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Post-menopausal women with heart failure (HF) frequently exhibit cardiogenic dementia.

Using a pre-clinical swine model of post-menopausal HF, we recently demonstrated

that experimental menopause (ovariectomy; OVX) and HF (6-month cardiac pressure

overload/aortic banding; AB) independently altered cerebral vasomotor control and

together impaired cognitive function. The purpose of this study was to examine the

prefrontal cortex and hippocampus tissues from these animals to assess whether OVX

and HF are associated with neurologic alterations that may contribute to cardiogenic

dementia. We hypothesized that OVX and HF would independently alter neuronal cell

signaling in swine with post-menopausal cardiogenic dementia. Immunoblot analyses

revealed OVX was associated with reduced estrogen receptor-α in both brain regions

and HF tended to exacerbate OVX-induced deficits in the hippocampus. Further, OVX

was associated with a reduction in the ratio of phosphorylated:total Akt and ERK in

the hippocampus as well as decreased total Akt and synaptophysin in the prefrontal

cortex. In contrast, HF was associated with a trend toward reduced phosphorylated:total

ERK in the prefrontal cortex. In addition, HF was associated with decreased β-amyloid

(1–38) in the prefrontal cortex and increased β-amyloid (1–38) in the hippocampus.

Regional brain lipid analysis revealed OVX tended to increase total, saturated, and

monounsaturated fatty acid content in the prefrontal cortex, with the greatest magnitude

of change occurring in the AB-OVX group. The data from this study suggest that OVX

and HF are independently associated with regional-specific neurologic changes in the

brain that contribute to the cardiogenic dementia profile in this model. This pre-clinical

swine model may be a useful tool for better understanding post-menopausal cardiogenic

dementia pathology and developing novel therapies.
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INTRODUCTION

The term “cardiogenic dementia” describes the association
between the failing heart and the failing mind (1). Cardiogenic
dementia is associated with reduced quality of life, increased
hospital readmission, and risk of mortality (2–5). In the setting
of heart failure with preserved ejection fraction (HFpEF; HF
subtype where EF% is maintained ≥50%), it is estimated up
to 50% of patients experience cardiogenic dementia (6, 7).
Of note, HFpEF disproportionally affects older women (∼2:1
vs. men) implicating the loss of female sex hormones in the
onset of the disease (8). The underlying causes of cognitive
impairment in HFpEF are difficult to elucidate as dementia
phenotypes are non-uniform in this population (9). For example,
cardiogenic dementia may reflect aspects of Alzheimer’s disease
(AD), vascular dementia, frontotemporal dementia, or some
combination of these (9). Potentially, the development of HF
as well as any loss of sex hormones, e.g., with menopause,
could contribute to the cardiogenic dementia phenotype in
female patients.

Recently, using a pre-clinical model of experimental HF
(cardiac pressure overload) that exhibits cardiac features
consistent with HFpEF inmale swine, we observed that induction
of HF alone coincided with increased carotid artery vascular
resistance, impairments in cranial blood flow control, and deficits
in memory performance, independent of resting cardiac systolic
impairment (10). In a follow-up study using the same model
of HF, we examined the effect of experimental menopause
(ovariectomy) on indices of cardiogenic/vascular dementia in
female swine and demonstrated that HF alone led to impairments
in cerebrovascular function (11). Further, the loss of female sex
hormones exacerbated impairments in brain blood flow control
as well as deficits in memory performance. Collectively, the data
implicate independent and interactive roles of HF and the loss
of female sex hormones in the development of vascular indices of
cardiogenic dementia and support the view that HFpEF is a total-
body syndrome affecting the peripheral vasculature and the brain
(6, 7, 9, 12).

Two brain regions involved in the encoding and retrieval
of memories are the prefrontal cortex and the hippocampus
(13). Of note, HF appears to be a contributing factor to
AD, and in particular to AD pathology in prefrontal cortex
and hippocampal regions (14). Two major histopathological
hallmarks of AD are senile plaques, resulting from accumulations
of β-amyloid (Aβ) peptides, and neurofibrillary tangles, which
are a result of hyperphosphorylated tau protein (15–17). The
pathophysiology of adverse neural outcomes in the setting of HF
is unclear, but may be a primary adaptation or occur secondary
to HF-related cerebral hypoperfusion, cerebro-microvascular
dysfunction or some combination of these factors. The loss of
female sex hormones may also be an independent contributor to
cardiogenic dementia in older women, independent of HF (18–
20). Emerging evidence indicates a role for estrogen receptor-
α (ERα) signaling in central lipid homeostasis (21–23) and
a recent report documented increased brain lipid content in
brain biopsies from deceased patients with late-stage AD (24).
In addition to disturbances in the brain lipid profile, both

mitogen activated protein kinase/extracellular signal-regulated
kinase (MAPK/ERK) and protein kinase B (PKB aka Akt)
signaling are involved in the encoding and retrieval of memories.
Dysregulation of these two signaling pathways is associated with
deficits in cognition, synaptic plasticity, and neuronal survival
(23, 25–28), raising the possibility that HF and the loss of
female sex hormones may alter regulation of these key signaling
pathways, independently or in a synergistic manner.

Herein, we performed a retrospective analysis on prefrontal
cortex and hippocampal tissues from the aforementioned female
swine study (11). The purpose of this analysis was to examine
the independent and interactive effects of HF (cardiac pressure
overload) and the loss of female sex hormones (ovariectomy) on
estrogen receptor content, ERK and Akt signaling as well as on
selected molecular markers of AD. We hypothesized that both
HF and the loss of female sex hormones would alter indices of
ERK and Akt signaling as well as Aβ peptide levels in swine
with cardiogenic dementia. In addition, we examined brain lipid
profiles to determine whether the loss of female sex hormones
and HF would increase lipid accumulation in the prefrontal
cortex and hippocampus.

METHODS

Animals and Design
This was a retrospective analysis on tissues harvested from
swine used in a study published previously (11) where all
experimental and animal protocols were approved by the
University of Missouri (Columbia, MO) Animal Care and Use
Committee (Protocol #8907). The experimental design and
animal characteristics, including cognitive function and cardiac
phenotype, have been described previously (11). Briefly, sexually
mature Yucatan miniature swine (7 months old; N = 28) were
divided into four groups: intact control (CON), intact aortic
banding (AB), non-AB ovariectomy (OVX), or AB-OVX (n = 7
per group). Experimental OVX is a common in vivo model used
to recapitulate the loss of female sex hormones with aging (29)
and AB was used as a cardiac pressure overload model of HF.
The OVX and AB surgeries were performed at 7 and 8 months,
respectively (Figure 1).

Ovariectomies [Described in Our Recent Report (11)]
At 7 months of age, the OVX and AB-OVX groups were sedated
with telazol/xylazine (5 and 2.25 mg·kg−1, respectively) and
maintained under anesthesia with 3.0% isoflurane while the
ovaries were removed (30). One month following ovariectomy
serum progesterone (chemiluminescent enzyme immunoassay;
IMMULITE 1000) was not detectable in OVX and AB-OVX
groups and at the end of the study, as expected with the loss of
female sex hormones, uterine mass was ∼10 times lower in the
OVX and AB-OVX groups compared to intact (CON and AB).

Aortic Banding [Described in Our Recent Report (11)]
At 8 months of age, AB, and AB-OVX groups underwent AB
surgeries as previously reported by our laboratory (10, 11). The
aortic band was placed around the ascending aorta and a systolic
trans-stenotic gradient of∼70mmHgwas achieved (AB= 73± 3

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 September 2019 | Volume 6 | Article 129

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Hayward et al. Cardiogenic Demenita in Swine

FIGURE 1 | Study design schematic. Timeline of ovariectomy and aortic banding surgeries. Euthanasia was completed for all groups at 14 months. CON, control; AB,

aortic banding; OVX, ovariectomy; AB + OVX, aortic banding + ovariectomy.

and AB-OVX = 72 ± 3 mmHg) under equivalent hemodynamic
conditions for all pigs (heart rate, AB = 99 ± 5 and AB-OVX
= 109 ± 4 bpm; mean arterial pressure = AB = 90 ± 1 and
AB-OVX= 89± 1 mmHg).

Altrenogest Dosing [Described in Our Recent Report

(11)]
To account for menstruation and ensure the intact swine were
not in estrus at the time of experimentation, menstrual cycles
were synchronized. Briefly, the intact swine were dosed orally
with the steroidal progestin, altrenogest (4.5mL, 0.22% solution;
MATRIX R©, Merck, New Jersey) for 14 days, followed by 12–15
days of non-treatment before testing (confirmed as circulating
progesterone >0.5 ng/mL at end point procedures) (31, 32).

Tissue Collection and Western Blot
Analyses
At 14 months of age, swine were anesthetized using a mixture
of Telazol/xylazine (5 and 2.25 mg/kg, respectively) euthanized
by exsanguination. Thereafter, tissue samples from the left and
right hippocampus and prefrontal cortex were quickly removed,
snap frozen in liquid nitrogen, and stored at −80◦C until
further analyses (33). To perform Western (immuno)blotting,
brain tissue was homogenized (FastPrep, MP Biomedicals,
Santa Ana, CA) in 20 volumes of NP40 Cell Lysis Buffer
(Life Technologies; cat# FNN0021) containing protease (Sigma-
Aldrich, 11836170001) and phosphatase inhibitors (Sigma-
Aldrich, 04906845001). Samples were then centrifuged at 4◦C for
15min at 10,000 × g, and the supernatant was collected. Protein
concentrations were determined using BCA quantification assay
(34). Samples were prepared using 2x Laemmli buffer and
total protein concentrations were equalized. Twenty microgram
of protein was resolved on 10% SDS PAGE gels (1.5 h at
120V). Proteins were then wet transferred to nitrocellulose
membranes (GE Healthcare Life Science; cat#10600002) for 1 h
at 100V, followed by blocking in 5% milk casein in Tris-buffered
saline/0.1% Tween 20 (TBST) for 1 h.Membranes were incubated
overnight on a shaker with primary antibody and then rinsed
with TBST, and incubated for 1.5 h with appropriate horse-
radish peroxidase-conjugated secondary antibodies (1:1,000;
Jackson ImmunoResearch Laboratories, West Grove, PA) at
room temperature. A representative β-actin immunoblot was

measured and analyzed for each membrane to ensure equal
loading (<10% variability across gels and no between group
differences were observed). Signals were detected using enhanced
chemiluminesence Western lightning Plus-ELC (PerkinElmer,
105001EA) and were subsequently quantified by densitometry
using a FluorChem HD imaging system (Alpha Innotech, Santa
Clara, CA). Protein markers included ERα (1:500; Santa Cruz
cat# sc-8005; molecular weight (MW) = 66 kDa), ERK (1:1,000;
Cell Signaling cat #4695S; MW = 42,44 kDa), pERK (1:500;
Cell Signaling cat #9101S; MW=42,44 kDa), Akt (1:1,000; Cell
Signaling cat #4685S; MW = 60 kDa), and pAkt Ser473 (1:250;
Cell Signaling cat #4058S MW = 60 kDa), as well as a marker
of downstream PI3K/Akt, e.g., glycogen synthase kinase (GSK3β;
1:1,000; Cell Signaling cat #9315S; MW = 46 kDa), pGSKβ Ser 9
(1:500; Cell Signaling cat #5558S; MW = 46 kDa), pTau Ser396
(1:5,000; Abcam cat# ab109390; MW 55 kDa), insulin degrading
enzyme (IDE; 1:500, Santa Cruz cat #sc-393887;MW= 118 kDa),
and synaptophysin (1:1,000; Cell Signaling cat #5461; MW =

38 kDa).

Immunoprecipitation for Alzheimer
Disease (AD)-Related Markers
The 6E10 antibody [targets Aβ(1–16): cat# SIG-39320] and the
4G8 antibody [targets Aβ(17–24): cat# SIG-39220] were obtained
from Cedarlane Laboratories Ltd. The antibody raised against
the C-terminal region of human APP695 (amino acids 676–
695: cat# A8717) was obtained from Sigma-Aldrich. Cortical and
hippocampal samples (20–30mg wet weight) were homogenized
in 20 volumes of ice-cold RIPA buffer and centrifuged at 12,000
× g (10min; 4◦C) and an aliquot of the supernatant was used
for determining protein content. This RIPA-soluble fraction was
immunodepleted (35) of any FL-APP by immunoprecipitation
with the C-terminally-directed antibody and then sequentially
immunoprecipitated using the 6E10 antibody (to isolate any Aβ

peptide fragments); the resulting immunocomplex was resolved
on a discontinuous 8M urea gel system (36). The 6E10 and
4G8 signals were detected using IRDye R© 800CW Goat anti-
Mouse IgG (H + L) [LICOR 925-32210] and densitometry was
performed using supporting LICOR software.

The pellets leftover after the initial centrifugation in RIPA
above were dissolved in 5M guanidine.HCl (1:20, wt:vol; RT,
2 h). This fraction, e.g., the insoluble fraction, was diluted with
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TABLE 1 | Fatty acid species concentration.

Fatty acids Region CON AB OVX AB-OVX

12:0 PFC 0.07 ± 0.01 0.08 ± 0.01 0.16 ± 0.05 0.12 ± 0.03

HC 0.09 ± 0.02 0.15 ± 0.05 0.17 ± 0.04 0.12 ± 0.03

14:1 PFC 0.16 ± 0.02 0.21 ± 0.03 0.23 ± 0.04 0.20 ± 0.05

HC 0.16 ± 0.03 0.18 ± 0.04 0.27 ± 0.06 0.23 ± 0.02

15:0 PFC 0.18 ± 0.04 0.19 ± 0.05 0.22 ± 0.04 0.27 ± 0.06

HC 0.24 ± 0.07 0.30 ± 0.08 0.44 ± 0.10 0.27 ± 0.09

15:1 PFC 0.29 ± 0.09 1.06 ± 0.30 0.86 ± 0.15 1.12 ± 0.34

HC 0.75 ± 0.26 1.12 ± 0.35 2.64 ± 0.95 0.81 ± 0.27

16:1 PFC 2.11 ± 0.29 4.02 ± 1.21 4.10 ± 0.88 5.54 ± 1.06

HC 4.37 ± 1.19 5.16 ± 1.36 7.75 ± 2.21 4.98 ± 1.53

17:0 PFC 0.47 ± 0.10 0.61 ± 0.14 0.70 ± 0.18 1.01 ± 0.19

HC 0.72 ± 0.17 0.86 ± 0.26 1.07 ± 0.32 1.00 ± 0.26

17:1 PFC 1.79 ± 0.05 2.21 ± 0.59 2.01 ± 0.35 3.52 ± 0.81

HC 2.13 ± 0.61 4.72 ± 2.07 3.77 ± 1.01 3.29 ± 0.96

18:0 PFC 28.54 ± 5.81 46.24 ± 12.28 51.05 ± 12.14 58.98 ± 12.62

HC 47.57 ± 12.28 61.47 ± 16.51 84.31 ± 20.91 59.49 ± 16.73

18:1 PFC 22.87 ± 3.26 45.58 ± 13.03 45.52 ± 9.97 59.89 ± 11.49

HC 51.07 ± 13.21 74.49 ± 20.06 95.68 ± 26.94 63.51 ± 19.34

18:2n6 PFC 1.25 ± 0.22 2.17 ± 0.71 2.18 ± 0.49 2.90 ± 0.73

HC 1.69 ± 0.45 2.43 ± 0.84 2.53 ± 0.73 2.17 ± 0.71

18:3n3 PFC 027 ± 0.15 0.23 ± 0.07 0.33 ± 0.10 1.51 ± 0.78

HC 0.19 ± 0.06 0.39 ± 0.16 0.52 ± 0.17 0.41 ± 0.17

20:0 PFC 0.50 ± 0.32 0.39 ± 0.14 0.44 ± 0.12 0.61 ± 0.24

HC 0.51 ± 0.15 0.61 ± 0.23 0.96 ± 0.35 0.81 ± 0.21

20:1 PFC 1.18 ± 0.46 1.39 ± 0.47 1.39 ± 0.47 3.78 ± 1.67

HC 2.33 ± 0.73 3.83 ± 1.02 3.76 ± 1.15 3.15 ± 1.53

20:2n6 PFC 0.29 ± 0.06 0.99 ± 0.33 0.81 ± 0.27 0.86 ± 0.15

HC 0.73 ± 0.12 1.98 ± 0.76 1.71 ± 0.51 1.27 ± 0.61

20:3n6 PFC 1.73 ± 0.62 3.01 ± 0.74 2.11 ± 0.84 4.11 ± 1.93

HC 1.64 ± 0.45 7.49 ± 4.64 3.46 ± 1.15 4.31 ± 2.04

22:2n6 PFC 0.38 ± 0.20 0.65 ± 0.27 0.33 ± 0.17 0.67 ± 0.25

HC 0.69 ± 0.17 1.02 ± 0.43 1.67 ± 0.64 0.93 ± 0.42

23:0 PFC 2.98 ± 0.23 6.57 ± 2.17 7.18 ± 2.07 7.38 ± 1.92

HC 7.31 ± 2.18 9.16 ± 2.81 11.21 ± 2.85 7.73 ± 2.11

n3 PFC 12.16 ± 1.45 24.94 ± 6.78 26.00 ± 7.41 31.08 ± 5.80

HC 27.72 ± 7.12 43.28 ± 12.62 48.28 ± 14.75 34.32 ± 10.46

n6 PFC 6.04 ± 1.22 8.45 ± 1.11 6.95 ± 1.80 9.82 ± 2.37

HC 5.16 ± 1.04 14.87 ± 5.72 11.40 ± 3.22 9.52 ± 3.66

Values are represented as means ± SEM; Units, µmol/g wet wt.; PFC, prefrontal cortex; HC, hippocampus; CON, control or intact; AB, aortic banding; OVX, Ovariectiomy.

TBS (1:1, vol:vol) and, as above, Aβ were separated by sequential
immunodepletion and immunoprecipitation (36).

Prefrontal Cortex and Hippocampus Fatty
Acid Analysis
Prefrontal cortex and hippocampus tissue from frozen were
homogenized in Tris-HCL buffer and transferred into Kimax
tubes, where total lipids were then extracted using 2:1 ratio
of chloroform/methanol (37). Tissue samples were then spiked
with tridecanoic acid (13:0) to act as an internal standard and
methylated (38). Fatty acid profile was acquired through gas

chromatography as previously described (39). Fatty acid methyl
esters were separated on a UFM-RTX WAX analytical column
(Thermo Electron Corp., Milan, Italy) using gas chromatography
(Trace GC Ultra, Thermo Electron Corp, Milan, Italy), that had
been fitted with a fast-flame ionization detector, a split-splitless
injector, and Triplus AS autosampler (39, 40). Fatty acids were
identified by retention time as compared with known standards
(Supelco 37 component FAME mix, Supelco, Bellefonte, PA).

Statistical Analyses
Cohen’s d effect sizes were calculated (41–43) to determine the
magnitude and direction of change in protein markers and
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lipid profiles. Differences between protein markers and lipid
profiles were analyzed using a two-way ANOVA (OVX by
AB). Significant interactions were examined with Tukey post-
hoc analysis. Shapiro-Wilk test was used to check normality,
and in the case where data were not normally distributed, data
was logarithmically transformed. All data are presented as mean
± SEM, with significance reported as p ≤ 0.05 and p-values
approaching significance, i.e., p = 0.06–0.10, reported as trends.
The Pearson correlation coefficient for protein markers and
average memory scores were determined and only significant
correlations are reported.

RESULTS

Hemodynamic Characteristics and
Cognitive Function
A comprehensive cardiac phenotype for the exact same animals
used in this study is available in Table 1 and Figure 1 from
Olver et al. (11). Briefly, the EF% was normal (i.e., all groups
>50%), cardiac output, blood pressure and body mass were
similar among groups (p ≥ 0.15). Cardiac pressure overload
increased heart weight:body mass ratio as well as left ventricle
brain-natriuretic peptide mRNA (biomarker for HF) (main effect
of AB p < 0.05), indicative of HF with compensated resting
systolic function. The loss of female sex hormones was coupled
with increased total peripheral resistance (main effect of OVX p
< 0.05) as well as decreased index of cerebral blood flow (main
effect of OVX p < 0.05), which was most pronounced in the AB-
OVX group (post-hoc, p < 0.05). Similarly, the loss of female sex
hormones coincided with impaired reference (surrogate for long-
term memory) and working memory (surrogate for short-term
memory) scores (main effect of OVX p< 0.05), with impairments
being most pronounced in the AB-OVX group (post-hoc, p <

0.05). Overall, the data indicate the loss of female sex hormones
alone reduces brain blood flow and impairs cognition, and such
effects are exacerbated in the setting of cardiac pressure overload.

Neural Signaling
The loss of female sex hormones was associated with reduced
ERα content in both the prefrontal cortex and the hippocampus
(main effect of OVX: p ≤ 0.05; Figures 2A–D). Further, cardiac
pressure overload was associated with a trend toward reduced
ERα content in the hippocampus alone (main effect of AB: p =

0.06; Figure 2C). Effect size analysis revealed the loss of female
sex hormones in combination with cardiac pressure overload
elicited the greatest magnitude of change, indicated by a large,
negative effect on ERα content in both brain regions (Figure 2).
Levels of total ERK in the prefrontal cortex and hippocampus
were similar among groups (p ≥ 0.56; Figures 3B,F,D,H).
However, cardiac pressure overload and the loss of female sex
hormones appeared to affect ERK activation in a region-specific
manner (Figures 3A–H). Specifically, cardiac pressure overload
was associated with a trend toward a reduced ratio of p-ERK:ERK
in the prefrontal cortex (main effect of AB; p = 0.08; Figure 3C)
and the loss of female sex hormones was associated with reduced
ratio of p-ERK:ERK in the hippocampus (main effect of OVX; p
< 0.01; Figure 3G). Effect size analysis indicated that the loss of

FIGURE 2 | (A) ERα prefrontal cortex, (B) representative blots, (C) ERα

hippocampus, and (D) representative blots. Data analyzed using a two-way

ANOVA. *Main effect of OVX (p ≤ 0.03); †trend toward a main effect of AB (p

= 0.06). d = Cohen’s d effect size (small = 0.20, medium = 0.50, large =

0.80); OVX, ovariectomy; AB, aortic banding.

female sex hormones combined with cardiac pressure overload
resulted in the greatest magnitude of change in the prefrontal
cortex, indicated by a large, negative effect on p-ERK:ERK.
However, whereas cardiac pressure overload had a medium,
positive effect on p-ERK:ERK in the hippocampus, the loss of
female sex hormones alone elicited a greater and opposite change,
indicated by a large, negative effect on p-ERK:ERK (Figure 3).

The loss of female sex hormones was associated with reduced
total Akt in the prefrontal cortex (main effect of OVX: p =

0.03; Figures 4A,B,D). However, the ratio of p-Akt Ser473:Akt
in the prefrontal cortex was similar among groups (p ≥ 0.11;
Figures 4C,D). In contrast, total Akt in the hippocampus was
similar among groups (p ≥ 0.35; Figures 4F,H), but the loss
of female sex hormones was associated with reduced ratio of
p-Akt:Akt (main effect of OVX: p = 0.04; Figures 4E,G,H).
Effect size analysis revealed the loss of female sex hormones in
combination with cardiac pressure overload elicited the greatest
magnitude of change, evidenced by a medium, positive effect on
p-Akt:Akt in the prefrontal cortex and a large, negative effect on
p-Akt:Akt in the hippocampus (Figures 4C,G).

The loss of female sex hormones was associated with a trend
toward a reduction in levels of synaptophysin, a synaptic vesicle
membrane protein and marker of synaptic plasticity, in the
prefrontal cortex (main effect of OVX: p = 0.07; Figures 5A,C).
However, no changes were observed in the hippocampus for
synaptophysin (p ≥ 0.61; Figures 5B,C). Effect size analysis
indicated the loss of female sex hormones in combination
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FIGURE 3 | (A) p-ERK prefrontal cortex, (B) total ERK prefrontal cortex, (C) p-ERK:ERK ratio prefrontal cortex, (D) representative blots for prefrontal cortex, (E)

p-ERK hippocampus, (F) total ERK hippocampus, (G) p-ERK:ERK ratio hippocampus, and (H) representative blots for hippocampus. Data analyzed using a two-way

ANOVA. *Main effect of OVX (p < 0.01); †trend toward a main effect of AB (p = 0.08). d = Cohen’s d effect size (small = 0.20, medium = 0.50, large = 0.80); OVX,

ovariectomy; AB, aortic banding.

with cardiac pressure overload elicited a large, negative effect
on synaptophysin levels in the prefrontal cortex (Figure 5A).
Cardiac pressure overload was associated with decreased Aβ(1–
38) content in the prefrontal cortex and increased Aβ(1–38)
content in the hippocampus (main effect of AB; p < 0.01;
Figures 5D–F,I). The loss of female sex hormones alone resulted
in large, positive effect on Aβ(1–38) content in both regions.
However, cardiac pressure overload alone and in conjunction
with the loss of female sex hormones elicited regional-specific
changes, indicated by a large, negative effect on Aβ(1–38)
content in the prefrontal cortex and a large, positive effect on
Aβ(1–38) content in the hippocampus. The loss of female sex
hormones was associated with a trend toward increased Aβ(1–
40) content in the prefrontal cortex (main effect of OVX; p =

0.09; Figures 5F,G), but neither intervention had a significant
effect on Aβ(1–40) in the hippocampus (p≥ 0.31; Figures 5H,I).
Effect size analysis revealed the loss of female sex hormones alone
and in conjunction with cardiac pressure overload resulted in
a large and medium, positive effect, respectively, on Aβ(1–40)
content in the prefrontal cortex. There were no differences in p-
GSK-β, pSer396-Tau, or IDE in either the prefrontal cortex or

hippocampus among groups (p ≥ 0.12) and Aβ(1–42) protein
was only detected in a sub-set of samples and not consistently
in any treatment group (data not shown). Furthermore, we were
unable to detect any Aβ peptide in any of the insoluble/plaque
associated fractions tested (data not shown).

Brain Lipid Content
The fatty acid (FA) profile for both the prefrontal cortex and
hippocampus are summarized in Table 1. In the prefrontal
cortex, there were no statistically significant effects of either
intervention on lipid content. However, the loss of female
sex hormones was associated with a trend toward increased
total, saturated and monounsaturated fatty acid content (main
effect OVX; p = 0.07–0.10; Figures 6A,C,E), with no differences
in polyunsaturated fatty acid content (p = 0.15; Figure 6G).
Despite there being no changes in polyunsaturated fatty acid
content, the loss of female sex hormones was associated with
an increased ratio of n3/n6 fatty acids (main effect of OVX; p
= 0.01; control = 1.8 ± 0.41, AB = 2.8 ± 0.6, OVX = 4.2
± 1.1, AB + OVX = 3.5 ± 0.5). Cardiac pressure overload
was associated with a trend toward increased monounsaturated
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FIGURE 4 | (A) p-Akt Ser473 prefrontal cortex, (B) total Akt prefrontal cortex, (C) p-Akt:Akt ratio prefrontal cortex, (D) representative blots for prefrontal cortex, (E)

p-Akt Ser473 hippocampus, (F) total Akt hippocampus, (G) p-Akt:Akt ratio hippocampus, and (H) representative blots for hippocampus. Data analyzed using a

two-way ANOVA. *Main effect of OVX (p = 0.03). d = Cohen’s d effect size (small = 0.20, medium = 0.50, large = 0.80); OVX, ovariectomy; AB, aortic banding.

fatty acid content (main effect of AB; p = 0.07) with no
differences in total, saturated and polyunsaturated fatty acid
content (p ≥ 0.13). Effect size analysis revealed the loss of female
sex hormones, in combination with cardiac pressure overload,
resulted in the greatest magnitude of increase relative to the
control group, evidenced by a large, positive effect on total,
saturated, monounsaturated and polyunsaturated lipid content
in the prefrontal cortex. In the hippocampus, there were no
significant effects of either intervention on the lipid profile,
including the n3/n6 ratio (p ≥ 0.17; Figures 6B,D,F,H). Effect
size analysis indicated the loss of female sex hormones had a
medium, positive effect on total, saturated, monounsaturated
and polyunsaturated fatty acid content and cardiac pressure
overload alone had a medium, positive effect on mono- and
polyunsaturated fatty acid content in the hippocampus.

Correlations With Cognitive Function
ERα content and average memory scores were positively
correlated in both the prefrontal cortex and hippocampus (p ≤

0.03; Figure 7). Correlations between other protein markers and
average memory were not significant (p ≥ 0.10).

DISCUSSION

In this study, we provide novel insight into how the loss
of female sex hormones (OVX) and HF (AB) independently
contribute to altered cell signaling in the prefrontal cortex and
the hippocampus in a pre-clinical swine model of cardiogenic
dementia. In the context of post-menopausal HF (i.e., AB-OVX
group) related dementia, our findings indicate region-dependent
profiles. For example, there is a potential role for reduced
ERα content, decreased ERK signaling, and decreased Aβ(1–38)
content in the prefrontal cortex that corresponded with a loss of
synaptophysin content and increased lipid content. In contrast,
hippocampal extracts revealed a similar loss of ERα content, with
a reduction in ERK signaling and the pro-survival kinase Akt,
with no obvious effect on synaptophysin content or lipid content.
Earlier work from these same animals suggests cerebrovascular
dysfunction is a key characteristic of the cardiogenic dementia
profile (11). Thus, in aggregate, the data indicate cardiogenic
dementia is associated with both cerebrovascular and neuronal
changes that promote impairments in brain blood flow regulation
and alterations in proteins and key kinases involved in the
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FIGURE 5 | Synaptophysin content in the (A) prefrontal cortex, (B) hippocampus and a (C) representative blot; Aβ(1–38) in the (D) prefrontal cortex (E) hippocampus

and a (F,I) representative blot; Aβ (1–40) in the (G) prefrontal cortex, (H) hippocampus and a (F,I) representative blot. Data analyzed using a two-way ANOVA. †Trend

toward a main effect of OVX (p = 0.07–0.09). *Main effect of AB (P < 0.05). d = Cohen’s d effect size (small = 0.20, medium = 0.50, large = 0.80); OVX,

ovariectomy; AB, aortic banding; IgG, light chain of the antibody used for immunoprecipitation.

encoding and retrieval of memories, synaptic plasticity, and
neuronal survival in the prefrontal cortex and hippocampus
(23, 25–28).

The current data suggest the loss of female sex hormones
and HF independently contribute to the cardiogenic dementia
profile in this swine model of HF. Our previous work in
swine (11) and other’s work in rodents (44–46) demonstrate the
loss of female sex hormones results in impairments in spatial
navigation and spatial memory. The current data extend on
earlier findings and suggest impairments in spatial memory are
associated with reduced ERα content in the prefrontal cortex
and hippocampus. Further, mirroring the earlier observation
that memory deficits were most pronounced in AB-OVX swine
(11), the current data show reductions in ERα content of
the hippocampus, a brain region involved in encoding and
retrieval of memories (13), tended to be greatest in AB-OVX
swine. The ERα is a key regulator of kinase activity and
serves a complex role in memory (47, 48). Given the current
data highlight region-specific effects of the loss of female sex
hormones and cardiac pressure overload on ERα content in
the brain, it is possible hormonal signaling plays a pivotal

role in the cardiogenic dementia profile of post-menopausal
HF patients.

Two key signaling cascades implicated in the recovery and
programming of memories that are also influenced by ERα-
activation of tyrosine kinase receptors are Akt and ERK (23, 25–
28, 47). In the current study, cardiac pressure overload had
minimal effect on Akt in either brain region, but tended to reduce
ERK signaling in the prefrontal cortex. In contrast, the loss of
female sex hormones was associated with reduced total Akt in the
prefrontal cortex and reduced Akt signaling in the hippocampus.
Furthermore, the loss of female sex hormones decreased ERK
signaling in the hippocampus. The aforementioned data indicate
reductions in Akt and ERK signaling following the loss of female
sex hormones occur preferentially in the hippocampus compared
with the prefrontal cortex in this model. Targeted changes in the
hippocampus support earlier observations in OVX swine that
reference memory and spatial navigation (11), both hippocampal
dominant processes (13), were impaired following the loss of
female sex hormones. From a clinical perspective, the current
data suggest the loss of female sex hormones and cardiac pressure
overload contribute directly to the cardiogenic dementia profile
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FIGURE 6 | Total fatty acids in the (A) prefrontal cortex and (B) hippocampus; saturated fatty acids (SFA) in the (C) prefrontal cortex and (D) hippocampus;

monounsaturated fatty acids (MUFA) in the (E) prefrontal cortex and (F) hippocampus; polyunsaturated fatty acids (PUFA) in the (G) prefrontal cortex and (H)

hippocampus. Data analyzed using a two-way ANOVA. †Trend toward a main effect of OVX (p = 0.06–0.10). d = Cohen’s d effect size (small = 0.20, medium = 0.50,

large = 0.80); OVX, ovariectomy; AB, aortic banding.

in a brain region-specific manner, independent of resting cardiac
systolic impairment.

Despite changes in ERα content, ERK, and Akt signaling
affecting the AB-OVX group, differences in downstream targets
p-GSK-3β, pSer396-Tau, or IDE were not significant nor was
the longer, more hydrophobic and AD-related Aβ(1–42) peptide

detected consistently. In keeping with the observation that
immunoprecipitation strategies did not reveal any Aβ peptide
in the insoluble (aggregation/plaque-associated) fraction of
these cortical and hippocampal samples, these findings might
reflect the fact that the animals have maintained normal
transport mechanisms for removal of the Aβ(1–42) peptides
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FIGURE 7 | Correlation between ERα content and average memory scores in the (A) prefrontal cortex and (B) hippocampus; Pearson correlation coefficient = r.

into the circulation. In addition, these findings may also reflect
that animals were examined during a developmental stage of
cardiogenic dementia, prior to overt changes in GSK and the
subsequent development of tau pathology (49, 50). Aging is a
primary cause of dementia (51) and it is impractical to age pigs
to true senescence for pre-clinical research given their relatively
long life span (∼15 years) (52). Of note, tau pathology may
develop after Aβ aggregation and deposition, which can occur
10–20 years before the onset of clinical symptoms (16, 50, 53, 54).
In this regard, the changes observed in the current study may
reflect early pathological adaptations in disease progression.

Consistent with the latter interpretation, synaptophysin
content, a marker for synaptic plasticity/density, tended to be
reduced in the prefrontal cortex following the loss of female sex
hormones with the greatest reduction in the AB-OVX group.
The parallel loss of frontocortical ERα expression, ERK signaling,
and Aβ(1–38) content and a tendency for increase in Aβ(1–40)
content in the AB-OVX groupmay also be quite relevant. Indeed,
ERK is known to influence memory (55) as well as shift away
from the non-amyloidogenic (56) generation of N-terminally
truncated p3 fragment (an effect we observed preliminarily using
the 4G8 epitope, data not shown), in favor of longer, more
hydrophobic Aβ variants such as Aβ(1–40), and all in an ER-
dependent manner. All of these molecular phenotypes would
suggest a generalized, dysfunctional phenotype in this brain
region. The latter finding is consistent with earlier work that
shows OVX increases Aβ(1–40) in a transgenic mouse model
of AD (57), highlighting a possible protective effect of female
sex hormones or ER-α signaling against Aβ(1–40) accumulation.
There is emerging interest in the interactive role and clinical
utility of Aβ variants such as the 38-/40-mers and their processing
in the pathogenesis of multiple dementia phenotypes (58–61).
Available evidence indicates that amyloid plaques containing the
38/40-mers are prominent in several forms of dementia and the
presence or ratio of multiple Aβ variants may alter the behavior
and toxicity of the entire peptide pool (58–60, 62). Thus, the
current data highlight that both heart failure and the loss of
female sex hormones may influence the cardiogenic dementia
profile by altering the Aβ pool in a region-dependent manner
without necessarily producing an overt AD-like phenotype [i.e.,
increased Aβ(1–42)].

In the current study, neither intervention significantly altered
the brain lipid profile. However, similar to reductions in
ERα content and ERK signaling, the accumulation of total,
saturated and monounsaturated fatty acids in the prefrontal
cortex tended to be more apparent following the loss of female
sex hormones. Further, the magnitude of change was greatest
in the combined AB-OVX group. Regarding this finding, ERα

may play a direct role in lipid status in the brain by directly
modulating lipid transport as well as enzymes involved in
fatty acid synthesis and oxidation (21–23). Why such trends
were only observed in the prefrontal cortex and changes
following the loss of female sex hormones appeared to be
potentiated by cardiac pressure overload remains unknown.
Other mechanisms, such as enhanced blood brain barrier
permeability may also be involved (21, 63, 64). Recently, it was
reported that OVX increased blood brain barrier permeability
in rats (63), possibly the result of elevated barrier inflammation
(64). Cerebrovascular inflammation was not examined in the
current study, but earlier work highlights that the loss of female
sex hormones resulted in cerebrovascular dysfunction with the
most pronounced impairments occurring in the combination
group (11), suggesting cerebrovascular contributors may be
implicated. Lipid metabolism is highly regulated and involved in
the maintenance of neuronal structure and function within the
brain (21, 65, 66). Although it remains unclear how alterations in
the brain lipid profile affect these actions specifically, the present
analyses provide an important first step toward characterizing
regional changes that may precipitate the development of
cardiogenic dementia.

This study provides evidence that the loss of female sex
hormones and cardiac pressure overload independently
affect ERα content, Akt, and ERK signaling as well as
Aβ peptide content and lipid content in a region-specific
manner in the prefrontal cortex and hippocampus in
swine. Such changes manifested without advanced aging
or resting cardiac systolic impairment, highlighting direct
roles for menopause and HF (with normal EF%) in the
cardiogenic dementia profile. Combined with previous
work from these animals (11) and in line with human
data (9, 14), it appears cardiogenic dementia involves both
cerebrovascular and neural maladaptations. Determining
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whether these maladaptations precipitate and contribute
to the presentation of cognitive dysfunction is critical to
better understanding and developing effective therapies for
cardiogenic dementia.
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