 Temime,	 Hejblum,	 Setbon,	 &	 Valleron,	
2008). In these models, the competition between sensitive and re‐
sistant strains (“S” and “R” strains) is a crucial determinant of the dy‐
namics of sensitive and resistant strains. Indeed, the sensitive and 

F I G U R E  2   The structure of epidemiological models of antibiotic 
resistance evolution. (a) The flow diagram of the model. The 
model follows the dynamics of six variables corresponding to the 
densities of individuals uncolonized, colonized by S and colonized 
by R, and untreated or treated. (b) The equilibrium frequency of 
resistance in model “a” (0 in blue, intermediate in purple and 1 in 
red), as a function of the cost of resistance on transmission and the 
treatment rate per month. Black lines are analytical coexistence 
conditions found by invasion analysis. Coexistence is defined as 
the frequency of resistance and sensitive strains being above 
0.01. In this model, coexistence is maintained in a narrow range of 
parameters unlike what is observed in data (Figure 1). Within‐host 
evolution and reversion of resistance are considered rare enough 
to be negligible (μU = μT = 0, νU = νT = 0), but increasing these rates 
would enlarge the coexistence region. Other parameters, shown 
on panel (a), are: βS = 10, βR	=	10(1	−	c), where c varies along the 
y‐axis in panel (b), uS = uR = 1, τ = τC varies along the x‐axis, ω = 4, 
aS = 10, aR = 0.1. All these parameters are rates expressed in units 
of month‐1
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resistant strains compete to colonize the same available hosts, usu‐
ally resulting in fixation of the fittest. This is true not only in simple 
models but also in models with additional complexities (Colijn et al., 
2010).

The prediction of competitive exclusion of one of the strains dif‐
fers from the patterns observed in surveillance data: most types of 
resistance in most species are stable at an intermediate frequency 
over decades, or on the way to stabilization (Figure 1). These em‐
pirical patterns cannot be explained by a very slow selective sweep 
of a resistant strain over several decades, as the frequency of re‐
sistance evolves very fast under changes in selective pressures 
caused by seasonal changes in the rates of antibiotic prescription 
(Blanquart, Lehtinen, & Fraser, 2017; Dagan et al., 2008). One im‐
portant challenge is to formulate models that reproduce this stable 
coexistence. Several processes have been hypothesized to stabilize 
the coexistence of sensitive and resistant strains: below I review 
five of these processes and evaluate their biological plausibility.

First, rapid within‐host evolution of resistance in treated hosts, 
and reversion to sensitivity in untreated hosts, would allow coexis‐
tence in theory because both S and R strains would constantly be 
generated by these processes. Genomic data reveal that for many 
bacterial species, these processes are negligible over epidemiolog‐
ical timescales. Resistant strains form clones that are stable over 
years to decades (Box 2). This observation is not compatible with 
the idea that resistance often evolves de novo in treated hosts and 
reverts in untreated hosts.

Second, coinfection of a host by both the S and R strains stabi‐
lizes coexistence. However, models with coinfection often implicitly 
assume ecological differentiation between the resistant and sensi‐
tive strain within hosts (Lipsitch, Colijn, Cohen, Hanage, & Fraser, 
2009). Models often consider hosts colonized by the S, the R, and 
both S and R strains, but ignore potential “SS” and “RR” coinfection. 
Thus, implicitly, there are two distinct ecological niches for the S and 
R strains within hosts because it is possible for a R strain to invade 
a host colonized by S, but it is not possible for a R strain to invade 
a host colonized by R (and reciprocally). The existence of these two 
niches does not seem biologically plausible for two strains that differ 
only in their resistance to antibiotics.

Third, hosts treated with antibiotics form a niche in which the re‐
sistant strain preferentially replicates. When the sensitive strain is at 
equilibrium in the host population, a rare resistant strain increases in 
frequency by colonizing treated hosts, then stabilizes at an interme‐
diate frequency. However, this niche is small and transient because 
antibiotics are typically prescribed for a few days to weeks, and this 
mechanism explains little coexistence (Austin et al., 1997; Blanquart, 
Lehtinen, Lipsitch, & Fraser, 2018). The transient nature of this niche 
is reflected in the high rate of treatment cessation ω on Figure 2a. 
The narrow range of coexistence explained by this mechanism is de‐
picted on Figure 2b.

Fourth, the stratification of the host population in several classes 
taking antibiotics at different rates promotes the maintenance of 
both strains. For example, if the rates of antibiotic prescription are 
very different across countries and transmission between countries 

is much smaller than within countries, both R and S strains will be 
maintained, and the R strain will be at a high frequency in countries 
with a high prescription rate and at a low frequency in countries with 
a low prescription rate (Figure 1e,f). This mechanism is powerful 
when the host classes are very isolated one from another (Blanquart 
et al., 2018).

Lastly, “genetic differentiation” between S and R strains pro‐
motes coexistence: resistance genes may be associated with loci that 
are themselves under balancing selection and stably coexisting in the 
population, and that interact with resistance. This hypothesis was 
verified in S. pneumoniae, where different capsular types (serotypes) 
are stably maintained by the interaction with serotype‐specific host 
immunity and determine the duration of carriage (asymptomatic col‐
onization). Carriage duration is theoretically predicted to be posi‐
tively associated with resistance, a prediction verified in several data 
sets (Lehtinen, Blanquart, Croucher, et al., 2017). More generally, 
ecologically important bacterial traits with stable genetic diversity 
(Levin, 1988) could be interacting with resistance, which would pro‐
mote the evolution of resistant and sensitive clones stably coexisting 
and associated with some of these traits.

In summary, current theory suggests the coexistence of S and R 
strains may be explained not by a single mechanism but by a combi‐
nation of several processes: the niche formed by treated hosts, the 
host population structure, and the association with loci themselves 
under negative frequency‐dependent (also called “balancing”) selec‐
tion (Cobey et al., 2017).

Perhaps	because	of	the	difficulty	of	formulating	simple	and	plau‐
sible dynamical models reproducing the stable coexistence of sen‐
sitive and resistant strains, almost no studies fit dynamical models 
to data on the frequency of resistance in the community. Austin, 
Bonten, Weinstein, Slaughter, and Anderson (1999) and Austin, 
Kristinsson, et al. (1999) fitted a model to data on resistance in sev‐
eral countries, but the model had an implausible fitness trade‐off 
whereby the resistant strain transmits more, but may be super‐
colonized by the sensitive strain (Lipsitch et al., 2009). A notable 
exception is the study of the dynamics of resistance in Neisseria gon‐
orrhoeae, an important sexually transmitted pathogen mostly affect‐
ing	men	having	sex	with	men	 (MSM),	 in	 the	United	Kingdom	from	
the 1990s to 2015. Fingerhuth et al. fitted a compartmental model 
to data on the frequency of ciprofloxacin and cefixime resistances 
from 1995 to 2010, showed that both resistances spread faster in 
MSM than in heterosexual mean and inferred that MSM experience 
a higher rate of antibiotic treatment (Fingerhuth, Bonhoeffer, Low, & 
Althaus, 2016). During that first period, both resistances increased 
approximately exponentially and most diagnosed cases were treated 
with cefixime. The use of cefixime peaked in 2008 and then declined 
because of increased resistance and treatment failure leading to a 
change of the first line treatment. Resistance to cefixime in MSM 
peaked in 2010 and subsequently declined to 0. Whittles et al. fitted 
a compartmental model to data on that second phase of evolution 
(2005–2015) and explained the decline in cefixime resistance when 
cefixime use was reduced by a cost of resistance. More precisely, 
the recovery rate from cefixime‐resistant infection was inferred to 
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Box 2 Insights from genetic and genomic data

Genomic data inform models of antibiotic resistance evolution. Bacterial genomes are composed of the core genome (genes shared by all 
strains	of	a	species)	and	the	accessory	genome	(genes	that	are	present	or	absent).	Variants	conferring	antibiotic	resistance	can	either	be	
mutations on genes in the core genome (as for fluoroquinolone resistance mutations for example) or resistance genes that are present or 
absent. Resistance variants may circulate between different strains by horizontal gene transfer mediated by the mechanisms of transfor‐
mation or conjugation (if the resistance gene is on a plasmid). Resistance variants are very well‐characterized in species such as Escherichia 
coli, to the extent that resistance can be predicted from whole‐genome sequences (Stoesser et al., 2013). The comparison of genome 
sequences informs on the rate at which resistance genes are exchanged between strains, on the evolution of resistance within hosts, and 
on routes of transmission of resistant strains.

Are resistance gene transfers important at microevolutionary timescales?
Some models include gains and losses of resistance gene resulting in the conversion of a sensitive into a resistant strain and vice‐versa. 
Genomic data from several species suggest that gains and losses occur at low rates compared to epidemiological rates and are negligible 
on microevolutionary (or epidemiological) timescales of a few decades. For example, in E. coli, a clone (called ST131 group C2) with a 
CTX‐M beta‐lactamase resistance gene and a fluoroquinolone resistance mutation emerged in the late 1980s and up to now has main‐
tained a stable assemblage of these resistance genes (Ben Zakour et al., 2016; Kallonen et al., 2017). In Streptococcus pneumoniae 
(Croucher et al., 2013) and Staphylococcus aureus (Ledda et al., 2017), resistance is similarly spread by clonal expansion of a handful of 
successful clones with little gain or loss of resistance. For example, in Ledda et al. (2017), among 17 S. aureus isolates evolving from a 
common ancestor for around 35 years, resistance was gained twice. Among 213 isolates spanning 24 years of evolution, resistance was 
lost seven times. Thus, large genomic data sets collected in common species suggest that successful horizontal gene transfers are rare at 
timescales of a few years to a few decades. Intriguingly, this is in contrast with experimental studies in humans and animals showing that 
horizontal	gene	transfer	can	happen	over	a	few	days	 (reviewed	in	Hoelzer	et	al.,	2017).	Possibly,	horizontal	gene	transfer	occurs	fre‐
quently within hosts but few new strains created by such transfers are fit and successfully transmit onward. Lastly, gene transfer between 
species is also rare: the CTX‐M gene is originally a chromosomal gene of the commensal species Kluyvera, and nine introduction events in 
E. coli have been detected since the 1980 s or earlier (Cantón, González‐Alba, & Galán, 2012).

How frequent is de novo evolution of resistance by point mutations within treated hosts?
Genetic data allow tracking the evolution within the host and identifying whether the resistance in a host is primary or transmitted (i.e., 
imported by existing resistant strains colonizing the host) or acquired, that is evolving de novo by point mutation within the host. The 
evolution of resistance de novo over a typical antibiotic course seems rare. For many common species, the within‐host evolution of resist‐
ance was only observed in clinically exceptional infections of long duration often resulting in the patient's death, for example, in infections 
caused by E. coli (Dupont et al., 2017; Rasheed et al., 1997), S. aureus (Mwangi et al., 2007) and Salmonella enterica Typhimurium (Blair et 
al., 2015). This may be due to a detection bias, as it is hard to establish longitudinal follow‐up and sampling of individuals before and after 
a short antibiotic course of 1–2 weeks. But it may also point to the genuine rarity of de novo evolution of resistance over a short time 
period. The latter explanation is supported by a recent study of 51 patients with S. aureus bacteraemia, treated for a duration of 26 days 
on average, where an increase in vancomycin resistance was only found in five episodes in blood isolates (Giulieri et al., 2018). In other 
species causing long infections, resistance can be acquired via chromosomal mutation and the within‐host evolution of resistance is well 
documented, with interesting phenomena of competition between multiple selected mutations (clonal interference) within the host, as 
well as local differentiation of the bacterial population. This is the case in chronic lung infections caused by the species Mycobacterium 
tuberculosis	(Eldholm	et	al.,	2014;	Gygli,	Borrell,	Trauner,	&	Gagneux,	2017),	and	Pseudomonas aeruginosa in cystic fibrosis (Winstanley, 
O'Brien, & Brockhurst, 2016). Despite frequent de novo evolution in M. tuberculosis, some resistant clones are transmitted onward and 
circulate	in	the	population,	resulting	in	>90%	of	resistance	being	primary	(Kendall,	Fofana,	&	Dowdy,	2015;	Luciani,	Sisson,	Jiang,	Francis,	
& Tanaka, 2009).

Is resistance in animal hosts and the environment important for resistance in humans?
The impact of resistant bacterial strains circulating in farm animals or the environment on resistance in humans depends on the rate of 
transmission between these reservoirs, which can in principle be inferred from genomic data. Studies based on genetic markers revealed 
a broad genetic similarity between chicken and human E. coli strains (Johnson et al., 2006, 2007; Kluytmans et al., 2013; Leverstein‐van 
Hall et al., 2011; Overdevest et al., 2011), suggesting frequent transmission. However, this apparent genetic similarity was explained by 
the poor resolution of genetic techniques, and analysis of whole genomes actually revealed considerable genetic differences. Strains 
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be twice as fast as that from sensitive infections (Whittles, White, & 
Didelot, 2017). In that context, there was no long‐term coexistence 
between cefixime‐resistant and cefixime‐sensitive strains, as cefix‐
ime resistance transiently emerged, peaked and went extinct.

Most models of antibiotic resistance evolution I described so 
far make the assumption that the host population is homogeneous. 
However, bacteria do not evolve in a homogeneous host population: 
some species may colonize human hosts, wild animals or farm ani‐
mals, and persist or multiply in the environment (surfaces, water, soil, 
air, etc.). Human hosts themselves are varied, as bacteria may colo‐
nize healthy individuals in the community or individuals in hospitals. 
A particular attention has been paid to the evolution of resistance in 
hospitals, and in farm animals, two environments where antibiotic 
use is frequent.

2.2 | Selection for resistance in hospital settings

A large number of models have focused on the evolution of antibiotic 
resistance specifically in hospitals, or intensive care units or wards 
within hospitals. Hospitals have several distinct properties com‐
pared to the community: the rate of antibiotic treatment is high, the 
host population size is small (in the order of 10s of people), and there 
is a very rapid turnover caused by the admission and discharge of 
patients	(the	mean	length	of	stay	in	OECD	countries	is	8	days	Health	
at a Glance 2017, 2017). Most models are specifically concerned 
with methicillin‐resistant S. aureus (MRSA) and vancomycin‐resist‐
ant enterococcus, two Gram‐positive antibiotic‐resistant pathogens 

(van	 Kleef,	 Robotham,	 Jit,	 Deeny,	 &	 Edmunds,	 2013)	 and	 thought	
to be particularly selected for in hospitals. Fewer models describe 
extended spectrum beta‐lactamase Gram‐negative bacteria, which 
are common both in the community and in hospitals. Models have 
been formulated at various levels, from single ward or units (Cooper, 
Medley,	&	Scott,	1999;	Sébille,	Chevret,	&	Valleron,	1997)	to	hospi‐
tals (Lipsitch, Bergstrom, & Levin, 2000) and networks of hospitals 
linked	with	the	community	(Smith,	Dushoff,	Perencevich,	Harris,	&	
Levin, 2004).

Two assumptions of hospital models seem critical to the evo‐
lutionary outcome. Many models only consider hosts who are 
uncolonized, or colonized by a resistant strain, but not hosts col‐
onized by a sensitive strain (Austin, Bonten, et al., 1999; Austin, 
Kristinsson, et al., 1999; Cooper et al., 1999, 2004; D'Agata, Webb, 
&	Horn,	2005;	Pelat	et	al.,	2016;	Pelupessy,	Bonten,	&	Diekmann,	
2002; Smith et al., 2004). These models are, in fact, population 
dynamics models without evolution, and the competition be‐
tween the sensitive and the resistant strain is not modelled. The 
second crucial assumption of hospital models is the frequency of 
resistance in incoming patients and the intensity of selection for 
resistance in the hospital. It is commonly assumed that incoming 
patients are mainly colonized by the sensitive strain and resistance 
is strongly selected in the hospital (Lipsitch et al., 2000). However, 
in other models, incoming patients carry the resistant strain and 
substantially contribute to the persistence of resistance in the 
hospital (Austin, Bonten, et al., 1999; Austin, Kristinsson, et al., 
1999; D'Agata et al., 2005).

collected in chicken and humans and previously supposed to be identical were actually separated by 1,263 single nucleotide polymor‐
phisms	(SNPs)	(de	Been	et	al.,	2014).	In	contrast,	in	the	same	study,	pig	and	human	strains	from	a	single	zoonotic	disease	outbreak	were	
separated	by	only	0–6	SNPs.	That	study	also	revealed	that	the	plasmids circulating in chicken and humans were extremely similar (sepa‐
rated	by	0–4	SNPs).	Greater	similarity	in	plasmids	does	not	imply	that	inter‐species	plasmid	transfer	is	particularly	more	frequent	than	
bacterial transmission because the difference can be simply explained by the much smaller size of plasmids (50 kb) compared to the whole 
genome	(5	Mb).	Another	study	found	chicken	and	human	strains	as	close	as	70	SNPs	apart	(Falgenhauer	et	al.,	2016).	It	is	difficult	to	con‐
clude	on	the	rates	of	transmission	within	versus	between	species	from	these	studies,	because	the	number	of	SNPs	separating	closest	
strain also depends on the density of the sampling (denser sampling allows finding closer strains) and potential sampling biases (Singer, 
2015). In the future, an interesting perspective would be to adapt phylogeographic methods (De Maio, Wu, O'Reilly, & Wilson, 2015) to 
robustly infer epidemiological parameters (rates of transmission) from phylogenetic trees of bacteria sampled in different hosts (Muloi et 
al., 2018). This will be allow a better interpretation of the new larger data sets (Ludden et al., 2018).

Phylodynamics of resistance evolution
Phylodynamics	is	the	discipline	that	reconstructs	the	epidemiological	and	evolutionary	dynamics	of	a	population	based	on	its	phylo‐

genetic history (Grenfell et al., 2004). Applied to bacterial populations, these techniques allow reconstructing the history of mutations 
or gene acquisitions, as was done for example for the resistant E. coli	ST131	clone	(Ben	Zakour	et	al.,	2016;	Price	et	al.,	2013)	or	S. pneu‐
moniae	PMEN2	clone	(Croucher	et	al.,	2014).	The	history	of	geographic	spread	of	these	lineages	may	also	be	inferred,	albeit	with	little	
power	when	global	spread	was	rapid	(Petty	et	al.,	2014;	Price	et	al.,	2013).	The	history	of	population	size	and	growth	rates	of	particular	
lineages can also be inferred using the coalescent framework, but recombination and selection may bias these techniques (reviewed in 
Lapierre, Blin, Lambert, Achaz, & Rocha, 2016). Lastly, an interesting perspective would be to develop new phylodynamics techniques to 
infer selection on resistant and sensitive strains.

Box 2 (Continued)
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Most hospital models examine the impact of intervention mea‐
sures to reduce resistance (reviewed in van Kleef et al., 2013). When 
an influx of resistant strains is necessary for the persistence of the 
resistant strain in the hospital, reducing the influx of colonized pa‐
tients reduces resistance (D'Agata et al., 2005). All models show that 
reducing transmission efficiently reduces resistance. A reduction in 
transmission can be achieved by hand washing (Cooper et al., 1999; 
Pelat	et	al.,	2016;	Sébille	et	al.,	1997),	isolation	measures	(Cooper	et	

al., 2004) or cohorting of healthcare workers and patients (at the ex‐
treme, assigning a single healthcare worker to each patient) (Austin, 
Bonten, et al., 1999; Austin, Kristinsson, et al., 1999). It might appear 
obvious that reducing transmission reduces resistance. It is, indeed, 
when only the resistant strain (and not the sensitive) is modelled, as 
in a pure population dynamics model a reduction in transmission will 
result in a reduction in prevalence of the resistant strain. When both 
the sensitive and resistant strains are considered, it is less intuitive 
why a reduction in transmission would harm the resistant more than 
the sensitive strain. This is because the resistant strain multiplies 
mainly by transmission in the hospital, while the sensitive strain is 
sustained by immigration from the community (Lipsitch et al., 2000) 
(Figure 3).

Other interesting theoretical predictions have been made in the 
scenario where the resistant strain is strongly selected in the hospi‐
tal, but most incoming patients are colonized with a sensitive strain 
(Lipsitch et al., 2000). This is analogous to a model of adaptation to 
a “sink” habitat in “source‐sink” ecological models. The source—the 
favourable habitat—is the community dominated by the sensitive 
strain. The source continuously sends individuals to the sink. The 
sink—the unfavourable habitat—is the hospital, where the sensitive 
strain is unfit but the resistant strain spreads and allows persistence 
of bacteria. Because of the fast turnover and the influx of sensitive 
strains, any intervention to reduce resistance in the hospital has a 
very fast effect (~ weeks). Indeed, if resistance is no longer favoured 
in the hospital, resistant strains will rapidly be washed away by the 
influx of hosts colonized by sensitive strain. The source–sink dynam‐
ics have counterintuitive effects on the impact of an intervention at 
the individual level. If a new antibiotic to which both the sensitive 
and resistant strains are sensitive is used in the hospital, both strains 
will be cleared by treatment, reducing the prevalence of resistance at 
the population level. However, at the individual level, hosts who have 
been treated with the new drug are more likely to be carrying a re‐
sistant strain because they may be recolonized by the resistant strain 
endemic in the hospital. Thus, this intervention, beneficial at the pop‐
ulation level, may appear to favour resistance at the individual level.

Hospitals are linked with other hospitals and embedded in 
the	 community.	 Networks	 of	 hospitals	 create	 metapopulation	
dynamics (Smith et al., 2004) where the prevalence of resistance 
is determined jointly by migration of patients between hospitals 
and transmission within hospitals. More generally, as resistance 
emerges, it will spread faster in “core groups” where resistance is 
favoured, such as hospitals, long‐term care facilities or older age 
classes (Smith et al., 2004). Moreover, when the competition be‐
tween sensitive and resistant strains is considered, interactions be‐
tween the community, hospitals and different risk groups allow the 
coexistence of multiple strains (Kouyos, Klein, & Grenfell, 2013).

At the level of small units such as hospital wards or intensive 
care units, stochastic effects are important. Several realizations of 
the same stochastic model exhibit considerable variability (Cooper 
et al., 1999). Resistance levels fluctuate stochastically, and resis‐
tant strains sometimes go extinct, which weakens the response to 

F I G U R E  3   The equilibrium frequency of resistance in a hospital, 
as a function of the antibiotic prescription strategy. The model 
is analogous to that in Figure 2, extended to two resistances and 
two corresponding treatments (Appendix S1). The top panel shows 
the frequency of resistance to the first (orange dashed line) and 
second (light blue dashed line) antibiotic, and the total frequency 
of resistance (black line) as a function of time, for a cycling strategy 
of period 3 months. The bottom panel shows the time‐averaged 
frequency of resistance under the cycling strategy (thick line) 
as a function of the cycling period. For comparison, horizontal 
lines show the frequency of resistance when only one antibiotic 
is constantly prescribed, when one antibiotic is prescribed with 
transmission	in	the	hospital	reduced	by	50%	(demonstrating	the	
effect of reducing transmission on the frequency of resistance 
mentioned	in	paragraph	of	Section	2.2),	and	under	the	50%‐50%	
mixing strategy. The incoming patient population is assumed 
uncolonized or colonized by the sensitive strain, and the total 
rate of antibiotic treatment in the hospital is high, at 3 month−1. 
Other parameters are as follows: rate of admission and discharge 
1 month−1, and total hospital population assumed constant. 
Transmission and clearance parameters as for Figure 2 for both 
strains
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antibiotic selection and may explain the observation that smaller 
hospitals have a lower frequency of methicillin‐resistant S. aureus 
(Kouyos, zur Wiesch, & Bonhoeffer, 2011a).

Lastly, in the context of small extensively monitored units, de‐
tailed parameterization and model fitting is possible (Austin, Bonten, 
et al., 1999; Austin, Kristinsson, et al., 1999; Grundmann, Hori, 
Winter, Tami, & Austin, 2002). According to a meta‐analysis, about 
35%	of	modelling	studies	(including	both	deterministic	and	stochas‐
tic	models)	fitted	the	model	on	data	and	5%	have	validated	the	model	
on a distinct data set (van Kleef et al., 2013). These studies thus in‐
ferred important epidemiological parameters such as transmission, 
evaluated the importance of different routes of transmission or pre‐
dicted the impact of interventions.

2.3 | Evolution of resistance in animal hosts and the 
human community

There has been comparatively less modelling on the impact of an‐
tibiotic consumption by farm animals on the evolution of antibiotic 
resistance in humans. An influential model (Smith, Harris, Johnson, 
Silbergeld, & Morris, 2002) showed that the impact of agricultural 
antibiotic use on the frequency of resistance in humans crucially 
depends on the ability of the bacteria to spread in humans. In this 
model, agricultural antibiotic use is implicitly modelled by a constant 
influx of the resistant strain from animals and the environment to 
humans, representing for example transfer of resistant bacteria via 
food ingestion. This model only considers resistant strains and lacks 
the competition with sensitive strains, but a recently developed 
model with competition complements these findings (Blanquart et 
al., 2018). Three scenarios are possible:

If the resistant strain cannot spread epidemically in the human 
population on its own, the dynamics of the system is analogous 
to a “source–sink” dynamics, and the frequency of resistance in 
humans (the sink) will be strongly affected by the frequency of 
resistance in animals (the source). This corresponds to zoonotic 
pathogens such as Campylobacter or Salmonella (Lipsitch, Singer, 
& Levin, 2002).

If resistance has not yet fully emerged and spreads slowly in hu‐
mans, while it is at a higher frequency in farm animals, the influx 
of resistant strains from animals can considerably accelerate the 
emergence of resistance in humans. In that case, farm animals are 
“incubators” of resistance. For example, the mcr‐1 gene conferring 
colistin resistance to E. coli was first discovered in chicken and 
pigs in China (Liu et al., 2016) and also identified in human E. coli 
strains (Hu, Liu, Lin, Gao, & Zhu, 2016). The higher frequency of 
this gene in E. coli from farm animals and the more frequent use of 
colistin in agriculture suggest that this resistance initially emerged 
and spread in animals.

If the resistant strain can spread and persist in humans, it will reach 
an equilibrium frequency. In that scenario, if the transmission of 
bacteria from animals to humans occurs at a very low rate, the 
equilibrium frequency in humans will be almost unaffected by that 

in animals. However, low rates of transmission between animal 
and human hosts are sufficient to homogenize the populations 
to an intermediate value of resistance. These predictions result 
from a general model of evolution in a structured host population 
(Blanquart et al., 2018) where the host classes represent human 
and animal hosts.

In practice, the scenario (iii) is relevant to many commensal 
bacterial species (e.g., E. coli) where the bacteria can persist in hu‐
mans and resistance has already emerged. In these species, is the 
transmission rate between animals and humans high enough for re‐
sistance in farm animals to impact levels of resistance in humans? 
Transmission of bacteria between farm animals and farm workers 
is extensively documented for common bacterial species (Hoelzer 
et al., 2017; Tang et al., 2017). But both genomic (Box 2) and epide‐
miological data suggest that transmission rates from farm animals 
to the wider community are low. Antibiotic use in farm animals was 
suspected to contribute to the rise of vancomycin‐resistant entero‐
cocci	(VRE)	in	humans	(Smith,	Dushoff,	&	Morris,	2005),	but	the	epi‐
demiological evidence is scarce. It is well established that the use of 
avoparcin, an antibiotic used as a growth promoter in farm animals in 
Europe,	selected	for	vancomycin	resistance	in	animals.	Resistance	in	
animals generally declined in several countries following bans on the 
use of antibiotics as growth promoters in the 1990s (Aarestrup et al., 
2001;	Boerlin,	Wissing,	Aarestrup,	Frey,	&	Nicolet,	2001;	Emborg	et	
al.,	2003;	Van	den	Bogaard,	Bruinsma,	&	Stobberingh,	2000).	A	de‐
cline	in	VRE	has	been	concomitantly	documented	in	healthy	humans	
carriers	in	only	two	studies	(Klare	et	al.,	1999;	Van	den	Bogaard	et	
al., 2000). More broadly, resistance in E. coli from sampled in farm 
animals was shown to be correlated with resistance in E. coli sampled 
in	humans	across	European	countries	 (Vieira	et	al.,	2011),	but	 this	
pattern may be explained by correlations in antibiotic use in farm 
animals and humans across countries.

2.4 | Best antibiotic prescription strategies: cycling, 
mixing and combination therapy

An interesting debate arose regarding the optimal antibiotic pre‐
scription strategy to manage infections in small well‐defined popu‐
lations subjected to high rates of treatment, such as intensive care 
units or hospital wards. The optimal strategy is usually defined as the 
strategy minimizing the total number of colonized patients over a de‐
fined time period. The debate focused on strategies based on the de‐
ployment of two drugs in the presence of two types of resistances, 
and particularly on the relative merits of two strategies: (a) the “mix‐
ing” strategy, whereby at each time point a fraction of individuals 
receives antibiotic A while the rest receives antibiotic B, and (b) the 
“cycling” strategy whereby all individuals at a time point are treated 
with one antibiotic, which alternates periodically between A and B.

The first two models addressing this question found that mixing 
outperforms cycling, in the community (Bonhoeffer et al., 1997) and 
in the hospital (Bergstrom, Lo, & Lipsitch, 2004). The same intuition 
underlies the result in both models. Consider the simple scenario 
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where the two resistant strains are equivalent in their costs and the 
two antibiotics are prescribed at equal rates. When cycling is slow, 
bacteria resistant to the current antibiotic increase in frequency 
and therefore most antibiotic prescription becomes ineffective; in 
contrast, under 50–50 mixing, half of the antibiotic prescriptions 
are effective. Actually, both the cycling and the mixing strategies 
were outperformed by combination therapy, whereby both antibi‐
otics are prescribed to everyone, provided the rate of de novo evo‐
lution of dual resistance is not too high (Bonhoeffer et al., 1997). 
This last finding was later on confirmed within a more general model 
(Tepekule,	Uecker,	Derungs,	Frenoy,	&	Bonhoeffer,	2017).

More recently, and in constrast to these early findings, optimal 
control theory revealed that for a general class of ordinary differen‐
tial equation models, there is always a cycling strategy that outper‐
forms	the	best	mixing	strategy	 (Peña‐Miller	&	Beardmore,	2010a).	
Indeed, extremely rapid cycling is equivalent to mixing, so the best 
cycling must be at least as good as mixing. The applicability of these 
results in clinical practice has been questioned, however, because 
the optimal cycling strategy is hard to find and requires perfect 
knowledge of the dynamical system. A sub‐optimal but realistic “re‐
sponsive cycling” strategy—regularly probing the state of the system 
and switching to the drug with least prevalent resistance—outper‐
forms the cycling strategy if probing is frequent enough (Bonhoeffer, 
zur	Wiesch,	Kouyos,	2010;	Peña‐Miller	&	Beardmore,	2010b).

How useful are these theoretical results for clinical practice? 
There is no clear empirical evidence on the relative merits of mixing 
and cycling. In a systematic review of studies on antibiotic cycling 
efficacy	 (Brown	&	Nathwani,	2005),	only	one	study	compared	the	
efficacy of cycling to standard practice and revealed no significant 
difference in the colonization by resistant strains, the incidence of 
nosocomial infections or mortality (Toltzis et al., 2002). Cycling was 
better than standard practice in terms of reducing resistance and 
mortality in hospitals, according to a more recent meta‐analysis of 
11	 studies	 (zur	Wiesch,	Kouyos,	Abel,	Viechtbauer,	&	Bonhoeffer,	
2014). In a randomized trial conducted in eight intensive care units in 
five	European	countries,	no	difference	in	the	incidence	of	resistance	
or the all‐cause mortality was found during cycling versus mixing, 
suggesting no strong difference between the two strategies (van 
Duijn et al., 2018), in spite of good adherence to the strategies. This 
result is somewhat disappointing, but in line with theory predicting 
that any difference in the outcome of cycling and mixing strategy is 
small compared to the substantial stochastic variation around the 
expected	outcome	(Beardmore,	Peña‐Miller,	Gori,	&	Iredell,	2017).

Recent work explored more detailed models and specific re‐
sponsive strategies. A responsive cycling strategy using measures of 
resistance to detect if a type of resistance goes extinct, and deploy‐
ing the corresponding drug, outperforms both mixing and cycling 
(Kouyos, zur Wiesch, & Bonhoeffer, 2011b). This strategy works 
only in small units where stochastic effects are important and ex‐
tinction of a resistant strain is possible. Another “responsive cycling” 
strategy whereby the drug is switched if the patient becomes symp‐
tomatic (which indicates treatment failure in that model) also outper‐
forms both mixing and cycling (zur Wiesch et al., 2014). “Sequential 

monotherapy,” whereby the drug is adapted at the individual level 
based on personal resistance tests, outperforms mixing, cycling and 
responsive cycling (Beardmore et al., 2017).

In spite of more than twenty years of mathematical modelling 
to assess different treatment strategies, there is scope for bet‐
ter models and theoretical unification. For example, in a model 
where the treatment status of individuals is explicitly described 
(as on Figure 2a), “cycling” can be a better strategy than “mixing” 
(Uecker	&	Bonhoeffer,	2017;	Figure	3).	This	model	explicitly	de‐
scribes untreated and treated hosts, unlike many previous mod‐
els assuming that the sensitive strain is instantaneously cleared 
upon treatment and that the resistant strain is unaffected by 
treatment.

In conclusion, epidemiological (between‐host) models of re‐
sistance evolution form a rich and diverse literature but the con‐
nection with data is still tenuous, with the exception of models of 
resistance evolution in the very well‐controlled setting of intensive 
care	units	in	hospitals.	Epidemiological	models	assume	that	events	
happening within the host, such as bacterial clearance by the an‐
tibiotic or replacement of a bacterial strain by another, occur on a 
fast timescale and can be represented by instantaneous transitions 
between different compartments (Figure 2a). A distinct class of 
models describes in more details the processes happening within 
the host.

3  | WITHIN‐HOST MODEL S OF 
ANTIBIOTIC RESISTANCE

3.1 | “Hit hard, hit early”: and selection for 
resistance

Many within‐host models of antibiotic resistance are based on phar‐
macokinetics/pharmacodynamics	(PK/PD),	the	discipline	interested	
in the dynamics of the drug concentration and its effect within the 
host, and population genetics. These models very often investigate 
what type of antibiotic regimen—in terms of dose, duration and tim‐
ing—is least likely to drive the evolution of resistance. “Hit hard hit 
early”	is	a	dominant	principle	introduced	by	Paul	Ehrlich,	a	pioneer	
of	chemotherapy	(Ehrlich,	1913).	This	principle	was	not	originally	de‐
signed to prevent the evolution of drug resistance, but rather to rap‐
idly reduce the pathogen population size to improve the efficacy of 
the drug and to limit pathogenicity. This principle was applied in the 
context of the evolution of antibiotic resistance and justified by pop‐
ulation	 genetics	 principles	 (see	 zur	Wiesch,	 Kouyos,	 Engelstädter,	
Regoes, & Bonhoeffer, 2011).

Two main reasons justify “hitting hard.” A high antibiotic dose 
ensures that the resistant strains that may be available in the host, 
either imported by transmission from other hosts or appearing 
de novo by mutation, are not resistant enough to grow under this 
high	concentration	 (Baquero	&	Negri,	1997;	Zhao	&	Drlica,	2001).	
Conversely, a lower dose increases the probability that an inter‐
mediately resistant strain is available, emerges, potentially lead‐
ing the way for further mutations increasing resistance. A too low 
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concentration can result from prescription of a low dose, imperfect 
adherence to treatment (Lipsitch & Levin, 1997) or spatial heteroge‐
neity in drug concentration in the body (“refuges” or “sanctuaries”) 
(Kepler	&	Perelson,	1998;	Lipsitch	&	Levin,	1998).	These	 ideas	are	
encapsulated in the concept of “mutant selection window” (Baquero 
&	Negri,	1997;	Drlica	&	Zhao,	2007;	Zhao	&	Drlica,	2001).	This	is	the	
range of antibiotic concentration spanning from the concentration 
at which the sensitive strain stops growing (the MIC of the sensitive 
strain) to the concentration where the maximally resistant strain in 
the host can no longer grow (the “mutant prevention concentration” 
or	MPC)	(Olofsson	&	Cars,	2007;	Zhao	&	Drlica,	2001).	Lastly,	in	ad‐
dition to reducing the probability that a resistant enough strain is 

available, a high drug dose will reduce the bacterial population size 
faster, which will also reduce the probability that a resistant mutant 
appears in the population (Lipsitch & Levin, 1997).

However, hitting hard is not necessarily the best strategy to limit 
the spread of resistant strains once they have emerged. A high antibi‐
otic dose limits the chance that a resistant enough strain is available, 
but it also makes selection for resistance stronger. As a result, under 
a high antibiotic concentration, if a resistant enough strain is pres‐
ent, it will emerge and spread faster in the host. These two phenom‐
ena	result	in	a	hump‐shaped	(or	“inverted‐U”)	relationship	between	
the rate of emergence of a mutant and the antibiotic dose (Kepler & 
Perelson,	1998;	Lipsitch	&	Levin,	1997).

F I G U R E  4   The emergence of resistance is favoured by an intermediate antibiotic dose. This is illustrated with a model describing the 
evolution of resistance to ciprofloxacin in Escherichia coli	in	piglets	under	a	ciprofloxacin	antibiotic	course	(Nguyen	et	al.,	2014).	The	top	
graph shows the total density of resistance (summed over all days), within host, over 100 days including a 10‐days antibiotic course, as a 
function of the daily antibiotic dose given during these 10 days. The feasible range of doses is limited by practical considerations (clearing 
the bacteria, toxicity): for the hypothetical range shown in green, the low dose will be best to limit the evolution of resistance; for the 
purple range, the high dose will be best. The small graphs below give the time course of antibiotic concentration in µg per g of faeces (black 
line),	and	of	the	density	of	resistant	and	sensitive	strains	in	log10	colony	forming	unit	(CFU)	per	g	of	faeces	(red	and	blue	lines)	over	these	
100	days.	Under	a	low	antibiotic	dose,	the	sensitive	strain	is	unaffected	by	treatment	and	maintains	the	resistant	strain	at	low	density	
because it has higher competitive ability. At an intermediate dose, the density of the sensitive strain is reduced by antibiotics and the 
resistant strain is released from competition, then slowly declines after treatment is halted. At a high antibiotic dose, the densities of both 
the sensitive and the resistant strain are reduced by the antibiotic. The model describes the within‐host antibiotic concentration, and the 
density	of	sensitive	and	resistant	strains	(Appendix	S1).	Parameters	are	as	estimated	from	experimental	data	in	Nguyen	et	al.	(2014),	except	
that here I assume partial sensitivity and resistance of the strains: C50
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“Hitting early” will limit the emergence of resistance when a 
small fraction of intermediately resistant strains are initially pres‐
ent: these resistant bacteria can be driven to extinction by an early 
high dose (Lipsitch & Levin, 1997). If the size of the total bacterial 
population is initially smaller than at the long‐term equilibrium (with‐
out treatment), an early antibiotic dose will also limit the bacterial 
population size (D'Agata, Dupont‐Rouzeyrol, Magal, Olivier, & Ruan, 
2008; D'Agata, Magal, Olivier, Ruan, & Webb, 2007), hence limiting 
pathogenicity and the probability that a resistance mutant appears.

Lastly, dose fractionation, the splitting of an antibiotic dose in 
multiple smaller doses prescribed at more frequent time intervals, 
will more efficiently kill partially resistant bacteria when the action 
of antibiotic increases less than linearly with concentration (such as 
in the model presented in Figure 4) (Lipsitch & Levin, 1997).

3.2 | Questioning aggressive chemotherapy and 
emphasizing the role of within‐host competition 
between sensitive and resistant strains

A series of recent theoretical (Day & Read, 2016; Geli, 
Laxminarayan, Dunne, & Smith, 2012) and experimental stud‐
ies of rodent malaria under antimalarial treatment (Huijben et 
al., 2013; Read, Day, & Huijben, 2011) (reviewed in Kouyos et 
al., 2014) emphasized the idea that a high drug dose (“hitting 
hard” or “aggressive chemotherapy”) is not necessarily the best 
strategy to limit the emergence and spread of resistance within 
the host. This literature subtly corrects the concept of mutant 
selection window and emphasizes competition between sensi‐
tive and resistant strains within the host. The definition of the 
mutant selection window is based on absolute growth rates of 
sensitive strains (the lower bound, MIC) and resistant strains (the 
upper	bound,	MPC)	 (Day,	Huijben,	&	Read,	2015).	The	absolute	
growth rate of the resistant strain, not its fitness relative to that 
of the sensitive strain, determines whether the resistant strain 
will grow within the host (Day et al., 2015). This absolute growth 
rate is not an intrinsic property of the strain but also depends 
on the environment in the host, in particular the total bacterial 
density, the density of immune effectors, etc. At low antibiotic 
concentrations, the resistant strain cannot grow when resistance 
is costly, because it is competitively suppressed by the sensitive 
strain. When the antibiotic concentration gets high enough (at 
a point which is not the MIC in general), the sensitive strain is 
removed and this competitive release allows the resistant strain to 
grow (Colijn & Cohen, 2015; Day & Read, 2016) (Figure 4). At con‐
centrations	above	 the	MPC,	 the	 resistance	strain	can	no	 longer	
grow. Although one could imagine a complex and multi‐peaked 
relationship between the probability of emergence and the anti‐
biotic concentration, in practice it is unimodal in plausible models 
explored (Day & Read, 2016).

In addition, the antibiotic concentration in the host is limited by 
practical considerations: it must not be too low, to clear the bacteria 
efficiently, but it cannot be too high to be practically achieved within 

the patient without toxic effects (Olofsson & Cars, 2007). Depending 
on the position of this feasible range with respect to the unimodal 
relationship, the lowest or highest feasible dose will limit the evolu‐
tion of resistance (Day & Read, 2016; Kouyos et al., 2014) (Figure 4). 
If	the	MPC	is	lower	than	the	maximal	feasible	concentration,	resis‐
tance can be suppressed with aggressive chemotherapy: this might 
be more common when resistance is acquired by mutations within 
the host (e.g., fluoroquinolone resistance). On the contrary, if the 
MPC	is	much	higher	than	the	maximum	feasible	concentration,	mod‐
erate chemotherapy and competitive suppression by the sensitive 
strain may be able to contain the outgrowth of resistance in the host: 
this situation may be more common when highly resistant strains 
circulate in the population and resistance is mostly primary.

This theory makes the prediction that aggressive chemother‐
apy is not always optimal with respect to the emergence of re‐
sistant strains. This prediction is verified in in vivo and in vitro 
systems (see the mini‐review in Day & Read, 2016). A stronger pre‐
diction is that the optimal concentration to limit the emergence 
of resistance lies at either end of the feasible window. This relies 
on the relationship being always unimodal, which is supported 
by simulations of plausible models. The relationship between the 
emergence of resistance and drug dose was unimodal in several 
experimental systems (Bhavnani, Ambrose, Hammel, Rubino, & 
Drusano,	 2016;	 Firsov	 et	 al.,	 2017;	 Strukova,	 Portnoy,	 Zinner,	&	
Firsov,	2016;	Tam,	Louie,	Deziel,	Liu,	&	Drusano,	2007;	VanScoy,	
McCauley,	 Bhavnani,	 Ellis‐Grosse,	 &	 Ambrose,	 2016).	 The	 uni‐
modal	 (also	 called	 “inverted‐U‐shaped”	 or	 “hump‐shaped”)	 rela‐
tionship	 remains	 the	 paradigm	 in	 PK/PD	 studies	 (Mouton	 et	 al.,	
2011; Singh & Tam, 2011).

3.3 | Optimal duration of antibiotic treatment

A large part of the literature is concerned with the optimal antibi‐
otic dose, and fewer theoretical studies have addressed the opti‐
mal duration of treatment (but see D'Agata et al., 2008; Geli et al., 
2012). The effect of a long versus short duration of treatment may 
be similar to that of high versus low dose. Actually, some experimen‐
tal studies find that the area under the curve describing the drug 
concentration as a function of time (i.e., the product of the mean 
dose and treatment duration) best predicts the emergence of resist‐
ance (Olofsson & Cars, 2007). Longer course duration is associated 
with a higher frequency of resistance in several experimental stud‐
ies	 (Drusano,	Liu,	Brown,	Rice,	&	Louie,	2009;	Martinez,	Papich,	&	
Drusano,	2012;	Mouton	et	al.,	2011;	Nguyen	et	al.,	2014),	 leading	
to the suggestion that short antibiotic courses may limit the emer‐
gence of resistance at the population level, and studies to determine 
whether such short course duration would lead to good infection 
outcomes (Martinez et al., 2012).

3.4 | Fitting dynamical models to experimental data

The within‐host dynamics of antibiotic resistance is sufficiently well 
understood to fit explicit dynamical models to experimental data. 
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Jumbe et al. (2003) fitted a dynamical model including the pharma‐
cokinetics of the drug, and the impact of fluoroquinolone treatment 
on the density of sensitive and resistant strain, in mice colonized by 
P. aeruginosa. They estimated that the growth rate of resistant strains 
in	the	absence	of	treatment	was	70%	that	of	the	sensitive	strain,	but	
the bactericidal activity of fluoroquinolone was eight times smaller 
on the resistant strain. They validated their model on independent 
data with different antibiotic doses, successfully predicting that a 
low dose would encourage the selection of resistance, while a high 
dose	would	suppress	it.	Nguyen	et	al.	(2014)	fitted	a	similar	dynami‐
cal model to the dynamics of resistance and sensitive E. coli strains 
within the gut of piglets under fluoroquinolone treatment. There, 
the	growth	rate	of	the	resistant	strain	was	14%	that	of	the	sensitive	
strain, and fluoroquinolone was estimated to have no effect at all on 
the resistant strain.

4  | CONCLUSION AND PERSPEC TIVES

I highlight five important features of models of antibiotic resistance 
evolution, five insights from models of antibiotic resistance evolu‐
tion and four perspectives for future work.

4.1 | Five important features of models of antibiotic 
resistance evolution

1. The competition between sensitive and resistant strains is key. 
Some models only consider the resistant strain, implicitly as‐
suming that it does not compete with the sensitive strain. This 
may be justified by experimental data: for example, one study 
showed that colonization with a vancomycin sensitive entero‐
coccus strain does not prevent further colonization by a van‐
comycin‐resistant enterococcus (Huang et al., 2011). However, 
in general, if two strains differ only in their resistance to 
antibiotics, it is biologically plausible that they will use the 
same resources and compete within the host.

2. For many bacterial species, antibiotic treatment is prescribed 
most often for viral or bacterial infections unlinked with coloniza‐
tion by the focal species. Thus, a large fraction of the exposure to 
antibiotics and selection for resistance is independent of infection 
by the focal species.

3. Many bacterial species experience transient (1–2 weeks) and rare 
(in the order of once per year on average in the community) anti‐
biotic courses in the community. Thus, the “niche” formed by 
treated individuals for resistant strains is small and transient. A 
few species causing long infections, such as M. tuberculosis or 
P. aeruginosa in cystic fibrosis, may face exceptionally long antibi‐
otic courses.

4. De novo evolution of resistance by point mutation is documented 
mostly for long duration treatments, presumably because evolu‐
tion by point mutation is rare for short treatments.

5. Genomic data sets reveal that resistance genes or mutations are 
confined to clones whose resistance is stable over decades, and 

that horizontal gene transfers leading to new circulating resistant 
strains are also rare at epidemiological timescales.

4.2 | Five insights from models of antibiotic 
resistance evolution

1. Sensitive and resistant strains are in competition to colonize 
largely the same hosts. The large overlap in their niches implies 
competitive exclusion of one or the other strain in most mod‐
els. There is no one single mechanism explaining the observed 
long‐term coexistence of sensitive and resistant strains, but 
several plausible mechanisms such as host population structure 
and genetic association with other loci could act together to 
maintain coexistence. More speculatively, resistance genes may 
have pleiotropic effects beyond their cost that may favour 
coexistence, or the within‐host environment may present het‐
erogeneities allowing coexistence within hosts.

2. Hospitals have their own dynamics, with a high rate of admission 
and discharge and high rates of antibiotic treatment. Resistance 
evolution in hospitals is not unlike adaptation to a “sink” environ‐
ment, with constant influx of sensitive strains from the “source” 
community. In these controlled settings, it is possible to explicitly 
fit dynamical models to data.

3. For bacterial species colonizing humans and farm animals, antibi‐
otic consumption in farm animals could speed up the emergence 
of new types of resistances—farm animals could act as “incuba‐
tors” of resistance. However, once a resistance is established, 
there is little evidence that antibiotic consumption in farm animals 
influences the frequency of resistance in the human community. 
More work would be needed to estimate quantitatively the rates 
of transmission between reservoirs with the help of genomic data.

4. There is no consensus on the best antibiotic prescription strategy 
to limit resistance in intensive care units or hospitals. Differences 
between mixing, cycling and reactive cycling strategies are small 
compared to stochastic effects. Clinical trials are few and have 
been inconclusive so far.

5. Models of within‐host resistance evolution can be compared with 
in vitro and in vivo experimental results. The emergence of resist‐
ance is favoured at an intermediate antibiotic dose. At a low anti‐
biotic dose, the sensitive strain is unaffected by treatment and 
competitively suppresses the less fit resistant strain. At a high 
antibiotic dose, the resistant strain is cleared by antibiotics. This 
prediction is generally verified experimentally. Dynamical models 
can successfully be fitted to data in vivo.

4.3 | Four perspectives for future work

1. We are largely unable to fit dynamical models of resistance 
evolution to epidemiological data on the frequency of resis‐
tance. This means that we do not know what phenomena 
determine the frequency of resistance and we cannot predict 
the future evolution of resistance. More realistic model out‐
comes (in particular, robust coexistence of sensitive and resistant 
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strains) may be obtained with more complex models. The 
challenge will be to formulate models that remain tractable 
and understandable, and can be fitted to data.

2.	 Very	 few	models	consider	multiple	 loci	under	 selection	 (Day	&	
Gandon, 2012). Resistances to several antibiotics depend on mul‐
tiple genes or loci, but it remains unclear how these resistances 
are co‐selected to generate multidrug resistance (Lehtinen, 
Blanquart,	Lipsitch,	Fraser,	&	Maela	Pneumococcal	Collaboration	
Collaboration, 2017). This is particularly interesting in the light of 
the observation that multidrug resistance is common, and some 
plasmids carry multiple resistance genes—so‐called “genetic cap‐
italism.” Moreover, resistance might interact epistatically with 
other epidemiological traits (such as carriage duration, deter‐
mined by serotype in S. pneumoniae, Lehtinen, Blanquart, 
Croucher, et al., 2017). As rates of recombination in bacteria are 
small enough for epistasis to select for combinations of alleles 
powerfully (Arnold et al., 2018), multilocus models of resistance 
evolution are an interesting avenue for future research.

3. How resistance evolves within hosts is comparatively better un‐
derstood (although data on within‐human evolution of resistance 
are lacking). It would be desirable to develop new models inte‐
grating the within‐host dynamics of sensitive and resistant strain 
at the between‐host level. For example, Webb, D'Agata, Magal, 
and Ruan (2005) developed a conceptual model linking the 
within‐host dynamics of sensitive and resistance bacteria to the 
prevalence in the hospital. This model was extended to account 
for host immunity and investigate the impact of treatment tim‐
ing, duration and dose on resistance (D'Agata et al., 2008, 2007) 
as described above. Other models have taken a very detailed ap‐
proach (Caudill & Lawson, 2017). Lastly, it has been suggested 
that more explicitly modelling the within‐host dynamics, and in 
particular the dual carriage of resistant and sensitive strains, 
helps maintain between‐host coexistence (Davies, Flasche, Jit, & 
Atkins,	2017).	Pursuing	this	line	of	research	and	more	explicitly	
modelling within‐host dynamics happening on the same time‐
scale as the between‐host dynamics may generate novel insights 
not captured by the classical compartmental models.

4. Although genomic data are fast accumulating, and the genetic 
determinants of resistance—the genotype–phenotype map—are 
very precisely known, no attempt has been made to my knowl‐
edge to link dynamical model describing the selection on resist‐
ant and sensitive strains to the phylogenetic history of these 
strains (see Box 2 on phylodynamics).

To conclude, the evolutionary epidemiology of antibiotic re‐
sistance is an interesting testing ground for evolutionary theory. 
It benefits from extensive epidemiological, experimental and ge‐
nomic data, a well‐developed modelling tradition, and an intuition 
for what environment selects for antibiotic resistance. Important 
challenges lie ahead: developing models with predictive ability and 
understanding what forces maintain diversity despite selection—a 
particular instance of a major question in evolutionary biology.
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