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Hepatic fibrosis is commonly diagnosed in dogs, often as a sequela to chronic hepatitis (CH). The development of fibrosis is

a crucial event in the progression of hepatic disease that is of prognostic value. The pathophysiology of hepatic fibrosis in human

patients and rodent models has been studied extensively. Although less is known about this process in dogs, evidence suggests

that fibrogenic mechanisms are similar between species and that activation of hepatic stellate cells is a key step. Diagnosis and

staging of hepatic fibrosis in dogs requires histopathological examination of a liver biopsy specimen. However, performing a liver

biopsy is invasive and assessment of fibrotic stage is complicated by the absence of a universally accepted staging scheme in vet-

erinary medicine. Serum biomarkers that can discriminate among different fibrosis stages are used in human patients, but such

markers must be more completely evaluated in dogs before clinical use. When successful treatment of its underlying cause is fea-

sible, reversal of hepatic fibrosis has been shown to be possible in rodent models and human patients. Reversal of fibrosis has

not been well documented in dogs, but successful treatment of CH is possible. In human medicine, better understanding of the

pathomechanisms of hepatic fibrosis is leading to the development of novel treatment strategies. In time, these may be applied to

dogs. This article comparatively reviews the pathogenesis of hepatic fibrosis, its diagnosis, and its treatment in dogs.
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Hepatic fibrosis is characterized by progressive accu-
mulation of fibrillary extracellular matrix (ECM)

components in the liver. With persisting inflammation,
the collagen profile of the liver changes, with increasing
relative amounts of collagen types I and III accompa-
nied by modification and cross-linking of ECM
components.1–3 In a fibrotic liver, the total collagen
content is 3- to 10-fold higher than normal.3 Develop-
ment of hepatic fibrosis is an important step in the pro-
gression of many liver diseases, and it has been shown
to have prognostic implications in human patients.4,5

As is the case with human patients, hepatic fibrosis can
contribute to the development of portal hypertension
and acquired portosystemic collateral blood vessels in
dogs.6 The true prevalence of hepatic fibrosis in dogs is
not known. However, in a study of 200 dogs undergo-
ing necropsy for any reason, 12% were found to have
histological changes consistent with chronic hepatitis
(CH), a disease for which hepatic fibrosis is a defining
feature.7 Therefore, hepatic fibrosis is likely to be a
common finding in dogs. Although the etiology of CH
in dogs is different from the disease in humans, the his-
tological appearance and progression of hepatic fibrosis
is similar in both species.8,9 Therefore, hepatic fibrosis
is of importance to small animal veterinarians.

A considerable amount of research into the pathogen-
esis of hepatic fibrosis has been performed by studying
models of induced liver disease in rodents and naturally
occurring liver disease in human patients. As this pro-
cess is better understood, novel strategies for its treat-
ment are being developed for use in human patients.
Hepatic fibrosis in dogs with naturally occurring CH
may prove to be a valuable nonrodent model to study
the efficacy of these agents.

The aims of this article are to comparatively review the
pathogenesis of hepatic fibrosis, its diagnosis, as well as
existing and novel strategies for its treatment in dogs.
The Medline database was searched for articles relating
to hepatic fibrosis. Priority was given to articles published
within the last 5 years and those addressing this process
in dogs. The reference lists of the articles identified in this
search were used to find other pertinent articles.

Pathogenesis

Hepatic Fibrosis and Myofibroblasts

Hepatic fibrosis is a wound healing response to
chronic injury and inflammation in which there is an
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imbalance between ECM deposition and removal,
leading to excess ECM accumulation.10 In the normal
liver, fibril-forming collagens (type I, type III, type V,
and type XI collagens) can be found in the capsule,
in large vessels, and the portal regions.3 Only small
amounts of type I and type III collagens are present
in the subendothelial space. Additional components of
the normal ECM include glycosaminoglycans and pro-
teoglycans (hyaluronan, fibronectin, tenascin, or lami-
nin) and other collagens (types VI, XIV, and XVIII).3

In human patients and rodent models of liver disease,
early deposition of ECM components takes place along
the subendothelial space.2,3 In humans, von Wille-
brand’s factor expression is used as a marker of this
process and expression of von Willebrand’s factor,
varying in distribution from diffuse to periportal, also
was found in 69% of dogs with chronic liver disease.11

The main mechanism of fibrogenesis is believed to be
the activation of myofibroblast precursor cells, which
results in the progressive deposition of ECM. The
fibrotic liver contains increased amounts of fibrillary
collagens (types I, III, and V), nonfibrillary collagens
(types IV and VI), and glycosaminoglycans and proteo-
glycans (eg, fibronectin, tenascin and laminin, perlecan,
decorin, aggrecan, and fibromodulin).1,3 During ECM
accumulation, cross-linking of matrix proteins occurs.
In advanced fibrosis, this feature has been proposed to
render the ECM more resistant to degradation.12,13

Several cells have been reported to be sources of ECM
production during hepatic fibrosis: hepatic stellate cells
(HSCs, Ito cells), liver resident fibroblasts (portal or cen-
trilobular), epithelial cells that undergo epithelial-to-
mesenchymal transition, bone marrow-derived fibrocytes,
and smooth muscle cells that surround blood vessels.1,14

In human patients, HSCs generally are believed to be the
main source for myofibroblasts in CH, whereas portal
fibroblasts are considered to play an important fibrogenic
role in cholestatic liver disease.15,16 Evidence exists that
perisinusoidal HSCs also are involved in the pathogene-
sis of hepatic fibrosis in dogs.17

The transdifferentiation of quiescent HSCs to myofi-
broblasts is a multi-step process that involves cytokines,
chemokines, growth factors, reactive oxygen species
(ROS), and apoptotic bodies derived from hepatocytes
(Fig 1).3,18–20 In the early phase of activation, the HSC
acquires responsiveness to cytokine stimuli by exposure
to fibronectin or apoptotic bodies derived from dam-
aged hepatocytes.18 In the next phase, cytokines and
growth factors, produced by neighboring cells such as
liver resident macrophages (Kupffer cells), hepatocytes,
endothelial cells, lymphocytes, and platelets, bind to
specific receptors on the HSC membrane. Stimulation
of intracellular signaling pathways results in altered
gene expression and a phenotypic change in the HSC.3

The last phase is the maintenance of activation, which
involves paracrine and autocrine mechanisms.18

Myofibroblast Precursor Cells

Hepatic stellate cells (Fig 2) have a dendritic mor-
phology and are located in the perisinusoidal space in

close contact with hepatocytes and sinusoidal endothe-
lial cells. They are the main location for vitamin A stor-
age in the healthy liver. Upon activation, HSCs change
from their quiescent vitamin A-rich state to a highly
fibrogenic (myofibroblastic) phenotype. This is charac-
terized by diminution of vitamin A droplets, enlarge-
ment of the rough endoplasmic reticulum, a ruffled
nuclear membrane, and the appearance of contractile
filaments.1,3,18,21 They acquire increased ability for pro-
liferation, chemotaxis, contractility, and ECM produc-
tion. Activated HSCs can further promote their
myofibroblastic phenotype and survival by paracrine
and autocrine cytokine cross talk with surrounding cells
(eg, the secretion of monocyte chemoattractant protein-
1 and chemokine [C-C motif] ligand 5 or the release of
tissue inhibitor of metalloproteinase-1 [TIMP-1]).18

The increased contractility of activated HSCs is due
to the expression of the cytoskeletal protein and alpha-
smooth muscle actin (aSMA).3 Regulators of HSC con-
tractility include endothelin-1 (ET-1), nitric oxide, and
angiotensin II.3,22 In human patients and rodent models
of liver disease, the expression of aSMA is used as a
marker of HSC activation. However, in the healthy
canine liver, aSMA expression also can be found in
perisinusoidal HSCs as well as in myofibroblasts and
vascular smooth muscle cells within the portal tracts. In
dogs with chronic liver disease, an increase in aSMA
expression, in perisinusoidal spaces as well as in fibrotic
septa, has been demonstrated. A positive correlation
between aSMA expression and fibrosis stage was found
in some studies, but not in others.11,17,23,24 Figure 3
shows aSMA immunostaining in liver sections of a
healthy dog without fibrosis (A) and a dog with CH
and very marked fibrosis (B).

Portal fibroblasts are located in the mesenchyme of
the portal tracts. They surround the hepatic bile ducts
and are important for the integrity of the portal
triads.25 In biliary fibrosis of humans, portal fibroblasts
seem to be the source of myofibroblasts in the portal
area.26 In studies of rodents with bile duct ligated-
induced fibrosis, they contribute to >70% of matrix
deposition during early injury.16 However, their contri-
bution during more advanced disease is still controver-
sial, and newer studies suggest that HSCs are the major
collagen producing cells in both biliary and nonbiliary
fibrosis.27 Nevertheless, portal fibroblasts seem to have
a role in vascular remodeling during advanced fibrosis
and cirrhosis.28,29

Epithelial-to-mesenchymal transition is a process
whereby epithelial cells acquire mesenchymal features.30

Epithelial-to-mesenchymal transition can occur through
hedgehog or transforming growth factor beta-1 (TGFb-
1) signaling pathways, and both cholangiocytes and
hepatocytes can undergo this process.31–34 However,
newer studies show that there is no evidence of cholan-
giocyte or hepatocyte epithelial-to-mesenchymal transi-
tion in mouse models of hepatic fibrosis.35,36 Therefore,
epithelial-to-mesenchymal transition is not thought to
play a major role in the pathogenesis of hepatic fibrosis.

Table 1 gives a summary of important liver cell types
and their roles in hepatic fibrosis.
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Mediators of Myofibroblast Precursor Cell Activation

Platelet-derived Growth Factor
Early ECM changes (eg, production of fibronectin by

endothelial cells) and apoptotic bodies from damaged
hepatocytes are initiators of HSC activation.3,18 Hepatic
stellate cells acquire responsiveness to further paracrine
activation by neighboring cell types by the expression of
certain cell surface receptors.3,18 Platelet-derived growth
factor (PDGF) is the most potent factor that induces
proliferation of HSCs (Fig 1).3,37,38 It is released by pla-
telets, but also by sinusoidal endothelial cells, activated
liver resident macrophages, and myofibroblasts during

ongoing disease (Table 1).1,3,39 Downstream signaling
involves the renin angiotensin system (RAS)/extracellu-
lar signal-regulated kinase and phosphoinositol 3-kinase
pathways, which enhance proliferation and migration
and promote survival of the HSC.39,40 Additionally,
PDGF is a chemoattractant and guides HSCs to the site
of injury.3,41 Increased expression of PDGF mRNA has
been demonstrated in liver from dogs with CH.42

Transforming Growth Factor Beta-1
Transforming growth factor beta-1 is considered the

major factor accelerating hepatic fibrosis.3,18,43 Hepato-
cytes, liver resident macrophages, sinusoidal endothelial
cells, platelets, and activated HSCs produce this

Fig 1. Role of hepatic stellate cells in hepatic fibrosis. The figure shows a simplified representation of the main factors involved in the acti-

vation of a hepatic stellate cell and the phenotypic changes after activation. TGFb-1, transforming growth factor beta 1; PDGF, platelet-

derived growth factor; ROS, reactive oxygen species; ECM, extracellular matrix.
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cytokine (Table 1).1 Downstream signaling involves
phosphorylation and thus activation of the Smad2 and
Smad3 proteins.43 After forming complexes with Smad4
proteins, they are translocated into the nucleus where
they interact directly on Smad-binding elements and
alter gene expression, for example, by causing upregula-
tion of collagen types I and III, and TIMP-1, and
downregulation of MMPs.14,39,43 The result is increased
capability of HSCs to produce ECM components and
inhibition of ECM removal (Fig 1). TGFb-1 also seems
to be an important mediator of lysyl oxidase expression.

Lysyl oxidases are copper-dependent amine oxidases
that are important for cross-linking of ECM proteins
and further activation of myofibroblast precursor
cells.44 TGFb-1 and phosphorylated Smad2/3 expres-
sion were shown to be upregulated in the liver of dogs
with CH, lobular dissecting hepatitis, and cirrhosis.45

Serum concentrations of TGFb-1 were increased in
dogs with moderate-to-severe hepatic fibrosis.46

Increased TIMP-1 mRNA expression also has been
demonstrated in liver from dogs with CH.42,47

Connective Tissue Growth Factor
Connective tissue growth factor (CTGF) is another

fibrogenic signal for HSCs. In addition, CTGF is
involved in promoting the adhesion of HSCs to the
ECM.3,48 Expression of CTGF is increased in the
fibrotic human liver and in animal models of hepatic
fibrosis.49 CTGF production is considered to be TGFb-1/
Smad2/3-dependent, but other induction ways have been
reported (eg, ET-1, angiotensin II).50–52 Because CTGF is
recognized as a profibrogenic mediator, its inhibition is a

Fig 2. Hepatic stellate cells (Ito cell; hematoxylin and eosin). The

stellate cells reside in the sinusoidal space and contain clear non-

staining vacuoles (arrows). Courtesy of Randi Gold (Texas A&M

University).

A

B

Fig 3. Alpha-smooth muscle actin expression in the canine liver.

A: healthy dog (absent fibrosis) with mild staining around the portal

tracts and perisinusoidal spaces (hepatic stellate cells). B: dog with

chronic hepatitis (very marked fibrosis) with increased staining

around the portal tracts, fibrotic septa, and perisinusoidal spaces.

Table 1. Hepatic cell types and their roles in fibrosis.

Cell Type Role in Fibrosis

Hepatic stellate

cells3,18
• Main producer of ECM in early

and advanced hepatic fibrosis
• Inhibition of ECM degradation
• Maintenance of HSC survival
• Production of mononuclear cell

and neutrophil chemoattractants
• Production of growth factors

and cytokines

Portal

fibroblasts26,193
• ECM producer in early cholestatic

hepatic fibrosis
• Vascular remodeling (activation of

endothelial cells by vascular

endothelial growth factor)
• TIMP-1 and alpha-smooth

muscle actin expression upon

activation

Bone marrow-

derived

mesenchymal

cells194–196

• Differentiation into collagen type

I producing hepatic myofibroblasts

Hepatocytes18,197,198 • Activation of HSCs by production

of fibrogenic lipid peroxides and

apoptotic bodies

Cholangiocytes18,199 • Activation of portal fibroblasts by

production of monocyte

chemoattractant protein-1

Macrophages18,200,201 • Activation of HSCs (via TGFb-1,
reactive oxygen species, platelet-

derived growth factor)
• Involved in ECM remodeling and

resolution of fibrosis

Sinusoidal

endothelial

cells18,202

• Activation of HSCs by production

of fibronectin, endothelin-1, and

nitric oxide

Natural killer

cells18,203
• Involved in fibrosis resolution

by TNF-induced ligand-mediated

apoptosis of HSCs

HSC, hepatic stellate cell; ECM, extracellular matrix; TIMP-1,

tissue inhibitor of metalloproteinase 1; TGFb-1, transforming

growth factor beta 1; TNF, tumor necrosis factor.
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potential option for new antifibrotic therapies.51,53 Addi-
tionally, CTGF has been evaluated as a noninvasive bio-
marker in human patients with CH.49,54 Patients with
advanced disease showed higher serum concentrations of
CTGF, and these were linked to stage of fibrosis.49,54

CTGFmRNA expression was shown to be upregulated in
dogs with CH.a

Endothelin-1
Endothelin-1 is a vasoactive peptide produced by

endothelial cells and by activated HSCs in cirrhotic liv-
ers of humans.18,55 ET-1 acts through 2 receptors: ET-1
receptor type A and ET-1 receptor type B, which can
be found on quiescent and activated HSCs.55 This pro-
moted proliferation, contraction, and the maintenance
of the activated state.18,56 In a recent study of 20 CH
dogs, hepatic mRNA expression and plasma concentra-
tion of ET-1 were shown to be increased in dogs with
CH, and a weak correlation between plasma concentra-
tion of ET-1 and splenic pulp pressure has been demon-
strated, suggesting a possible role in the development of
portal hypertension.57

Reactive Oxygen Species
Reactive oxygen species such as superoxide anion,

hydrogen peroxide, or hydroxyl radicals are generated
by the “respiratory burst” of phagocytic cells of the
innate immune system as a first defense mechanism
against invading pathogens.58,59 Excessive production of
ROS, however, leads to necrosis of surrounding cells
and inflammation. The healthy liver contains several
enzymatic and nonenzymatic antioxidant systems to
detoxify excessive ROS. During liver disease, these
antioxidant systems can become depleted, intensifying
inflammation. ROS formation by phagocytic cells (eg,
liver resident macrophages) is mainly the result of the
enzyme nicotinamide adenine dinucleotide phosphate
oxidase (NOX) 2. Besides NOX2, 6 other members of
the NOX family have been identified so far: NOX1,
NOX3, NOX4, NOX5, dual oxidase 1, and dual oxi-
dase 2. Some of these have been shown to play a role in
liver fibrosis: HSCs and hepatocytes express NOX2,
NOX1, NOX4, dual oxidase 1, and dual oxidase 2,
which may play a role in the maintenance of the acti-
vated HSC state.15,34,59,60 In human patients with cir-
rhosis, NOX1 and NOX4 proteins are increased.61

Moreover, NOX4 expression was correlated with stage
of fibrosis.34,62 Knocking down NOX4 in mice has been
shown to attenuate HSC activation and reverse the
myofibrotic phenotype.34,61 Although oxidative stress
plays an important role in a variety of hepatobiliary
diseases of dogs,63 its role in fibrogenesis has not yet
been studied.

Renin Angiotensin System
The local RAS may play a role in the pathogenesis of

hepatic fibrosis.64 A simplified view of the RAS is to
describe it in 2 axes: the angiotensin-converting enzyme
(ACE)/angiotensin II/angiotensin II receptor type I axis
(pathway A), and the ACE/angiotensin (1-7)/angioten-
sin (1-7) receptor axis (pathway B).65 The first step in
both axes is the cleavage of angiotensin I to angiotensin
II by ACE. In pathway A, angiotensin II binds to
angiotensin II receptor type I, activating profibrotic

mechanisms (eg, the induction of TGFb-1).66 In path-
way B, a second enzyme (ACE2) cleaves angiotensin II,
which results in the formation of angiotensin (1-7). The
G protein-coupled Mas receptor has been recognized as
the main receptor for angiotensin (1-7). Binding of
angiotensin (1-7) to Mas activates a counter-regulatory
pathway with antifibrotic, anti-inflammatory, and
vasodilatory effects.65 Cultured activated human HSCs
have been shown to express RAS components and synthe-
size angiotensin II,67 which has been proposed to be a
trigger for the profibrogenic mediator CTGF.52 In rodent
models, treatment with angiotensin (1-7), and thus
enhancement of the antifibrotic RAS pathway, has been
shown to decrease hepatic fibrosis.68,69 Furthermore,
administration of ACE inhibitors or angiotensin receptor
blockers, which leads to inhibition of the profibrotic RAS
pathway, has been shown to attenuate hepatic fibrosis in
animal models.64,70,71 A RNA sequencing study did not
identify upregulation of the RAS in dogs with CH com-
pared to healthy dogs, but further studies are needed to
evaluate whether it has a role or not.a

Reversibility of Hepatic Fibrosis

In the past, hepatic fibrosis was thought to be an irre-
versible process. However, recent studies in humans and
rodent models have shown that resolution of fibrosis,
even in more advanced disease, is possible.3,10,12 In con-
trast, dense cirrhosis with intense ECM cross-linking,
nodule formation, and low cell density in “fibrotic
scars” still is considered irreversible.3,12 Several studies
have shown that fibrosis regression takes place after
specific treatment and removal of the causal agent in
human patients.72 Because fibrosis now is recognized to
be a continuous remodeling process, in which either net
collagen deposition or resolution takes place,73 inhibit-
ing mediators of collagen deposition or enhancing medi-
ators of ECM degradation may result in regression of
fibrosis. The balance between MMPs and TIMPs seems
to play an important role in this regulation.10 Tissue
inhibitor of matrix metalloproteinase-1 overexpression
has been shown to accelerate fibrosis by inhibition of
metalloproteinases, but also by inhibition of HSC apop-
tosis. Tissue inhibitor of matrix metalloproteinase-1
activity decreases quickly during fibrosis resolution.74–78

Monocyte-derived macrophages with a proresolution
phenotype seem to be important in the reversal of fibro-
sis, because they produce MMPs, which degrade the
ECM or mediate apoptosis of myofibroblasts.10,79,80

Additionally, natural killer cells can induce apoptosis of
HSCs and thus contribute to the inhibition of fibrosis
(Table 1). The main mechanism for the resolution of
fibrosis seems to be the apoptosis or senescence of acti-
vated myofibroblasts (HSCs), which removes the source
of TIMP-1, resulting in increased matrix metallopro-
teinase activity and the degradation of ECM.

Causes of Hepatic Fibrosis in Dogs

In our experience, the most common cause of hepatic
fibrosis in dogs is CH, which is histologically
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characterized by hepatocyte apoptosis or necrosis,
inflammation, a mononuclear cell infiltrate, and fibrosis
(Fig 4).81 The fibrosis often co-localizes with necrosis
and, especially for idiopathic CH, is initially present in
the periportal zones of the liver.81 With more advanced
fibrosis, portal-portal or portal-central bridging fibrosis
may develop with eventual formation of discrete nod-
ules (Fig 4).82 In a retrospective study, copper accumu-
lation was the underlying cause in 36% of dogs with
CH.83 When copper accumulation is the primary cause
of liver disease, it usually initially accumulates in the
centrilobular zones. Centrilobular to bridging fibrosis
was reported in Labrador retrievers with copper-asso-
ciated CH.84 In >60% of dogs with CH, no underlying
cause can be found, and these patients are referred to
as having idiopathic CH. Copper-associated85 and idio-
pathic CH86 are reviewed elsewhere. Granulomatous
hepatitis is an uncommon form of CH in dogs83 and
may be the result of infectious diseases such as
schistosomiasis,87 histoplasmosis,88 Angiostrongylus
vasorum infection,89 leishmaniasis,90 or with lymphoma
and histiocytosis.88 Regardless of the underlying cause
of CH, chronic inflammation leads to fibrosis.

Lobular dissecting hepatitis is a distinct type of CH
that typically (but not always) occurs in young dogs at
an average age of 2 years. It is not clear whether lobu-
lar dissecting hepatitis is a pattern of liver injury or a
distinct disease process. It has been reported in a num-
ber of breeds, including the Standard Poodle, Rot-
tweiler, German Shepherd, Golden Retriever, and
American Cocker Spaniel. This disease has a rapid
clinical course and a poor prognosis with a short sur-
vival time.91 Lobular dissecting hepatitis is histologi-
cally characterized by a diffuse infiltrate of
inflammatory cells and dissection of the lobular par-
enchyma with reticulin fibers (type III collagen) sur-
rounding single or small groups of hepatocytes.92 The
cause of lobular dissecting hepatitis is not known.
However, the abnormal ECM is mainly composed of
laminin and fibronectin.93

Extrahepatic bile duct obstruction can result in fibro-
sis around biliary ducts, presumably because of prolifer-
ation of portal myofibroblasts. Causes for extrahepatic
bile duct obstruction in dogs include pancreatic or bil-
iary tumors, inflammation, or cholelithiasis.94

Cholangitis is less well described in dogs than in
cats (but may be underdiagnosed)95 and with chronic-
ity can lead to biliary fibrosis. Biliary fibrosis can
progress to portal-portal bridging fibrosis and biliary
cirrhosis (when there is concurrent nodular
regeneration).8 Destructive cholangitis, characterized
by loss of bile ducts with accompanying inflamma-
tion, also can lead to biliary fibrosis.8,96 Idiosyncratic
drug reactions have been implicated in causing this
uncommon disease.97

Right-sided heart failure or obstruction of the cranial
vena cava leads to increased central venous pressure
and passive venous hepatic congestion. Liver perfusion
is impaired, and ischemia and necrosis occur.98 Chroni-
cally, this can lead to centrilobular fibrosis. A similar
pattern can develop after toxin ingestion.8

Ductal plate abnormalities are a diverse group of
developmental disorders of the biliary system that can
be associated with increased hepatic ECM, portal hyper-
tension, abdominal effusion, and hepatic encephalopathy.
The most severe form is called congenital hepatic fibrosis
and is characterized by portal-portal bridging fibrosis,
multiple small bile ducts, and discontinuous biliary pro-
files. Ductal plate abnormalities, including congenital
hepatic fibrosis, were reported in a series of 30 boxer
dogs.99 Six cases of congenital hepatic fibrosis (in a
mixed breed dog and several other breeds) were reported
in a separate series.100,101 These conditions may be misdi-
agnosed as CH with secondary fibrosis.

Consequences of Hepatic Fibrosis

In humans, hepatic fibrosis is an important event in
the progression of liver disease that can proceed to cir-
rhosis. Although there is no consistently used definition
of cirrhosis in small animal medicine, it is generally
considered the end stage of liver disease, where the
deposited and remodeled ECM is connecting (bridging)
and disrupting the functional architecture of the
liver.8,13 In CH, hepatocyte swelling, increased HSC
contractility, fibrosis, and the formation of regenerative
nodules impede portal blood flow, leading to hepatic
(sinusoidal) portal hypertension.102

Portal hypertension in dogs is defined as a portal vein
pressure >10 mmHg (normal values in anesthetized dog
are 6–9 mmHg)103,104 and is reviewed extensively else-
where.104 Direct measurement of portal vein pressure is
an invasive technique, which requires direct puncture of
the portal vein, and therefore is rarely performed in
dogs. An indirect method that has been performed in
veterinary patients is catheterization of the splenic pulp.
However, values obtained from this measurement seem
to be 0.5–1.5 mmHg higher than for the direct measure-
ment of the portal vein pressure.103,104 In cirrhotic
human patients, a hepatic venous pressure gradient
>5 mmHg is defined as portal hypertension and a value
above 10 mmHg is correlated with development of clini-
cal consequences, including life-threatening gastroe-
sophageal varices.104–107 In dogs, gastroesophageal
varices have been described, but their clinical impor-
tance is unclear.104,108 In addition, portal hypertension
can contribute to the development of ascites and can
lead to the opening of vestigial blood vessels that
bypass the portal circulation (acquired portosystemic
collaterals).104 Ascites is the consequence of a combina-
tion of splanchnic arterial vasodilation, decreased car-
diac output, and activation of the RAS, which leads to
sodium and water retention.105 In addition, high sinu-
soidal pressure drives fluid into the interstitial space.104

Ascites has been shown to be a negative prognostic
indicator in dogs with CH.83,109 Portosystemic shunting
often results in hepatic encephalopathy, where abnor-
mal ammonia metabolism acts synergistically with a
variety of other factors, such as neurosteroids and
inflammatory mediators, to cause astrocyte swelling and
neurological dysfunction.110 Type C hepatic
encephalopathy (as a complication of CH) was the
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second most common category of hepatic encephalopa-
thy in dogs. Portal hypertensive gastropathy is common
in humans and is characterized by mucosal and submu-
cosal vascular ectasia without inflammation.104,105 To
our knowledge, the histological characteristics of the
gastrointestinal tract of dogs with portal hypertension

have not been well described. However, gastroduodenal
ulceration has been reported to be a complication of
various hepatic diseases in dogs.111,112 Hypergastrinemia
does not appear to be common in dogs with CH,113

and thus, mechanisms other than gastric hyperacidity
are likely to be important. Hepatorenal syndrome and

A B

C D

E F

G H

Fig 4. Hepatic fibrosis in dogs (hematoxylin and eosin: A, C, E, G and picrosirius red: B, D, F, H). Liver sections from dogs with various

stages of fibrosis. Note the collagen fibers are more distinct when serial sections are stained with picrosirius red. A, B: absent/minimal

fibrosis; C, D: moderate fibrosis with fibrous expansion of the portal tracts; E, F: marked fibrosis with portal-portal bridging; G, H: very

marked fibrosis with discrete nodule formation.
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spontaneous bacterial peritonitis are other complica-
tions of portal hypertension in humans.105 Hepatorenal
syndrome has not been reported to occur secondary to
spontaneous liver disease in dogs, and although dogs
can develop spontaneous bacterial peritonitis,114 an
association with portal hypertension has not been
found.104 Treatment of portal hypertension in dogs is
focused on managing its complications, for example,
diuretic therapy and fluid therapy for ascites, adminis-
tration of lactulose and antimicrobials PO for hepatic
encephalopathy, and a sodium-restricted diet to
decrease water retention. However, the optimal treat-
ment would be to remove the underlying cause by
resolving or decreasing hepatic fibrosis.

Progressive replacement of hepatocytes with fibrous
tissue is another consequence of chronic hepatic disease,
which can result in hepatic synthetic failure. If this
develops, coagulopathies may occur.115 Dogs with liver
disease traditionally were thought to be hypocoagulable
because they can have prolonged clotting times (pro-
thrombin and activated partial thromboplastin times),
hypofibrinogenemia, and mild-to-moderate thrombo-
cytopenia.83,116,117 Despite this, spontaneous bleeding is
rare.118 In a recent study, dogs with CH were found to
have variable thromboelastography results.118 In this
study of 21 dogs, 5 were hypocoagulable, 9 were normo-
coagulable, and 7 were hypercoagulable. In a retrospec-
tive study of portal vein thrombosis in dogs, hepatic
disease was a common concurrent condition, suggesting
that hypercoagulability may have clinical consequences
in these patients.119 Interestingly, in humans with CH,
thrombin stimulates fibrosis by protease-activated recep-
tor signaling and by leading to microthrombi formation
with subsequent local hypoxia.120–122

In humans with CH, advanced stages of hepatic
fibrosis are associated with decreased survival times.4,5

The prognostic implications of various stages of hepatic
fibrosis (assigned by a histological scoring scheme) have
not been well characterized in dogs with CH. However,
those with ascites83,109 or cirrhosis123 have decreased
survival times. In human patients and rodent models,
even when hepatic fibrosis is advanced, it potentially
can resolve if the underlying cause is successfully
treated.12

Diagnosis of Hepatic Fibrosis

Histopathology

Although the presence of increased numbers of spin-
dle cells and mast cells on cytological evaluation of the
liver was reported to diagnose hepatic fibrosis with rea-
sonable accuracy,124 histopathologic examination of
liver biopsy specimens is required for definitive diagno-
sis in dogs. However, liver biopsy is expensive and asso-
ciated with a risk of hemorrhage and other
complications (eg, postbiopsy pain, peritonitis, shock,
or complications related to general anesthesia).125,126 In
small animal medicine, the following liver biopsy tech-
niques are used: ultrasound-guided percutaneous needle
biopsy, laparoscopic biopsy, and surgical biopsy during

laparotomy. No matter which technique is used, only a
small portion of the organ is sampled. Because many
lesions (including fibrosis) are heterogeneously dis-
tributed throughout the hepatic parenchyma, liver
biopsy is susceptible to sampling error.127,128 Substantial
variation can occur in the distribution of lesions among
liver lobes, and therefore, it is important to collect sam-
ples from several lobes.128 In dogs undergoing necropsy,
histological diagnoses were in agreement with those
from wedge samples in 66% of needle samples, 60% of
cup samples, and 69% of punch samples, but these pro-
portions were not significantly different from each
other. The authors of this study concluded that the
histopathologic interpretation of a liver biopsy specimen
in the dog is unlikely to vary whether it contains at
least 3–12 portal triads.129 However, it is recommended
that pathologists be presented with specimens contain-
ing at least 11 portal triads.130,131 Evaluation of samples
with fewer portal triads results in underestimation of
fibrosis stage in human patients.127,132

In human patients, histological scoring schemes are
widely used to provide a more objective assessment in
patients with CH. They assess hepatic necrosis and
inflammation (grade), which gives an indication of dis-
ease activity, and fibrosis (stage), which indicates the
chronicity of the disease.133 These schemes include the
Ishak scheme9 and the simpler METAVIR scheme.134

In general, schemes with fewer levels are more clinically
applicable because there usually is better interobserver
agreement when using them.133 Several studies have
used a scoring scheme adapted from the Ishak scheme82

to stage hepatic fibrosis in dogs with CH.135,136 When 6
board-certified veterinary pathologists used this scheme
to stage hepatic fibrosis from picrosirius red-stained sec-
tions in 50 dogs, their agreement was interpreted as
only being fair.137 However, it is our hope that the
scheme can be refined to improve interobserver agree-
ment.

Although fibrosis may be apparent on hematoxylin
and eosin (H&E)-stained sections (Fig 4), other histo-
logical stains differentially stain collagen fibers and
allow subjectively more accurate assessment of fibrosis.
These include Masson’s trichrome that stains type I col-
lagen fibers, picrosirius red (Fig 4) that stains type I
and III collagen fibers, and reticulin that stains reticulin
fibers (type III collagen).126 Interestingly, there was no
difference in fibrosis scores assigned to serial sections of
liver stained with H&E and picrosirius red.137

Computerized image analysis has been used to pro-
vide quantification of hepatic fibrosis in humans.138,139

The histological section then is digitized, and image
analysis software is used to calculate the fibrotic pro-
portion of the section. This technique may allow a more
objective quantification of hepatic fibrosis. In dogs,
there was a positive correlation between the median
fibrosis score assigned to each section and the fibrotic
proportion.140 This technique does not detect key fea-
tures in the progression of fibrosis, such as the develop-
ment of bridging fibrosis. Therefore, it should not be
considered to be a direct replacement for the histologic
assessment of fibrosis.138
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Another innovative approach is to perform gene
expression analysis on hepatic fine needle aspirates.
Investigators showed upregulation of collagen and other
fibrosis-related genes in livers of dogs with CH. The
upregulation in gene expression for PDGF, TGFb-1,
TIMP-1, MMP2, and collagen type I and III, for exam-
ple, showed a significant positive correlation with the
severity of fibrosis.42

Serum Biomarkers

Because of the disadvantages of liver biopsy described
above, serum markers of hepatic fibrosis have been
developed for use in humans. In general, biomarkers of
hepatic fibrosis can be divided into direct and indirect
markers.141 Direct markers are proteins and other mole-
cules involved in the pathogenesis pathways of fibrosis
(eg, TGFb-1, tumor necrosis factor-a, angiotensin II) or
those involved in the degradation or remodeling of the
ECM (eg, hyaluronic acid, procollagen peptides,
MMPs, TIMPs, chitinase-3-like protein 1). Using such
markers, the diagnosis of advanced fibrosis stages is
possible.141,142 Hyaluronic acid appears to be the most
promising,141 and in a meta-analysis of hepatitis C
patients, the sensitivity and specificity for diagnosing
cirrhosis were 82 and 89%, respectively.143 In human
patients, these direct markers of fibrosis are not specific
for hepatic fibrosis and may be increased when fibrosis
of other organs is present.144 Some of these serum
markers have been evaluated in dogs. Serum hyaluronic
acid concentration is increased in dogs with hepatic dis-
ease, especially cirrhosis, and therefore holds some pro-
mise as a biomarker.145,146 Serum concentrations of
TGFb-1,46 the 7S fragment of type IV collagen,147 and
procollagen type III N-terminal peptide148 also have
been found to be increased in dogs with hepatic fibrosis.
Another study did not find a positive correlation
between hepatic fibrosis and serum concentrations of
hyaluronic acid, procollagen type III N-terminal pep-
tide, or TIMP-1.149 Even in the studies that did detect a
difference between groups of dogs, concentrations from
the advanced liver fibrosis groups either overlapped
with those from dogs with milder fibrosis or there was
only a separation of concentrations for dogs with the
most advanced stage of hepatic fibrosis.

Indirect markers are measurement of variables that
indicate liver damage, liver function impairment, and
portal hypertension, such as liver enzyme activities,
albumin and bilirubin concentration, and platelet
counts or a combination of these. Two commonly used
combinations in human medicine are the aspartate
transaminase-to-platelet ratio index and FibroTestb

(FibroSUREc in the United States). The latter combines
age, sex, and results for serum haptoglobin, alpha 2-
macroglobulin, apolipoprotein A1, gamma-glutamyl-
transferase, and bilirubin analyses into a single
index.150,151 Recently, an index for the assessment of
hepatic fibrosis was developed for use in dogs.d This
combines patient age, sex, and several biochemical vari-
ables in a proprietary algorithm to create a fibrosis
score. In 1 study, this index had a negative predictive

value for the diagnosis of moderate fibrosis of 90–100%
and distinguished dogs with clinically relevant fibrosis
with a positive predictive value of 90–100%.e

MicroRNAs are small noncoding RNAs that have a
distinct expression profile depending on the liver
disease.152,153 Liver concentrations of hepatocyte-
derived microRNAs seem to correlate with serum con-
centrations.153,154 In human patients with hepatic fibro-
sis, the expression of miR-29 and miR-652 is decreased,
whereas the expression of miR-571 is increased.155,156 A
recent study evaluated whether serum miRNA biomark-
ers hold promise for distinguishing among several hepa-
tobiliary diseases in dogs. Two miRNAs were found to
be increased in hepatobiliary disease: miR-200c in the
hepatocellular carcinoma group (6 dogs) and miR-126
in the CH group (6 dogs).157 Measurement of micro-
RNAs in serum potentially could be used to assess hep-
atic fibrosis in dogs. However, further studies with
greater sample sizes are needed to evaluate the sensitiv-
ity and specificity of these markers.

Elastography

Elastography is a medical imaging method to mea-
sure soft tissue elasticity (stiffness). Liver stiffness
reflects the accumulation of ECM and has been shown
to correlate with fibrosis stage. Transient elastography,
real-time shear wave elastography, and acoustic radia-
tion force impulse are new ultrasound-based, reliable,
and reproducible methods to assess liver fibrosis in
humans.158,159 These techniques are noninvasive and allow
a large area of the hepatic parenchyma to be sampled,
thus decreasing sampling error. For example, transient
elastography has been shown to measure a volume that is
100 times larger than a typical needle biopsy specimen.160

Methods such as shear wave elastography and acoustic
radiation force impulse also have been shown to be useful
in patients with ascites or in obese patients.160,161 Mag-
netic resonance elastography quantitatively measures
acoustic shear waves in liver tissue. This method also
detects early fibrosis stages with a much higher sensitivity
and specificity (98 and 99%) than does transient elastog-
raphy. A disadvantage of this method is higher cost com-
pared to ultrasound-based techniques.144 To our
knowledge, the utility of elastography for the diagnosis of
hepatic fibrosis in dogs has not been evaluated.

Current Treatment Options for Hepatic Fibrosis

The optimal way to stop the progression of or resolve
hepatic fibrosis is to identify and treat its underlying
cause. This approach is applicable in human medicine,
where the underlying cause for the chronic hepatic dis-
ease usually is known.3 For example, in human patients
that were treated with direct-acting antiviral agents
against hepatitis C, fibrosis resolved.162

Treatment of the Underlying Cause

In dogs with copper-associated CH, it often is possi-
ble to address the underlying cause of hepatic fibrosis
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by a combination of chelation with D-penicillamine and
feeding a low copper diet. In a study of 43 Labrador
retrievers, despite improved copper scores, histologic
fibrosis scores were not significantly different before and
after treatment with D-penicillamine. However, the
majority of dogs in this study did not have hepatic
fibrosis at the time of diagnosis (median fibrosis score:
0 of 4 [absent fibrosis]), presumably because of early
diagnosis.136 This decreased the likelihood of detecting
a treatment effect. In our experience, hepatic fibrosis
can improve after chelation with D-penicillamine. Even
if fibrosis does not resolve, chelation therapy is thought
to be beneficial in these patients, although the criteria
for which patients to chelate are somewhat
controversial.85

Immunomodulatory Therapy

For dogs with idiopathic CH, treatment with pred-
nisolone or another immunomodulatory drug often is
initiated, especially if there is histologic evidence of
active inflammation. Glucocorticoids bind to glucocorti-
coid receptors in the cytoplasm. These complexes are
translocated to the nucleus, where they act on glucocor-
ticoid response elements and initiate the transcription of
anti-inflammatory and immunomodulatory protein cod-
ing genes (eg, IL-10).163 Inflammatory genes are under
transcriptional control of nuclear factor-kappa B and
activator protein-1. Glucocorticoids inhibit the effects
of these transcription factors.164,165 The response of
dogs with idiopathic CH to glucocorticoids seems to be
quite variable. In a retrospective study of 20 dogs with
idiopathic CH that were treated with prednisolone at a
dosage of 1 mg/kg PO q24h for at least 6 weeks, fibro-
sis resolved in 5 dogs, improved in 4 dogs, and wors-
ened in 5 dogs, but a statistically significant difference
in histological fibrosis scores before and after treatment
was not found.166 However, in an older retrospective
study that did not separate dogs with copper-associated
CH from those with idiopathic CH, prednisolone treat-
ment was associated with longer median survival
times.167 The effect of prednisolone on fibrosis was not
evaluated in this study. In an uncontrolled study, 35 of
46 dogs (76%) with idiopathic CH achieved remission
(normalization of serum ALT activity) after treatment
with cyclosporine.f The efficacy of prednisolone and
other immunomodulatory medications for the treatment
of idiopathic CH in dogs needs to be further evaluated,
ideally with randomized controlled clinical trials.

Antioxidant Treatment

Antioxidant drugs have a cytoprotective effect by
scavenging ROS or increasing tissue concentrations of
antioxidant enzymes or proteins such as superoxide dis-
mutase, catalase, glutathione peroxidase, glutathione, or
metallothionein.168 Oxidative stress occurs in a variety
of liver diseases and contributes to the development of
hepatic fibrosis in rodent models and humans. There-
fore, although there is no direct evidence that antioxi-
dants decrease hepatic fibrosis or improve clinical

outcome for most hepatobiliary diseases in dogs, there
is a rationale for using them.169 Antioxidants commonly
used to treat hepatobiliary disease in dogs include S-
adenosylmethionine, vitamin E, and silymarin (milk
thistle extract). Silymarin also may inhibit hepatic fibro-
sis by decreasing HSC DNA synthesis, proliferation
and migration, and decreasing hepatic collagen expres-
sion as well having anti-inflammatory effects.170–172

Ursodeoxycholic acid is a nontoxic bile acid that has
choleretic effects. It displaces hydrophobic bile acids
from the circulating pool and therefore is used to treat
cholestatic liver disease in dogs.173 There is evidence in
other species that ursodeoxycholic acid also may have
antiapoptotic properties.174 The cytoprotective and anti-
apoptotic effects of ursodeoxycholic acid on hepatocytes
have been proposed to be a result of unspecific binding
to steroid receptors and the upregulation of cellular
antioxidant systems, such as glutathione and superoxide
dismutase.175,176 Because hepatocyte-derived apoptotic
bodies are a mediator of HSC activation, ursodeoxy-
cholic acid seems to be a reasonable treatment to inhibit
fibrogenesis. Ursodeoxycholic acid is used to treat pri-
mary biliary cirrhosis in humans, but resolution of
fibrosis does not consistently occur and other treat-
ments may be needed for advanced disease.177 Case
reports describe the use of ursodeoxycholic acid in dogs
with hepatobiliary disease, but to our knowledge, there
are no studies that critically evaluate its effectiveness in
this species.96,173,178,179

Colchicine

Colchicine, a plant extract from Colchicum autumnale
that acts as a microtubule assembly inhibitor, has been
shown to decrease hepatic fibrosis in rodent models180

and also in some human patients with hepatic
fibrosis.181 The suggested mechanism is the inhibition of
microtubule-associated transport of procollagen and the
enhancement of collagenase activity.182,183 However,
there is insufficient evidence to support its use in
humans with liver fibrosis or cirrhosis and it is com-
monly associated with adverse effects.182 A few case
reports describe its use in dogs,184,185 but because of the
lack of proven efficacy and relatively common occur-
rence of adverse effects (gastrointestinal tract, central
nervous system), we do not recommend its use in this
species.186

Novel Treatment Strategies for Hepatic Fibrosis

There is considerable interest in developing novel
treatments specifically aimed to manage hepatic fibrosis
in humans. Extensive research performed to elucidate
the pathogenesis of hepatic fibrosis supports the
achievement of this goal. These therapeutic strategies
can be divided into those that decrease myofibroblast
activation, those that induce apoptosis of activated
myofibroblasts, and those that induce ECM degradation
and are reviewed elsewhere.21

Appealing drugs to evaluate for antifibrotic activity
in dogs are those that block the RAS: ACE inhibitors
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(eg, enalapril, benazepril) and angiotensin receptor
blockers (eg, losartan, telmisartan). Targeting the
RAS with ACE inhibitors, angiotensin receptor block-
ers, and angiotensin (1-7) receptor agonists has been
shown to attenuate liver fibrosis in rodent models64,187

and to downregulate fibrogenic and NADPH oxidase
genes in human patients with chronic hepatitis C and
fibrosis.188 However, in a cohort of human patients
with hepatitis C, ACE inhibitors and angiotensin
receptor blockers were not shown to have a beneficial
effect.189 These drugs are used to treat proteinuria190

and generally are well tolerated in dogs. However,
involvement of the RAS in hepatic fibrosis has not
yet been demonstrated in dogs and so clinical trials
assessing efficacy of these drugs for this purpose are
premature.

Pirfenidone is an antifibrotic drug that is licensed in
Europe and Japan to treat idiopathic pulmonary fibro-
sis in humans. It acts by inhibiting nuclear factor-kappa
B and its downstream profibrogenic mediators, includ-
ing PDGF, TGFb-1, and interferon alpha, resulting in
decreased HSC activation and ECM deposition. It has
been shown to decrease hepatic fibrosis and inflamma-
tion in humans with chronic hepatitis C when given for
2 years.191 This drug has been reported to cause hepa-
toxicity, which may limit its use in patients with preex-
isting liver disease. Nevertheless, in the studies
described above, adverse effects were minor. We are not
aware of any reports of this drug being used in dogs
with CH, although its pharmacokinetics were studied in
healthy beagles.192

Conclusion

Hepatic fibrosis has been extensively studied in
rodent models and in human patients. Its pathogenesis
appears to be similar in dogs, but further research is
needed to fully confirm or refute this supposition. His-
tologic assessment of a liver biopsy specimen is required
for the diagnosis of hepatic fibrosis in dogs. The devel-
opment and widespread institution of a practical, well-
validated, clinically relevant scheme for the histologic
scoring of hepatic fibrosis (and necroinflammatory
activity) in dogs with CH would be useful in both clini-
cal and research settings and should be a priority for
the veterinary community. Investigators are attempting
to develop serum markers of hepatic fibrosis for use in
dogs, and some of these have been shown to have some
limited discriminating ability. Elastography is a useful
technique for the diagnosis of hepatic fibrosis in
humans and is worthy of evaluation in dogs. Even if
such noninvasive tests of hepatic fibrosis are success-
fully developed for use in dogs, in our opinion, they are
unlikely to replace biopsy, because histologic evaluation
and copper quantification play a large role in the diag-
nosis and subcategorization of liver disease in dogs.
They could, however, prove useful for monitoring
response to treatment in both clinical and research set-
tings. In small animal medicine, fully evaluating the effi-
cacy and optimal use of existing treatments for CH,
such as glucocorticoids or cyclosporine, should be a

priority. A deeper understanding of the pathogenesis of
hepatic fibrosis in dogs eventually may lead to the
development of new medications that specifically target
this process.
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