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When the amount of data and information is said to double in every 20months or so, feature selection has become highly important
and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern
recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes
classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using
twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms.
Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization.The results
showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant,
redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other
methods and is capable of producing more general feature subsets.

1. Introduction

The motivations to perform feature selection in a classi-
fication experiment are two-fold. The first is to enhance
the classifier performance by selecting only useful features
and removing irrelevant, redundant, or noisy features. The
second is to reduce the number of features when classification
algorithms could not scale up to the size of feature set either
in time or space. In general, feature selection consists of two
essential steps, which are searching for desired subset using
some search strategies and evaluating the subset produced.
A search strategy in searching the feature subset could be
exhaustive or approximate. While exhaustive search strategy
evaluates all probabilities of the feature subset, approximate
search strategy only generates high quality solutions with no
guarantee of finding a global optimal solution [1].

One of the most prominent algorithms in exhaustive
search is branch and bound method [2]. Exhaustive search
guarantees optimal solution but this method is not practical
for even amedium-sized dataset as finding the optimal subset
of features is an NP-hard problem [3]. For 𝑁 number of
features, the number of possible solutions will be exponential

to 2
𝑁. Since exhaustive search is not practical, research

effort and focus on search strategies have since shifted to
metaheuristic algorithms, which are considered as a subclass
of approximate methods. The literature has shown that
the metaheuristic algorithms are capable of handling large-
size problem instances with satisfactory solutions within a
reasonable time [4–7].

After searching for feature subset, each candidate from
the resulting subset generated needs to be evaluated based
on some predetermined assessment criteria. There are three
categories of feature subset evaluations depending on how the
searching strategy is being associated with the classification
model, whether as filter, wrapper, or embedded methods.
These three categories will be explained in more detail in the
next section.

Nonetheless, the main challenge in feature selection is to
select the minimal subset of features with modicum or no
loss of classification accuracy. While the literature has shown
numerous developments in achieving this [8–10], the basis of
comparison is rather limited in terms of number of features,
classification accuracy, stability, or feature generalization in
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isolation. Generalization of the produced features is impor-
tant to investigate their effect on the performance of different
classifiers.

In view of this, the objectives of this paper are as
follows: first to design a new hybrid algorithm that exploits
a Naive Bayes algorithm to guide a Bat Algorithm, second to
evaluate the performance of the proposed hybrid algorithm
against other well-known feature selection algorithms, and
third to test the effect of the resulting features in terms of
generalization using three different classifiers.The remainder
of this paper is organized as follows. Section 2 reviews
the related works on searching and evaluating algorithms
in feature selection. Section 3 details out the principles of
Naive Bayes algorithms, Section 4 presents mechanics of
the Bat Algorithm, and Section 5 introduces the proposed
Näıve Bayes-guided Bat Algorithm for feature selection.
Next, Section 6 describes the experimental settings, Section 7
discusses implications of the results, and, finally, Section 8
concludes with some recommendations for future work.

2. Related Work

The application of metaheuristics algorithms in searching
the feature subset has shown high effectiveness as well as
efficiency to solve complex and large problems in feature
selection. In general, there are two categories of metaheuris-
tic search algorithms: single solution-based metaheuristics
(SBM) that manipulate and transform a single solution dur-
ing the search and population-based metaheuristics (PBM)
where a whole population of solutions is evolved. The
simplest and oldest SBM method used in feature selection
is Hill Climbing (HC) algorithm [1, 11]. This algorithm starts
with a random initial solution and swaps the current solution
with a neighboring solution in the following iteration in order
to improve the quality of solution. Searching will stop only
when all the neighboring candidate subsets are poorer than
the current solution, which means that the algorithm will be
most probably trapped in local optimum [4].

In order to overcome this problem, Simulated Annealing
(SA) is proposed [10]. SA accepts the worse moves that
commensurate to the parameter determined at the initial
stage, called the temperature, which is inversely proportional
to the change of the fitness function. In more recent work,
a modified SA algorithm called the Great Deluge Algorithm
(GDA) is proposed [12] to provide a deterministic acceptance
function of the neighboring solutions. Tabu Search (TS) also
accepts nonimproving solutions to escape from local optima.
TS stores information related to the search process, which is
a list of all previous solutions or moves in what is termed
as Tabu list [13, 14]. Nonetheless, SBM algorithms such as
Hill Climbing and Simulated Annealing suffer from two
major disadvantages. First, they often converge towards local
optima and second they can be very sensitive to the initial
solution [1].

The PBM methods have been equally explored in feature
selection. Different from SBM, PBM represents an iterative
improvement in a population of solutions that works as
follows. Firstly, the population is initialized. Then, a new

population of solutions is generated. Next, the new pop-
ulation is integrated into the existing one by using some
selection procedures. The search process is terminated when
a certain criterion is satisfied.Themost prominent and oldest
population-based solution used in feature selection isGenetic
Algorithm (GA) [5, 15, 16]. The major roles in GA are the
crossover and mutation operations used to couple solutions
and to arbitrarily adjust the individual content, to boost
diversity aiming to decrease the risk of sticking in local
optima.

Another PBM algorithm is the Ant Colony Optimization
(ACO), which takes form as amultiagent system,whereby the
building unit of this system represents virtual ants as inspired
by the behavior of real ants. In nature, a chemical trace called
pheromone is left on the ground and is used to guide a group
of ants heading for the target point since ants are not able to
see very well [6, 17, 18]. Another nature-inspired algorithm
is the Particle Swarm Optimization (PSO) algorithm that
simulates the social behavior of natural creatures such as bird
flocking and fish schooling to discover a place with adequate
food [7, 19]. Scatter Search (SS) is another PBM method that
recombines solutions elected from a reference set to generate
other solutions by building an initial population satisfactory
to the criteria of quality and diversity [20].

The next step in feature selection is evaluating the feature
subset produced. The evaluation methods can be broadly
classified into three categories. First, the filter approach
or independent approach evaluates candidate solutions by
depending on intrinsic characteristics of the features them-
selves, without considering any mining algorithm. Filter
approach includes several types such as distance [21], infor-
mation [22], dependency [23], or consistency [24]. Second,
the wrapper approach or dependent approach requires one
predetermined learning model and selects features with the
purpose of improving the generalization performance of
that particular learning model [13]. Although the wrapper
approach is known to outperform the filter approach with
regard to prediction accuracy [25], the method is time-
consuming.Third, the embedded approach in feature evalua-
tion attempts to capitalize on advantages of both approaches
by implementing the diverse evaluation criteria in different
search phases [26]. By integrating the two approaches at
different phases, the embedded approach is capable to achieve
accuracy of a wrapper approach at the speed of a filter
approach. Choosing an evaluation method for particular
search method is a critical mission because the interaction
between the evaluation method and the search strategy will
affect the overall quality of solution.

3. Naive Bayes Algorithm

Naive Bayes (NB) algorithm is one of the most effective and
efficient inductive learning algorithms for data mining along
withmachine learning.This algorithmbelongs to thewrapper
approach. NB is considered a simple classifier based on
the classical statistical theory “Bayes theorem.” The Bayesian
algorithm is branded “näıve” because it is founded on Bayes
Rule, which has a strong supposition that the features are
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conditionally independent from each other with regard to
the class [27]. In the literature, the NB algorithm has proven
its effectiveness in various domains such as text classification
[28], improving search engine quality [29], image processing
[30, 31], fault prediction [32], and medical diagnoses [8].

Naive Bayes classifier works as follows: let 𝑋 be a vector
of random variables denoting the observed attribute values
in the training set 𝑋 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
] to certain class

label 𝑐 in the training set. The probability of each class given
the vector of observed values for the predictive attributes can
be computed using the following formula:
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where 𝑃(𝑌
𝑖
) is the prior probability of class 𝑌

𝑖
and 𝑃(𝑌

𝑗
|

𝑋) is the class conditional probability density functions. Basi-
cally put, the conditional independence assumption assumes
that each variable in the dataset is conditionally independent
of the other. This is simple to compute for test cases and to
estimate from training data as follows:
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where 𝑋
𝑖
is the value of the 𝑖th attribute in 𝑋 and 𝑛 is

the number of attributes. Let 𝑘 be the number of classes,
and 𝑐
𝑖
is the 𝑖th class; the probability distribution over the set

of features is calculated using the following equation:
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𝑘
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Effectiveness of Naive Bayes algorithm in classification
and learning is attributed to several characteristics such as the
following [27].

(i) High computational efficiency as compared to other
wrapper methods because it is inexpensive since it is
considered linear time complexity classifier.

(ii) Low variance due to less searching.
(iii) Incremental learning because NB functions work

from approximation of low-order probabilities that
are deduced from the training data. Hence, these can
be quickly updated as new training data are obtained.

(iv) High capability to handle noise in the dataset.
(v) High capability to handle missing values in the

dataset.

Furthermore,NB implementation has no required adjust-
ing parameters or domain knowledge. The major drawback
of NB only lies in the assumption of features independence
[33]. Despite this, NB often delivers competitive classification
accuracy and is widely applied in practice especially as
benchmark results. Good survey on the variety of adaptations
to NB in the literature can be found in [33].

4. Bat Algorithm

The idea of the Bat Algorithm (BA) is to mimic the
behaviors of bats when catching their prey. BA was first
presented in [34] and it was found to outperform Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA)
in evaluation using benchmark functions. BA has also been
successfully applied to tough optimization problems such as
motor wheel optimization problem [35], clustering problem
[36], global engineering optimization, and constrained opti-
mization tasks [37–40]. Very recently, two versions of bat-
inspired algorithms have been proposed for feature selection
[41, 42]. The implementation of BA is more complicated
thanmany othermeta-heuristic algorithms [43] because each
agent (bat) is assigned a set of interacting parameters such
as position, velocity, pulse rate, loudness, and frequencies.
This interaction affects the quality of a solution and the time
needed to obtain such solution.

The principle of bat algorithm is as follows. A swarm of
bats is assumed to fly randomly with velocity 𝑉

𝑖
at position

𝑋
𝑖
with a fixed frequency 𝑓, varying wavelength 𝜆, and

loudness 𝐴
0
to search for a prey. They have the capability

to adjust the wavelength of their emitted pulses and regulate
the rate of pulse emission 𝑟 ∈ [0, 1], which is important to
determine their closeness of the target. Although the loudness
can be different in many ways, the loudness differs from a
large (positive) 𝐴

0
to a minimum constant value 𝐴min. The

frequency 𝑓 is in the range [𝑓min, 𝑓max] that corresponds to
a range of wavelengths [𝜆min, 𝜆max]. For example, a frequency
range of [20 kHz, 500 kHz] corresponds to a range of wave-
lengths from 0.7mm to 17mm.

5. Proposed Naive Bayes-Guided
Bat Algorithm

5.1. Frequency. Frequency in the proposed algorithm is rep-
resented as a real number as defined in (4). The choice
of minimum and maximum frequency depends on the
application domain, where 𝛽 is a random number range
between 0 and 1. Frequency also affects the velocity as shown
in (5). Consider the following:

𝑓
𝑖
= 𝑓min + (𝑓max − 𝑓min) 𝛽. (4)

5.2. Velocity. The velocity of each bat is represented as a
positive integer number. Velocity suggests the number of bat
attributes that should change at a certain moment of time.
The bats communicate with each other through the global
best solution and move towards the global best position
(solution). The following equation shows the formula for
velocity:

V𝑡
𝑖
= V𝑡−1
𝑖

+ (𝑥
∗
− 𝑥
𝑡

𝑖
) 𝑓
𝑖
, (5)

where (𝑥
∗

− 𝑥
𝑡

𝑖
) refers to the difference between the length

of global best bat and the length of the 𝑖th bat. When the
difference is positive, this means that the global best bat has
more features than those of the 𝑖th bat. When the result is
summed with the previous velocity, it will accelerate the 𝑖th
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bat towards the global best bat. If the difference is negative,
this means that the ith bat has more features than those of
the global best bat. Therefore, when the output is summed
with the previous velocity, it will decrease the velocity of
ith bat and help to attract it closer to global best bat. In
the proposed Bat Algorithm-Naive Bayes (BANB) algorithm,
the maximum velocity was setting (𝑉max) equal to (1/3) ∗

𝑁, where 𝑁 is the number of features. In the proposed
BANB, (2) is used to adjust the velocity during each iteration;
therefore, the proposed algorithm is adaptive for feature
selection problem in order to mimic the original algorithm
behavior. Velocity representation is also one major difference
between BANB and the Binary Bat Algorithm (BBA) [42].
In BBA, the velocity is calculated for each single feature;
hence, the algorithm is more time-consuming and departing
from the original algorithm attitude. On the contrary, the
velocity in the proposed BANB is calculated once for the
entire solution; hence, the velocity amount determines the
piece of change.

5.3. Position Adjustment. In the proposed algorithm, each
bat position is formulated as a binary string of length 𝑁,
where 𝑁 is the total number of features. Each feature is
represented by bit, where “1” means that the corresponding
feature is selected and the “0”means that it is not selected.The
positions are categorized into two groups according to the bit
difference between the 𝑖th bat and the global best bat in order
to align exploitation and exploration during searching.

The bat’s position is adjusted depending on one of the
following conditions. In the case where the velocity of 𝑖th
bat is lower or equal to the number of different bits, 𝑖th bat
will copy some features from global best bat, thus moving
towards global best bat, while still exploring new search space.
In the case where the velocities of 𝑖th bat are higher than
the velocity of global best bat, then the 𝑖th bat will import
all features from the global best bat to be the same as the
global best bat with a few different bits to facilitate further
exploitation. The following equation shows the position
adjustment, where 𝑥 is bat position, and V is the velocity of
the 𝑖th bat at time 𝑡:

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ V𝑡
𝑖
. (6)

5.4. Loudness. Loudness 𝐴
𝑖
in the proposed algorithm is

represented as the change in number of features at certain
time during local search around the global best bat, as well
as local search around the 𝑖th bat. The formula for loudness
is shown in (7), where 𝐴

𝑡

𝑖
is the average loudness of all the

bats at certain iteration and 𝜀 ∈ [−1, 1]. The value for sound
loudness (𝐴) ranges between the maximum loudness and
minimum loudness. Consider the following:

𝑥new = 𝑥old + 𝜀𝐴
𝑡
. (7)

Generally, the loudness value will decrease when the bat
starts approaching the best solution. The following equation
shows that the amount of decrease is determined by 𝛼:

𝐴
𝑡+1

𝑖
= 𝛼𝐴
𝑡

𝑖
. (8)

The value for sound loudness also plays an important
role in obtaining good quality solutions within a reasonable
amount of time. The choice of the maximum and minimum
loudness depends on the domain of application and also
the size of the dataset. In the proposed BANB algorithm,
the maximum loudness has been determined empirically as
(1/5)∗𝑁, where𝑁 is number of features. Value formaximum
loudness is dynamic depending on number of features in
certain dataset. For example, when 𝐴max = 3 and 𝐴min =

1, the bat begins to reduce the number of features from 3
features to 2 features and the value then becomes a single
feature when it gets closer to the target.

5.5. Pulse Rate. Pulse rate 𝑟
𝑖
has the role to decide whether

a local search around the global best bat solution should
be skipped or otherwise. Higher pulse rate will reduce the
probability of conducting a local search around the global
best and vice versa. Therefore, when the bat approaches the
best solution, pulse rate value will increase and subsequently
reduce the chances to conduct a local search around the
global best. The amount of increase is determined by 𝛾 as
defined in the following:

𝑟
𝑡+1

𝑖
= 𝑟
0

𝑖
[1 − exp (−𝛾𝑡)] . (9)

5.6. Fitness Function. Each candidate solution is using a
fitness function defined in (10), where 𝑃(𝑌

𝐽
| 𝑋) is the

classification accuracy, TF is the total number of all features,
and SF is the number of selected features. 𝛿 and 𝜑 are
two parameters corresponding to the weight of classification
accuracy and subset length, where 𝛿 ∈ [0, 1] and 𝜑 = 1 − 𝛿.
From (10), we can see that the importance of classification
accuracy and subset size is weighted differently. Generally,
classification accuracy is given more weight than the size of
the subset. In this experiment, the two parameters have been
set as follows: 𝛿 = 0.9, 𝜑 = 0.1. Consider the following:

Sol
𝐴

= 𝛿 ⋅ 𝑃 (𝑌
𝑗
| 𝑋) + 𝜑 ⋅

TF − SF
TF

. (10)

The complete algorithm for the proposed hybrid BA
guided by Naive Bayes classifier (BANB) is shown in
Algorithm 1.

6. Experiments and Results

The objective of the experiments is to evaluate the perfor-
mance of the proposed Naive Bayes-guided Bat Algorithm
(BANB) in terms of number of features selected and the
classification accuracy achieved. To achieve this objective, we
compared the number of features and classification accura-
cies of BANB with several well-known algorithms, which are
Genetic Algorithms (GA) [44], Particle SwarmOptimization
(PSO) [45], and Geometric Particle Swarm Optimization
(GPSO) [46]. Similar to the proposed BANB, we also used
Naive Bayes classifier for all comparative algorithms as the
attribute evaluator. However, the parameters for the algo-
rithms had the same settings as those used by the original
authors. For the proposed algorithm, the parameters were set
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to the following values: population size = 25 and decrease
sound loudness and increase pulse rate both are set to 0.6.The
initial value of pulse rate is equal to 0.2. The proposed BANB
algorithm and other algorithms were run for 20 times with
different initial solutions. Following [4, 17], all the algorithms
were terminated after 250 iterations.

6.1. Description of Dataset. For the experiments, twelve
datasets were considered to cover both cases of binary
and multiclass data. Three of the datasets, namely, M-of-N,
Exactly, and Exactly2, were sourced from [47]. M-of-N is an
artificial binary class since the decision attribute consisting
of two class labels and the dataset were generated from a uni-
form distribution to create the artificial domain. Exactly and
Exactly2 are artificial binary classification datasets, generated
based on x-of-y concepts, which are not linearly separable
and are known to be difficult for many classes of learning
algorithms [47]. The remaining datasets were taken from the
UCI data repository [48]. The datasets are Vote, Credit, LED,
Derm, Derm2, Lung, WQ, Heart, and Mushroom. Vote is
widely used as a binary classification dataset in the literature.
The dataset represents votes for each of the U.S. House of
Representatives congressmen with the class label democrat
and republican. Credit dataset is a binary classification data
that is concerned with credit card applications. LED dataset
in display domain is a multiclass classification data as the
class label includes ten possible values in which the first seven
features determine the class label of a pattern, whilst the rest
of the 17 features are irrelevant.

Derm and Derm2 represent real data in dermatology
concerning differential diagnosis of erythematosquamous
diseases. The class labels contain six values, which refer to
six different diseases. Lung dataset is the pathological types
of Lung cancer that aims to demonstrate the power of the
optimal discriminant plane even in ill-posed settings [49].
WQ is a multiclass label dataset that originated from the
daily measures of sensors in an urban waste water treatment
plant. The idea is to categorize the operational state of the
plant with the purpose of predicting faults out of the state
variables of the plant at each of the phases in the water
treatment procedure.Heart is a binary class data that contains
76 attributes although all the published experiments reference
to using only 14 of the original attributes. This data has been
used to predict heart diseases, whereby the class label of zero
and one refers to the absence or existence of heart disease in
the patient. Finally, Mushroom is a binary class dataset that
includes characterization of hypothetical samples identical to
23 types of gilled mushrooms in the Agaricus and Lepiota
family. Table 1 shows the characteristics of the datasets.

6.2. Results for Feature Selection Experiment. In this exper-
iment, we compared the proposed BANB against GA [44],
PSO [45], and GPSO [46] in terms of the number of features
selected from the original dataset. Table 2 provides the
comparison results. The number of features obtained from
the comparative algorithms in Table 2, and the best results
are highlighted in bold. Then the results are statistically
tested using two tests, Kolmogorov-Smirnov and Levene test

(1) Initialize parameters: 𝐴,𝐴min, 𝐴max, 𝑟, 𝑓min,
𝑓max, 𝑃max, 𝐼max, 𝑉max, 𝑉min, Φ, 𝛿, 𝛾, 𝛼

(2) Generate a swarm with 𝑃max bats
(3) Calculate cost function for all bats
(4) Find the current best bat (𝑥

∗
)

(5) While stop condition not metDo
(6) For 𝑖 = 1 to 𝑃max Do
(7) Frequency 𝑓

𝑖
= 𝑓min + (𝑓max − 𝑓min)𝛽

(8) Velocity V𝑡
𝑖
= V𝑡−1
𝑖

+ (𝑥
𝑡

𝑖
− 𝑥
𝑖
)𝑓
𝑖

(9) If (𝑉
𝑖
> 𝑉max) Then

(𝑉
𝑖
= 𝑉max)

End-If
(10) If (𝑉

𝑖
< 𝑉min) Then

(𝑉
𝑖
= 𝑉min)

End-If
(11) Locations 𝑥

𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ V𝑡
𝑖

(12) If (Rand > 𝑟
𝑖
)Then

(13) calculate 𝜀𝐴
𝑡

(14) If (𝜀𝐴
𝑡
> 𝐴max) Then

(𝜀𝐴
𝑡
= 𝐴max)

End-If
(15) If (𝜀𝐴

𝑡
< 𝐴min ) Then

(𝜀𝐴
𝑡
= 𝐴min)

End-If
(16) Generate a local solution around the best

solution (𝑥
∗
) [𝑥
𝑔𝑏

= 𝑥old + 𝜀𝐴
𝑡
]

(17) End-If
(18) Calculate 𝜀𝐴

𝑡

(19) If (𝜀𝐴
𝑡
> 𝐴max) Then

(𝜀𝐴
𝑡
= 𝐴max)

End-If
(20) If (𝜀𝐴

𝑡
< 𝐴min) Then

(𝜀𝐴
𝑡
= 𝐴min)

End-If
(21) Generate a new solution around the current

Solution 𝑥
𝑡

𝑖
[𝑥
𝑙
= 𝑥old + 𝜀𝐴

𝑡
]

(22) If 𝑥
𝑙
≥ 𝑥
𝑔𝑏

𝑓𝑥 = 𝑥
𝑙

Else
𝑓𝑥 = 𝑥

𝑔𝑏

End-If
(23) If (Rand < 𝐴

𝑖
)& (𝑓 (𝑓𝑥) < 𝑓 (𝑥

∗
))

(24) accept the new solution
(25) Increase 𝑟

𝑖
𝑟
𝑡+1

𝑖
= 𝑟
0

𝑖
[1 − exp(−𝛾𝑡)]

(26) Decrease 𝐴
𝑖
[𝐴
𝑡+1

𝑖
= 𝛼𝐴
𝑡

𝑖
]

(27) End-If
(28) End-For
(29) Find the current best solution (𝑥

∗
)

(30) End-While

Algorithm 1: BANB Algorithm.

[50]. However, the Kolmogorov-Smirnov and Levene test
did not meet the assumptions of normality distribution and
equality of variance which then led us to use Wilcoxon test.
Essentially, this test is an alternative to the paired t-test, when
the assumption of normality or equality of variance is not
met [51]. Wilcoxon test is rated to be a robust estimate tool
that depended on the rank estimation [52]. Table 3 presents
Wilcoxon test results for the proposed BANB algorithm
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Table 1: Dataset characteristics.

Datasets No. of features No. of samples
Lung 56 32
WQ 38 521
Derm2 34 358
Derm 34 366
LED 24 2000
Mushroom 22 8124
Credit 20 1000
Vote 16 300
Heart 13 294
Exactly2 13 1000
Exactly 13 1000
M-of-N 13 1000

Table 2: Average of selected features.

Datasets BANB GA GPSO PSO
M-of-N 6 8 6.9 7.6
Exactly 1 7 7 6.9
Exactly2 1 3 3 2.9
Heart 4 6 5.7 6.25
Vote 1 3 3.1 3.55
Credit 1 10 11.7 11.9
Mushroom 1 5.75 6.15 5.9
LED 5 5 5 5
Derm 12.3 18.1 17.1 21.5
Derm2 11.45 17.75 17.3 20.75
WQ 5.9 20.1 20.15 21.05
Lung 2 8.6 7.95 8.7

Table 3: Wilcoxon test results.

Wilcoxon test
GA-BANB GPSO-BANB PSO-BANB

M-of-N .000 (BANB ) .013 (BANB ) .013 (BANB )
Exactly .000 (BANB ) .000 (BANB ) .000 (BANB )
Exactly2 .000 (BANB ) .000 (BANB ) .000 (BANB )
Heart .000 (BANB ) .000 (BANB ) .000 (BANB )
Vote .000 (BANB ) .000 (BANB ) .000 (BANB )
Credit .000 (BANB ) .000 (BANB ) .000 (BANB )
Mushroom .000 (BANB ) .000 (BANB ) .000 (BANB )
LED 1 1 1
Derm .000 (BANB ) .000 (BANB ) .000 (BANB )
Derm2 .000 (BANB ) .000 (BANB ) .000 (BANB )
WQ .000 (BANB ) .000 (BANB ) .000 (BANB )
Lung .000 (BANB ) .000 (BANB ) .000 (BANB )

against other feature selection algorithms. From Table 3,
between the brackets refer to the algorithm that performs
better than another algorithm. The results of Wilcoxon test
are considered to be statistically significant at 𝑃 less than 0.05
and are highly significant at 𝑃 less than 0.01.

6.3. Results for Classification Accuracy Experiment. The sec-
ond part of the experiment was to evaluate and compare
the average classification accuracies achieved by BANB and

other comparative algorithms over 10 runs, using 10-fold
cross-validation method. Three well-known classifiers were
employed for the purpose of evaluating the resulting subsets
among different classifiers, which were JRip PART and J48
[53]. Tables 4, 5, and 6 show the average classification
accuracy and standard deviation values from the experiment.

7. Discussions

In selecting the feature subset, Table 2 shows that the pro-
posed BANB algorithm obtained the smallest number of
features across all datasets except for LED. Table 3 confirmed
that the difference between BANB and the remaining com-
parative algorithms is highly significant except for LED and
M-of-N datasets. More significantly, BANB is able to reduce
the number of features up to a single feature in five datasets
as shown in Table 2. In evaluating the feature subset, if we
take into consideration the interaction between classification
accuracy and number of features selected by the proposed
BANB algorithm as compared to other algorithms, we can
categorize the results into three cases. In the first case, a
reduced number of features deliver the same classification
accuracy. This is shown in the Exactly dataset that produced
similar classification accuracy in both JRip and J48 classifiers
and even higher accuracy in PART classifier. On the contrary,
features selected by other algorithms included more features,
which indicate that some of the features selected are redun-
dant. This can be seen clearly in the Exactly2 dataset when
all solutions achieved exactly the same accuracy in spite of
variance in the number of selected features.

In the second case, the proposed algorithm reduced the
number of features while at the same time increased the
classification accuracy. For example, BANB selected only two
features from the Lung dataset as opposed to additional eight
features among other algorithms. The difference between the
numbers of features selected is attributed to noisy features,
which cause a decrease in classification accuracy such as in
the Vote dataset. In the third case, smaller feature subset that
is selected delivers a slightly lower classification accuracy,
such as in Heart andMushroom dataset with the exception of
LED dataset. All algorithms could deliver the same accuracy
with the same number of features because the LED dataset
contains very protruding features.

Finally, it can be noted from Tables 4, 5, and 6 that
the classification accuracies achieved by the proposed BANB
algorithm are in less disagreement or very close across three
different classifiers. This can be noted obviously from the
experimental results using Exactly, Credit, Lung, and Derm
datasets. To support this finding, we calculated standard
deviation for each dataset over the three different classifiers
and we averaged the values for each algorithm. The results
were as follows: BANB equals 0.36, GPSO equals 0.99,
PSO equals 1.04, and, finally, GA equals 1.11. This implies
that the proposed feature selection algorithm BANB has
better generalization as compared to other feature selection
algorithms. Results from Table 2 also show that BANB is
capable of selecting the same number of features for 9 out of
12 datasets over 20 iterations. This is followed by GA, GPSO,
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Table 4: Average classification accuracy with standard deviation for
JRip.

Datasets JRip
BANB GA GPSO PSO

M-of-N 98.9 ± 0 99.1 ± 0 97.62 ± 4.32 98.92 ± 0.23

Exactly 68.8 ± 0 68 ± 0 68 ± 0 68.01 ± 0.22

Exactly2 75.8 ± 0 75.8 ± 0 75.8 ± 0 75.8 ± 0

Heart 80.61 ± 0 81.97 ± 0 81.66 ± 0.49 82.47 ± 5.33

Vote 95 ± 0 93.66 ± 0 93.92 ± 0.43 94.42 ± 0.35

Credit 71.6 ± 0 70.7 ± 0 70.75 ± 0.75 70.48 ± 0.79

Mushroom 98.52 ± 0 100 ± 0 99.46 ± 0.48 99.33 ± 0.45

LED 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Derm 93.30 ± 1.69 89.39 ± 0.90 90.18 ± 2.41 91.08 ± 0.78

Derm2 90.77 ± 1.77 89.64 ± 1.64 90.47 ± 1.31 89.35 ± 1

WQ 70.99 ± 1.57 69.49 ± 1.35 68.59 ± 1.61 68.34 ± 1.39

Lung 87.5 ± 0 84.68 ± 1.77 83.74 ± 4.37 84.05 ± 2.73

Table 5: Average classification accuracy with standard deviation for
PART.

Datasets PART
BANB GA GPSO PSO

M-of-N 100 ± 0 100 ± 0 98.53 ± 4.62 100 ± 0

Exactly 68.8 ± 0 65.6 ± 0 65.6 ± 0 65.93 ± 0.82

Exactly2 75.8 ± 0 75.8 ± 0 75.8 ± 0 75.8 ± 0

Heart 79.59 ± 0 80.27 ± 0 80.57 ± 0.49 79.79 ± 1.44

Vote 94.33 ± 0 94.33 ± 0 94.42 ± 0.15 94.49 ± 0.36

Credit 71.7 ± 0 72.9 ± 0 72.24 ± 1.14 71.81 ± 1.05

Mushroom 98.52 ± 0 100 ± 0 99.33 ± 0.46 99.39 ± 0.41

LED 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Derm 94.39 ± 1.76 94.73 ± 0.86 95.65 ± 0.99 95.62 ± 0.71

Derm2 93.15 ± 2.80 95.19 ± 2.82 95.27 ± 0.76 95.61 ± 0.76

WQ 68 ± 0.7 67.76 ± 1.78 68.70 ± 1.28 67.07 ± 2.92

Lung 78.12 ± 0 80.93 ± 4.52 81.21 ± 5.84 80.27 ± 4.36

Table 6: Average classification accuracy and standard deviation for
J48.

Datasets J48
BANB GA GPSO PSO

M-of-N 100 ± 0 100 ± 0 98.53 ± 4.64 100 ± 0

Exactly 68.8 ± 0 68.8 ± 0 68.8 ± 0 68.8 ± 0

Exactly2 75.8 ± 0 75.8 ± 0 75.8 ± 0 75.8 ± 0

Heart 79.93 ± 0 79.25 ± 0 79.25 ± 0 79.08 ± 0.28

Vote 95 ± 0 94 ± 0 94.13 ± 0.23 94.39 ± 0.30

Credit 71.7 ± 0 72.2 ± 0 72.21 ± 0.46 72.08 ± 1.08

Mushroom 98.52 ± 0 100 ± 0 99.49 ± 0.45 99.39 ± 0.41

LED 100 ± 0 100 ± 0 100 ± 0 100 ± 0

Derm 93.92 ± 1.04 95.02 ± 0.52 94.64 ± 0.77 94.36 ± 0.68

Derm2 91.25 ± 2.44 94.38 ± 1.67 93.73 ± 0.51 94.32 ± 0.89

WQ 65.08 ± 0.46 69.11 ± 1.35 68.30 ± 2.01 68.32 ± 2.82

Lung 87.5 ± 0 79.37 ± 4.70 80.62 ± 6.21 82.18 ± 4.67

and, finally, PSO. It can be noted that the standard deviation
values in Tables 4, 5, and 6 are zeros for 9 datasets.Thismeans
that our proposed BANB could obtain certain number of

features with exactly the same features for each iteration. As
a consequence, BANB showed the highest stability among all
comparative algorithms.

8. Conclusion

In this paper, a new hybrid feature selection algorithm
has been presented. The Bat Algorithm employed Näıve
Bayes Algorithm to intelligently select the most convenient
feature that could maximize the classification accuracy while
ignoring redundant and noisy features. We compared our
proposed algorithm with three other algorithms using twelve
well-known UCI datasets. The performance was evaluated
from four perspectives, which are the number of features,
classification accuracy, stability, and generalization. From the
experiments, we can conclude that the proposedNaı̈ve Bayes-
guided Bat Algorithm (BANB) outperformed other meta-
heuristic algorithms with a selection of feature subsets that
are significantly smaller with a less number of features. In
terms of classification accuracy, BANB has proven to achieve
equal, if not better results as compared to other algorithms.
For stability, the proposed algorithm ismore stable than other
algorithms. Finally, from the perspective of generalization
of results, the resulting features produced by BANB are
also more general than other algorithms in practice. For
futurework, further investigations are required to observe the
behavior of the proposed algorithm in gene expression and
very high-dimensional datasets.
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