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Abstract: Based on long term NDVI (1982–2015), climate, topographic factors, and land use type
data information in Shaanxi Province, multiple methods (linear regression, partial and multiple
correlation analysis, redundancy analysis and boosted regression trees method) were conducted
to evaluate the spatial-temporal change footprints and driving mechanisms in the pixel scale. The
results demonstrated that (1) the overall annual average and seasonal NDVI in this region showed a
fluctuating upward trend, especially in spring. The difference between the end of season (eos) and
start of season (sos) gradually increased, indicating the occurrence of temporal “greening” across
most Shaanxi Province. (2) The overall spatial distribution of annual mean NDVI in Shaanxi Province
was prominent in the south and low in the north, and 98.83% of the areas had a stable and increasing
trend. Pixel scale analysis reflected the spatial continuity and heterogeneity of NDVI evolution.
(3) Trend and breakpoint evaluation results showed that evolutionary trends were not homogeneous.
There were obvious breakpoints in the latitude direction of NDVI evolution in Shaanxi Province,
especially between 32–33 ◦N and in the north of 37 ◦N. (4) Compared with precipitation, the annual
average temperature was significantly correlated with the vegetation indices (annual NDVI, max
NDVI, time integrated NDVI) and phenology metrics (sos, eos). (5) Considering the interaction
between environmental variables, the NDVI evolution was dominated by the combined influence of
climate and geographic location factors in most areas.

Keywords: GIMMS NDVI3g; spatial-temporal pattern; boost regression trees; Shaanxi province

1. Introduction

The plant community composed of various vegetation is the producer in the ecosys-
tem, which plays a stabilizing and integrating role in the overall natural environment
of the land. Based on it, various ecosystems are constructed together with the animals,
microorganisms and the local soil, air layer, water and other inorganic environment. [1,2].
As an important component of terrestrial ecosystems, vegetation can well reflect changes
in regional ecological environment [3–5]. The normalized difference vegetation index is
widely used in the study of vegetation cover-related activities [6,7]; this can accurately
describe the vegetation growth condition and is one of the effective indicators of vegeta-
tion cover change [3,8]. The normalized difference vegetation index product of NOAA
Global Inventory Monitoring and Modeling System (GIMMS NDVI3g, NDVI for short in
this paper) is the longest time series of global vegetation data available at present; it is
both reliable and accurate and is universally applicable for tracing vegetation change [9].
According to this dataset, Ye et al. [10] analyzed the change characteristics of vegetation
in the global large-scale region, and the global NDVI had a distinct seasonal trend. Jiao
et al. [11] studied the impact of climate change on vegetation cover in China from 1982
to 2013.
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Variation in vegetation cover is strongly sensitive to climate factors. Previous stud-
ies have explored the importance of climate driving factors on vegetation cover change.
Certain researchers reported that the NDVI was more sensitive to temperature than
precipitation [2,11–13]. However, other studies revealed that the strongest relationship was
between precipitation and NDVI [14–17]. In fact, natural conditions and anthropogenic
factors play an important role in ecological environmental evolution [18]. Besides, few
have jointly evaluated the spatial correlation between NDVI and environment drivers from
the perspective of space. Moreover, previous studies have seldom quantitatively measured
the interactions among various drivers. Furthermore, it is of great significance to clarify
which of the natural environment and anthropogenic activities have a greater impact on
plant growth for environmental protection policymaking. Redundancy analysis (RDA) can
reflect the linear influence of multiple explanatory variables on response variables. For
instance, Li et al. [19] used this technology to explore the main driving factors behind NDVI
evolution in the Loess Plateau. Nevertheless, the relationship between environmental fac-
tors and NDVI is usually non-linear and non-stationary [20–23]. Therefore, this method has
been criticized for its ability to accurately distinguish the contribution of environmental
and spatial variables [24]. To overcome this criticism, the boosted regression trees (BRT)
model was suggested, which can reflect the nonlinear relationship between environmental
factors and satellite data [25–29]. Considering the spatial correlation, choosing an appro-
priate method to evaluate the driving factors affecting vegetation change will contribute to
harnessing the potential for synergies remote sensing science and ecology.

The majority of previous studies analyzed the characteristics of temporal and spa-
tial changes of NDVI from the perspective of large spatial scale [30,31]. However. the
assessment of climate and environmental change is necessary at the sub-national scale
(i.e., province) [32]. Shaanxi Province in Northwest China is one area with a fragile
ecological environment which also experiences soil erosion. In turn, local human activ-
ities and social development are seriously restricted [33]. According to Shaanxi daily
(http://www.shaanxi.gov.cn/xw/sxyw/202105/t20210510_2162816_wap.html, accessed
on 23 August 2021), from 2000 to 2020, the increase in the percentage of vegetation index
saw Shaanxi Province ranked fourth in China, and the vegetation coverage in Shaanxi
Province had reached 73.29% by 2020. Although some studies have explored the relation-
ship between vegetation cover and climate drivers in this region, the research conclusions
are not consistent. For instance, Pu and Ren [34] showed that NDVI in Shaanxi province
has a less significant correlation with annual temperature and precipitation. Nevertheless,
Li et al. [35] demonstrated that the correlation coefficient between NDVI and climate factors
(precipitation, temperature) in the same period reached a significant level. Since climate
and environmental change is nonlinear and non-stationary, it is necessary to consider the
impact of climate and environmental change on NDVI evolution from the perspective of a
long-time series. Moreover, as an area of ecological engineering construction and reviving
farmland to forest, the impact of human action on vegetation cover in this area cannot
be ignored [31]. However, the interaction between natural and human factors on surface
vegetation change is still unclear [36], and further research is thus required.

In addition, few studies have been conducted to quantify the effects of natural factors
and human activities on vegetation indices for multivariate analysis of pixel scale in a spe-
cific area. The pixel scale analysis can accurately analyze the spatial and temporal variation
of each location in the study area and the influence of driving factors in a small area, so
that the spatial continuity and heterogeneity can be better reflected and analyzed. Herein,
in this paper, climate factors, topography and anthropogenic activities are analyzed from
multiple perspectives, and the RDA and BRT model are used to quantitatively analyze the
driving force affecting NDVI from the pixel scale in order to further obtain the reasons for
the dynamic changes of NDVI, provide certain data and scientific basis for the sustainable
development of the ecological environment, and also provide reference for vegetation
research in other regions.

http://www.shaanxi.gov.cn/xw/sxyw/202105/t20210510_2162816_wap.html
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2. Materials and Methods
2.1. Study Area

Shaanxi Province is located in China’s inland hinterland, with a long and narrow geo-
graphical area, and the general topography is high from north to south, low in the middle,
and slopes from west to east (Figure 1a). By 2020, Shaanxi Province had a jurisdiction
over 10 prefecture level cities (Figure 1b, i.e., Xi’an, Baoji, Xianyang, Tongchuan, Wei Nan,
Yan’an, Yulin, Hanzhong, Ankang, Shangluo). In later sections, these names refer to the
regions they contain. The geomorphic types of this area are complex and diverse, including
Qinba Mountains, Guanzhong Plain and Northern Shaanxi plateau in the center of the
Loess Plateau [37]. Shaanxi Province has a total area of 2.05 × 105 km2, of which the Qinba
Mountains cover 7.40 × 104 km2, the Guanzhong Plain covers 4.94 × 104 km2, and the
Northern Shaanxi Plateau covers 8.22 × 104 km2.

Int. J. Environ. Res. Public Health 2021, 181, 10053 4 of 29 
 

 

 

Figure 1. Geographical location, geographical boundaries, and the overview of physical geography (dem, temperature, 

and precipitation) of the study area (The dotted lines in left panel of (a) displays the geographical boundaries of China, 

the right panel of (a) displays altitude of Shaanxi province; (b) is the spatial distribution of annual average temperature 

(the units is °C); (c) is the spatial distribution of annual average precipitation (the units is mm). 

Table 1. Different types of NDVI change trend and significance test (F-value: the significance of F-test; p-value: the signif-

icance of linear regression model; b: the slope of linear regression model. When b > 0, the annual NDVI value shows an 

upward trend; when b < 0, the annual NDVI value shows a downward trend). 

Typesof Change F-Value p-Value b 

No significant change F < 2.869 p > 0.1  

Slightly significant decrease 
2.869 ≤ F < 4.149 0.05 < p< 0.1 

b < 0 

Slightly significant increase b > 0 

Significant decrease 
4.149 ≤ F < 7.499 0.01 < p< 0.05 

b < 0 

Significant increase b > 0 

Extremely significant decrease 
F ≥ 7.499 p < 0.01 

b < 0 

Extremely significant increase b > 0 

The study of the coefficient of variation (CV) can reflect the degree of interannual 

NDVI fluctuation, and a larger value of the coefficient of variation indicates a greater de-

gree of vegetation disturbance, while a smaller value of the coefficient of variation indi-

cates a smaller degree of vegetation disturbance and a more stable NDVI change [50]. 

Figure 1. Geographical location, geographical boundaries, and the overview of physical geography (dem, temperature, and
precipitation) of the study area (The dotted lines in left panel of (a) displays the geographical boundaries of China, the right
panel of (a) displays altitude of Shaanxi province; (b) is the spatial distribution of annual average temperature (the units is
◦C); (c) is the spatial distribution of annual average precipitation (the units is mm).

Shaanxi straddles the Yellow River and Yangtze River systems. The difference in
climate between north and south is obvious. From south to north, there is a humid
north subtropical climate, a warm temperate semi-humid climate and a temperate arid
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semi-arid climate. The annual average temperature in this province is 9–16 ◦C, and the
annual average precipitation is 340–1240 mm. The precipitation decreases from southeast
to northwest, with great differences between north and south (Figure 1c). Due to the
differences in environmental factors, such as temperature, precipitation, topography and
light, vegetation cover and types also vary greatly [38]. As a result of the comprehensive
impact of climate characteristics, soil types and human activities, the Northern Shaanxi
(such as Yulin, Yan’an) has a fragile ecological environment and experiences serious soil
erosion. It is a key area for the implementation of the project of reviving farmland to
forest and grassland in China. After more than ten years of development, vegetation
cover has significantly changed. Xi’an, the provincial capital, is located in middle Shaanxi
Province, with a long history and culture, dense population, developed economy and
high urbanization. The Qinling Mountains and Daba Mountains have a great vegetation
biodiversity, and are known as “biological gene bank”.

2.2. Datasets

The GIMMS NDVI3g dataset (http://data.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-
a537-3482c9a83d88/, accessed on 12 November 2020) [39,40] were download by R gimms
package [41]. The pixel size of the dataset is 1/12◦ × 1/12◦. In order to get greater in-
sights, the relationships in parts of the season (around max NDVI and time integrated
NDVI (TI_NDVI)) [42,43] were analyzed. Meanwhile, based on the threshold methods [44],
we calculated from time series annual metrics of vegetation phenology, such as start of
season (sos) and end of season (eos), by using R package [45]. The monthly climate data
source came from meteorological observation stations (http://data.cma.cn/, accessed
on 13 January 2021) and Climatic Research Unit Time-Series version 4.03 grid data set
(https://crudata.uea.ac.uk/cru/data/hrg/, accessed on 12 December 2020). The source of
90 m resolution digital elevation data was Geospatial Data Cloud (http://www.gscloud.
cn/, accessed on 5 January 2021). The annual dataset of land use types with a WGS84 pro-
jection was download from https://doi.pangaea.de/10.1594/PANGAEA.913496 (accessed
on 3 March 2021), which was created by Liu et al. [46]. All of the statistical analyses were
performed in the R environment [47].

2.3. Methods
2.3.1. Statistical Methods

In this paper, the linear regression model [48] was used to fit the linear change trend
of NDVI pixel-by-pixel in order to obtain the spatial and temporal evolution pattern of
the annual average of NDVI in Shaanxi Province. The F-test was used to test significance.
Combined with the previous research [49] and F distribution table, the results were further
divided into seven types (Table 1).

Table 1. Different types of NDVI change trend and significance test (F-value: the significance of F-test; p-value: the
significance of linear regression model; b: the slope of linear regression model. When b > 0, the annual NDVI value shows
an upward trend; when b < 0, the annual NDVI value shows a downward trend).

Typesof Change F-Value p-Value b

No significant change F < 2.869 p > 0.1
Slightly significant decrease

2.869 ≤ F < 4.149 0.05 < p < 0.1 b < 0
Slightly significant increase b > 0

Significant decrease
4.149 ≤ F < 7.499 0.01 < p < 0.05 b < 0

Significant increase b > 0
Extremely significant decrease

F ≥ 7.499 p < 0.01 b < 0
Extremely significant increase b > 0

The study of the coefficient of variation (CV) can reflect the degree of interannual
NDVI fluctuation, and a larger value of the coefficient of variation indicates a greater degree

http://data.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
http://data.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
http://data.cma.cn/
https://crudata.uea.ac.uk/cru/data/hrg/
http://www.gscloud.cn/
http://www.gscloud.cn/
https://doi.pangaea.de/10.1594/PANGAEA.913496
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of vegetation disturbance, while a smaller value of the coefficient of variation indicates a
smaller degree of vegetation disturbance and a more stable NDVI change [50].

The partial correlation analysis can analyze the correlation between NDVI and a cli-
mate factor alone without considering the influence of another factor [51]. The significance
test of partial correlation coefficient was a t-test [48].

Multiple correlation analysis can be used to analyze the correlation between NDVI
and multiple variables, and the multiple correlation coefficient of NDVI with temperature
and precipitation. The significance of multiple correlation coefficient was tested by an
F-test [52].

2.3.2. RDA Method

RDA can quantitatively analyze the influence degree of different types of factors,
which can make up for the previous studies that only analyzed the influence of various
factors on NDVI [19,53]. In this paper, the R vegan package [54] was used to analyze the
correlation and multiple linear regression between NDVI and environmental factors. The
environmental factors were divided into three categories: climate factors (temperature
and precipitation), terrain factors (altitude and slope) and geographical location factors
(longitude and latitude). The larger the value is, the greater the influence of environmental
factors on NDVI is. The high dependency between variables may affect the results of the
RDA method. A better way to evaluate high dependency between dependent variables
is to calculate the variance inflation factor (VIF). A rule of thumb is that if the VIF value
exceeds 5 or 10, there is a high dependency between variables [55].

2.3.3. BRT Model

The BRT model combines a boosting algorithm and a regression tree algorithm to
eliminate the interaction between independent variables through multiple iterations in
calculation. It has strong learning ability and is flexible in dealing with different data
formats and complex data. Meanwhile, it does not need to consider the correlation between
independent variables, and has a more accurate prediction ability [25,27,56]. In this paper,
the model was implemented by the R dismo package [57]. The NDVI data of different land
cover types [46] were used as dependent variables. The regional temperature, precipitation,
altitude, slope, longitude and latitude data were used as independent variables. The relative
influence value obtained by BRT model reflects the influence degree of each variable on
NDVI, which can directly identify the dominant factors of NDVI in the region.

3. Results
3.1. Temporal Variation of the NDVI
3.1.1. Interannual Variation

The inter-annual variation of NDVI in Shaanxi Province during 1982–2015 is shown
in Figure 2. The minimum value of NDVI of whole Shaanxi Province was 0.1313, the
median was 0.5033, and the mean was 0.4657. The average and median values of NDVI
at all sites fluctuated and increased with time. The size of the boxplot was relatively
large in some years (such as 1990, 1997), which indicated that there was a large difference
between the NDVI values of each pixel in Shaanxi Province in that year. According to
linear regression analysis, the average annual NDVI significantly increased at the rate of
0.0018/year (p < 0.001), the R-squared was 0.687, which reflected the vegetation coverage
with a increasing trend in Shaanxi Province from 1982 to 2015 (Figure 3).

3.1.2. Seasonal Variation

The average value of NDVI over 34 years from high to low was as follows: summer
(0.5413), autumn (0.4476), spring (0.4178), winter (0.3688). The variation range of NDVI
average value over all pixels in each season of every year was 0.4989–0.6150 (summer),
0.3848–0.4869 (autumn), 0.3688–0.4764 (spring), 0.2437–0.3323 (winter), respectively. The



Int. J. Environ. Res. Public Health 2021, 18, 10053 6 of 27

inter-annual variation trend of the average NDVI value of Shaanxi Province from 1982 to
2015 is shown in Figure 4.
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Figure 3. Inter-annual variation of annual mean NDVI in Shaanxi Province during 1982–2015 (The
x-axis represents the year).

The trend of NDVI fluctuated upward in all seasons in terms of inter-annual variation.
The linear trend of NDVI in spring was 0.0025/year (p < 0.001), with the most obvious
up-trend and the R-squared figure reaching 0.6919. The linear trend of NDVI in summer
and autumn was cam next, reaching 0.0016/year (p < 0.001) and 0.0015/year (p < 0.001),
with the R-squared reaching 0.2921 and 0.3915, respectively. The fluctuation in NDVI
in winter was the least and relatively stable. The trend value of NDVI in winter was
0.0014/year (p < 0.001), and the increase in NDVI was the least obvious, and the R-squared
value was 0.4755.

By calculating the phenological information of Shaanxi Province, we found that
between 1982 and 2015, the start time of growing season was ahead, and the end time of
growing season was delayed (Figure 5a). The average values of sos and eos in 1982 were
117.03 day of year (DOY) and 269.28 DOY, respectively. The corresponding values in 2015
were 82.39 DOY and 282.99 DOY, respectively. Through the overall trend of the 34-year
period, the TI_NDVI value can be seen to rapidly increase before 2006 and continue to
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increase at a more gentle pace (Figure 5b). Max NDVI value increased slowly before 2003,
but showed a rapid uptrend thereafter in Shaanxi Province.
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3.2. Spatial Variation of the NDVI
3.2.1. Spatial Distribution of Annual Mean NDVI

The spatial distribution of NDVI in Shaanxi Province between 1982 and 2015 showed
a spatial distribution trend which was high in the south and low in the north, with the
minimum value of 0.16 and the maximum value of 0.67 (Figure 6a).
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The number of pixels with NDVI < 0.2 accounted for about 7.33% (Table 2) of the
total area in Shaanxi Province, which was roughly located in the northwest of Yulin city
(Figure 6a). The climate of this region belonged to temperate arid and semi-arid climate,
with low precipitation and poor vegetation coverage. The number of pixels with NDVI
value between 0.2 and 0.5 accounted for about 48.06% of the total area in Shaanxi Province,
and was mainly distributed in the remaining areas in northern Shaanxi and central Shaanxi.
Human activities were frequent in these areas, but the climate conditions were moderate.
Coupled with the ecological restoration project, the vegetation coverage was relatively
good. The proportion of areas with an NDVI value greater than 0.5 was 44.61%, mainly
distributed in the southern part of Shaanxi Province. It belonged to the humid climate of
north subtropical and warm temperate zone, and the vegetation coverage was relatively
high. The image with NDVI > 0.6 was mainly located in the north and south of Hanzhong
and Ankang. These areas had high altitude, and were dominated by forest land.

Table 2. Number of pixels and proportion of different types of multi-year mean NDVI in Shaanxi
province during 1982–2015.

Multi-Year Mean NDVI Values Number of Pixels Proportion/%

0.16–0.2 1948 7.33
0.2–0.3 5610 21.10
0.3–0.4 2369 8.91
0.4–0.5 4800 18.05
0.5–0.6 8154 30.67
0.6–0.67 3706 13.94

3.2.2. Spatial Distribution of Coefficient of Variation of the NDVI

The spatial distribution of the NDVI vegetation index in Shaanxi Province not only
had significant spatial heterogeneity; rather, each pixel had an obvious time change trend
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during 1982–2015. The CV of each pixel was calculated and is shown in Figure 6b. The
overall NDVI changes during 1982–2015 in Shaanxi Province were relatively stable with
a low volatility. The number of pixels with a low fluctuation (0 < CV ≤ 0.1) accounted
for 82.57%, which was mainly distributed in the northwest of Yulin City, the middle and
south of Yan’an City. The part with moderate fluctuation (0.1 < CV ≤ 0.15) accounted for
16.45%, which was mainly located in the east of Yulin City and the north of Yan’an City.
The part of height fluctuation (CV > 0.15) accounted for only 0.98%, which was sporadically
distributed in the eastern region of Yulin city.

3.2.3. Spatial Distribution of Change Trend of Annual Mean and Max NDVI

The spatial distribution trends of multi-year annual average NDVI in Shaanxi Province
from 1982 to 2015 were calculated, and the obtained results were reclassified (the results are
shown in Figure 7a), and the number and proportion of image elements in each category of
trends were further counted (Table 3).
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Table 3. Pixel numbers and proportion of change trend of the NDVI in Shaanxi province during
1982–2015.

Change Trend Pixel Numbers Proportion/%

<−0.0005 135 0.51
−0.0005–0 176 0.66
0–0.0005 298 1.12

0.0005–0.001 2325 8.74
0.001–0.0015 6593 24.80
0.0015–0.002 6841 25.73
0.002–0.0025 5537 20.83
0.0025–0.003 3800 14.29

>0.003 883 3.32

The annual average NDVI change trend of Shaanxi Province was −0.0009–0.0034,
showing an upward trend as a whole. The positive change pixels accounted for 98.83% of
the total area, while the proportion of area with negative change was only 1.17%. In terms
of spatial distribution, the part with a change trend of >0.003 was roughly located in the
south of Ankang City, the east of Yan’an City and some areas in the north, and the upward
trend of NDVI was the largest. The pixels with a change trend of 0.001–0.003 accounted for
85.71%, with a wide distribution range. The pixels between 0–0.001 accounted for 9.86%,
mainly located in the central region of Shaanxi, the northwest of Hanzhong City and Yulin
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City, and the rise of NDVI was not obvious. The part with a change trend < 0 was mainly
located in Xi’an and its surrounding areas, and NDVI showed a downward trend.

Combined with the change trend of NDVI in Shaanxi Province from 1982 to 2015
and the results of the F-test (see Figure 7b), NDVI increased significantly, accounting for
the vast majority of the province, reaching 94.83%. The percentage of NDVI pixels which
significantly decreased and weakly significantly decreased was 0.34%, which was consistent
with the area where the trend value of NDVI was negative (i.e., the area near Xi’an City).
No significant change accounted for 2.25%, which was mainly concentrated around the
areas of significant decline and weak significant decline, mainly located at the junction of
Xi’an, Xianyang and Baoji, and the vegetation degradation trend was not significant.

The length of the time series segments of max NDVI before the breakpoint (Figure 8a)
was longer in most parts of southern and central Shaanxi, and relatively short in sporadic
parts of this region and Northern Shaanxi. Trends along time terms (Figure 8c) showed
that breakpoints of max NDVI occurred frequently during 2005–2010 in Shaanxi Province
but were mainly concentrated in the northern area of Shaanxi. Trends along latitudes
(Figure 8h) showed that there were obvious breakpoints of max NDVI value in the latitude
direction over Shaanxi Province, especially between 32–33◦ N and in the north of 37◦ N.
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Figure 8. The trends and breakpoints on max NDVI time series from pixel scale (a): the length of the time series seg-
ments before the breakpoint (LSEG1); (b): the length of length of the time series segments after the breakpoint (SEG1);
(c): breakpoints; (d): the slope of SEG1; (e): the slope of SEG2; (f): the p_value of the SEG1; (g): the p_value of SEG2;
(h): latitudinal gradient of NDVI trends. *** p < 0.001; ** p < 0.01; * p < 0.05. The ‘latitude’ label on the axis represents north
latitude, and the ‘longitude’ label on the axis represents the east longitude).
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3.3. Analysis of Influencing Factors of NDVI Dynamic Change
3.3.1. The Temporal Relationship between the NDVI and Climate Factors

The linear trends of annual mean temperature, annual total precipitation and annual
mean NDVI with year were obtained by statistical analysis (Figures 9 and 10). Both tem-
perature and NDVI showed an increasing trend, with annual mean temperature increasing
significantly at a rate of 0.0449 ◦C/year (p < 0.001). The annual precipitation data fluctuated
greatly and showed a downward trend at the rate of −0.2254 mm/year as a whole but
failed to test as significant (p > 0.1). It was found that the annual average temperature
significantly correlated (p < 0.001) with the annual NDVI, and the correlation coefficient
was 0.67. Contrarily, the correlation coefficient of annual precipitation with annual mean
NDVI was −0.10 (p < 0.5).
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Figure 9. Variation curve of NDVI and annual mean temperature in Shaanxi Province during
1982–2015 (“tem” denotes the temperature. The x-axis represents the year).
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Figure 10. Variation curve of NDVI and annual mean precipitationin Shaanxi Province during
1982–2015 (“pre” denotes the precipitation. The x-axis represents the year).

The correlations between seasonal precipitation and max NDVI and TI_NDVI was still
not significant (Table 4). However, the relationships between temperature and max NDVI,
TI_NDVI, eos and sos all reached a significant level. From the statistical analysis results
(Table 4), different NDVI proxy indicators were used to correlate with the precipitation
in the same period, and the results were quite different. For example, the sensitivity of
TI_NDVI to annual precipitation was−0.177. However, the correlation between max NDVI
and annual precipitation was 0.170.
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Table 4. The relationships between NDVI metrics and climate factors (sos: start of season, sos: end of season. *** p < 0.001;
** p < 0.05; * p < 0.1).

Climate Factor TI_NDVI Max NDVI eos sos

annual temperature 0.651 *** 0.419 ** 0.600 *** −0.714 ***
spring seasonal temperature 0.687 *** 0.380 ** 0.524 *** −0.685 ***

summer seasonal temperature 0.505 ** 0.358 ** 0.532 *** −0.571 ***
autumn seasonal temperature 0.301 * 0.381 ** 0.360 ** −0.421 **
winter seasonal temperature 0.374 ** 0.140 0.342 ** −0.400 **

annual precipitation −0.177 0.170 −0.117 0.102
spring seasonal precipitation 0.06 0.196 −0.108 −0.152

summer seasonal precipitation −0.156 −0.022 −0.051 0.238
autumn seasonal precipitation −0.191 0.148 −0.096 0.042
winter seasonal precipitation 0.175 0.083 0.184 −0.078

3.3.2. Spatial Relationships between the NDVI and Climate Factors

From the perspective of spatial evolution, there were great differences in the warming
trend in various regions of Shaanxi Province (Figure 11). The temperature evolutionary
trend in the central and western part of Yan’an City, Ankang City and the southeast corner
of Hanzhong city was the smallest, and the annual warming was less than 0.3 ◦C. The
temperature change trend in the northwest of Yulin city was the largest, and the annual
temperature increase was greater than 0.5 ◦C. The change trend of annual total precipitation
in Shaanxi Province increased from south to north, but the annual precipitation seriously
decreased in Xi’an, Shangluo and Hanzhong.
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Figure 11. Spatial distribution of temperature (a) and precipitation (b) evolution trends over time in Shaanxi Province
during 1982–2015.

The results of partial correlation between annual NDVI and temperature was−0.17–0.77,
mainly positive correlation, with an average of 0.47 (Figure 12a). The percentage of pixels
with positive partial correlation coefficient accounted for 99.39%, especially in Xianyang
City, the middle of Baoji City, most areas of Shangluo City, Ankang City and the south of
Hanzhong City. The number of negatively correlated pixels accounted for 0.61%, mainly
located in the urban area of Xi’an. The results of the t-test on the significance of partial
correlation between NDVI and temperature (Figure 12b) demonstrated that the percentage
of pixels with no significance (p > 0.1) accounted for 15.32%, which were mainly distributed
in the north central part of Yan’an City, Xi’an City, Xianyang city and Weinan City. The
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percentage of significant (0.01 < p < 0.05) and extremely significant (p < 0.01) pixels were
14.79% and 62.01%, respectively. There was a very significant positive correlation between
NDVI and temperature in the whole province.
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The mean value of partial correlation coefficient between NDVI and precipitation
was 0.13, and the variation range was −0.47–0.55 (Figure 12c). The number of pixels
with a positive and negative correlation coefficient was 65.23% and 34.77%, respectively.
According to the t-test, the number of insignificant pixels of partial correlation between
NDVI and precipitation accounted for 65.26% (Figure 12d), which was mainly located
in the central and southern part of Shaanxi Province. The total number of pixels with
significant and extremely significant results accounted for 29.82%, mainly distributed in
Yulin City, the north of Yan’an City and the south of Ankang City.
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3.3.3. Spatial Distribution of Multiple Correlations between the NDVI and Climate Factors

NDVI is affected by the combined effect of temperature and precipitation, and the
results of the multiple correlation coefficient and significance test of NDVI with pixel
scale climate factors in Shaanxi Province are shown in Figure 13. The mean value of the
multiple correlation coefficient of NDVI with temperature and precipitation was 0.55, and
the range was between 0.19 and 0.81. The areas with low coefficient of multiple correlation
were mainly located in the central part of Xi’an and Yan’an City. The high multiple
correlation coefficients were concentrated in Shangluo City, Ankang City and the south-
central part of Hanzhong City. The non-significant areas accounted for 7.48% and the highly
significant areas accounted for 62.99%. The superimposition of the multiple correlation
coefficients with the significance test results showed that the areas with low values of
multiple correlation coefficients are also non-significant, which indicated that NDVI in
Shaanxi Province was significantly and strongly multiple correlated with temperature
and precipitation.
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3.3.4. Response of the NDVI to Topographic Factors

The elevation range of Shaanxi Province was 166–3738 m, and the altitude was mainly
between 500 and 1500 m, accounting for 77.29% of the total area of Shaanxi Province. The
mean value of NDVI first increased with the increase in altitude, and then decreased with
the increase in altitude. In the range of 1000–1500 m above sea level, the mean value of
NDVI reached its lowest (0.39, Figure 14). Then, with the increase in altitude, the mean
value of NDVI rapidly increased and reached the highest (0.61) in the range of 2000–2500 m.
When the altitude was greater than 2500 m, the mean value of NDVI tended to be stable.
When the altitude was less than 500 m, the NDVI had no significant evolution trend,
accounting for 1.82%. Moreover, the number of pixels with downward trend for NDVI
only accounted for 0.34%, and the areas with upward trend accounted for 5.2%. In other
elevation ranges, the average value of NDVI mainly increased, and the proportion without
significant change was very small, showing a downward trend, and the change proportion
was 0.
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The slope range in Shaanxi province was between 0◦ and 72◦, with a mean slope value
of 13.35◦. The slope was classified into six groups [58]. The slopes in most areas of Shaanxi
Province were in the range of 0◦–5◦, 8◦–15◦ and 15◦–25◦. A few areas were in the range of
5◦–8◦ and >25◦. With the increase in slope, the mean value of NDVI was increasing. The
mean value of NDVI greatly increased in the range of 0◦–25◦ (Figure 15). Once the slope
was greater than 25◦, the average growth rate of NDVI slowed downward trend. When the
slope was in the range of 0◦–5◦, the area with no significant change in NDVI accounted for
2.05%, and the area with downward change accounted for only 0.33%. NDVI in most areas
displayed an upward trend. When the slope was greater than 5◦, the mean NDVI in all
regions showed an upward trend.
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3.3.5. Spatio-Temporal Response Characteristics of the NDVI to Anthropogenic Activities

The changes in land use types reflect the influence of human activities on NDVI; thus,
the statistics of land use types from 1982 to 2015 are shown in Figure 16. In 1982, the
proportion of area occupied by each land use type were forest land (44.11%), barren land
(26.57%), cropland land (16.35%) and grassland (12.97%). By 2015, the proportion of area
in descending order was forest land (52.89%), cropland (24.23%), grassland (18.95%), and
barren land (3.93%). During 1982–2015, cropland, grassland and forest land showed a
fluctuating upward trend as a whole. However, the growth rate was different, and the
growth rate of forest land area was the largest, increasing at the rate of 0.2771/a. The
second was cropland, with a growth rate of 0.2119/a. Finally, grassland increased at the
rate of 0.1438/a, and the increase was the least obvious. Only the barren land showed
a decreasing trend, with an obvious downward rate of 0.6329/a. The area of land use
types changed as a result of human activities, and the area change in different land use
types showed that the area of forest land, grassland and cropland with high NDVI values
were expanding, indicating that human activities have a positive influence on the change
in NDVI.
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Figure 16. The trends of area proportion changes for each landcover type during 1982–2015.

From the perspective of spatial distribution, the barren land in Shaanxi Province
was mainly concentrated in Northern Shaanxi (Figure 17). The central region of Shaanxi
Province was dominated by crop land. The southern area of Shaanxi was dominated by
forest land. In the time series, among the four land use types, the barren land and forest
land area obviously fluctuated with time. In 1982, the area of barren land was the largest.
In 1986, the area of this land type in Northern Shaanxi decreased sharply and the grassland
area increased. By 1989, the barren land area increased, but decreased rapidly in 1998.
Since 2002, the area of barren land had gradually decreased.
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3.4. Relationships between Dominant Factors and NDVI under Different Land Uses
3.4.1. RDA Results

The RDA method elucidated the individual and combined effects of different envi-
ronmental factors on NDVI in different land use type regions, and the results are shown
in Table 5. The total influence of environmental factors on NDVI values in the different
land use type regions was in the order of grassland (84%) > cropland (75%) > forest land
(50%) > barren land (48%). It can be seen from the table that NA values (i.e., RDA method
value was less than zero) appeared to influence some environmental factors. This result
may be caused by the much more complicated or nonlinear dependencies that can cause
negative non-testable fractions [54,59].

Table 5. Influence of environmental factors on NDVI on the four land cover types using RDA method
(X1 represents climatic factors (temperature, precipitation), X2 denotes topographic factors (altitude,
slope, aspect), X3 represents geographic location factors (longitude, latitude), X1 ∩ X2 denotes the
interaction influence between climatic factors and topographic factors, and so on. “NA” denotes the
values < 0, “0.0” denotes the values are very close to 0).

Cropland Forest Grassland Barren

X1 3.0 4.0 4.0 1.0
X2 3.0 6.0 0.0 7.0
X3 20.0 2.0 23.0 22.0

X1 ∩ X2 NA 0.0 0.0 NA
X1 ∩ X3 31.0 35.0 27 2.0
X2 ∩ X3 NA NA 3.0 14.0

X1 ∩ X2 ∩ X3 19.0 3.0 27 2.0

In the cropland area, from a single type, the influencing factors from high to low were
geographic location factors (20%), topographic factors (3%) and climate factors (2%). The
combined influence of the climate and geographic location factors (31%) was the highest,
much higher than the other two factors. The combined influence of three types (climate,
topography and geographic location) was 19%.

In the forestland region, the individual influence of each type was in the order of
topographic factors (6%) > geographic location factors (2%) > climate factors (4%). The
combined influence of geographic location and climate factors was 35%. However, the
combined influence of climate and terrain factor was very close to 0. The combined
influence of three types was 3%.

In the grassland region, the individual influence of geographic location factors (23%)
was the highest among the three types, followed by the climate factors (4%), and the
topography factors (approximation 0%). The combined influence of climate and geographic
location factors was 27%, and the combined influence of the three types together on NDVI
was 27%.

In the barren land area, the individual influence of geographic location factors (22%)
was the highest among the three types, followed by the climate factors (1%). The combined
influence of topographic and geographic location factor was 14%. The combined influence
of the three types on NDVI (2%) was the lowest among these four land use types.

3.4.2. BRT Results

The BRT model can further identify the influence of each environmental factor on
NDVI in different land use types and the corresponding changes. In the cropland area,
the relative influence of predicted variables on NDVI from large to small was temperature
(25.1%, Figure 18), precipitation (22.6%), latitude (19.4%), longitude (15.9%), altitude
(10.2%), slope (6.9%). Partial dependence plots (Figure 18) display the average change
in predicted NDVI as we varied the predicted variable while holding all other variables
constant. For instance, holding all other variables constant, the predicted NDVI increased
sharply with the increase in precipitation, and tended to be stable after the precipitation



Int. J. Environ. Res. Public Health 2021, 18, 10053 19 of 27

reached 450 mm. The predicted NDVI decreased with increasing latitude in the south of
35 ◦N. Between 35◦N and 36 ◦N, it increased slightly with increasing latitude. Meanwhile,
we found that the fitted function curve was very flat (i.e., close to 0), indicating that the
influence of the slope on NDVI evolution was very small in the cropland area.
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Figure 18. Results of marginal effects of environmental factors on NDVI under cropland in whole Shaanxi Province (The
fitted function of NDVI vs. (a): temperature (◦C), (b): precipitation (mm), (c): latitude (N), (d): longitude (E), (e): altitude
(m), (f): slope (◦), respectively. The x-axis denotes the predictive variable; the contents in brackets in the title of the x-axis
represent relative influence. The y-axis denotes the marginal effect of the selected variables by “integrating” out the
other variables).

In the forestland area, the relative influence of predicted variables on NDVI from
large to small was temperature (22%, Figure 19), altitude (17.4%), precipitation (17.4%),
slope (15.5%), longitude (14.8%), slope (12.9%). The predicted NDVI increased slowly with
temperature until 13 ◦C. Similarity, it increased slowly with the increase in altitude. The
fitted function curve of predicted NDVI was approximately a horizontal line. This result
showed that the influence of slope on NDVI evolution was also very small.

In the grassland region, the relative influence of the predicted variables on NDVI from
large to small was as follows: latitude (25.1%, Figure 20), precipitation (24.2%), temper-
ature (17.7%), longitude (15.7%), slope (9.0%), altitude (8.3%). For instance, holding all
other variables constant, the predicted NDVI was more stable south of 34◦ N, and during
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34◦ N–36.5◦ N, decreased slightly and sharply and then tended to stabilize. The change
curve of predicted NDVI fluctuated and rises with the increase in temperature, and stabi-
lized after 10.5 ◦C.
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Figure 19. Results of marginal effects of environmental factors on NDVI under forest land type in whole Shaanxi Province
(The fitted function of NDVI vs. (a): temperature (◦C), (b): altitude (m), (c): precipitation (mm), (d): slope (◦), (e): longitude
(E), (f): latitude (N), respectively. The x-axis denotes the predictive variable; the contents in brackets in the title of the
x-axis represent relative influence. The y-axis denotes the marginal effect of the selected variables by “integrating” out the
other variables).

In the barren land area, the relative influence in predicted variables on NDVI from
large to small was temperature (21.3%, Figure 21), precipitation (20.3%), altitude (18.0%),
slope (17.3%), latitude (12.7%), longitude (10.5%). Below 9.1 ◦C, the predicted NDVI
decreased with the increase in temperature, then increased rapidly above 9.4 ◦C. The
precipitation was about 355 mm, which was the dividing point for the change in the
predicted NDVI. The predicted NDVI decreased sharply with the increase in altitude when
the altitude was below 1200 m, and then stabilized with the increase in altitude. The
predicted NDVI slowly increased with increasing slope, and continuously decreased with
increasing latitude, and reached the lowest value near 39◦ N (Figure 21).
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Figure 20. Results of marginal effects of environmental factors on NDVI under grassland in whole Shaanxi Province (The
fitted function of NDVI vs. (a): latitude (N), (b): precipitation (mm), (c): temperature (◦C), (d): longitude (E), (e): slope
(◦), (f): altitude (m), respectively. The x-axis denotes the predictive variable; the contents in brackets in the title of the
x-axis represent relative influence. The y-axis denotes the marginal effect of the selected variables by “integrating” out the
other variables).
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(The fitted function of NDVI vs. (a): temperature (◦C), (b): precipitation (mm), (c): altitude (m), (d): slope (◦), (e): latitude
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x-axis represent relative influence. The y-axis denotes the marginal effect of the selected variables by “integrating” out the
other variables).

4. Discussion
4.1. The Homogeneity and Heterogeneity Temporal-Spatial Evolution Trend of NDVI

Temporally, Shaanxi Province showed a fluctuational increase trend in vegetation
cover between 1982 and 2015, which was broadly consistent with the most parts of the
global scale, especially in the mid-latitudes of the Northern Hemisphere [60,61]. After
1990, there was an obvious breakpoint in Shaanxi Province. The multi-year annual average
NDVI in Shaanxi Province increased at a rate of 0.0018/year between 1982 and 2015, which
was lower than the growth rate studied by Chen et al. [37], because the time period of
this paper was longer and the dataset of the studied NDVI were different. From 1982 to
2015, the start time of growing season was ahead, and the end time of growing season was
delayed. This result indicated temporal “greening” across most Shaanxi Province. The
prolongations of the growing season also were found in high latitudes [62]. By studying
the NDVI of the Inner Mongolia Plateau adjacent to Shaanxi Province, Gong et al. [63]
demonstrated that the warmer spring would delay the senescence of vegetation.
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Spatially, the vegetation cover in the vast majority of Shaanxi Province showed a
stable increasing trend, especially in the eastern part of the Loess Plateau, which was
mainly related to the project of reviving farmland to forest and grass, and the soil and
water conservation project of the Loess Plateau, and the vegetation cover had significantly
improved [64,65]. Trends along latitudes indicated that there were obvious breakpoints in
the latitude direction of max NDVI value in Shaanxi Province, especially between 32–33◦ N
and in the north of 37◦ N. Near 34◦ N (Xi’an City and Xianyang City), the variation trend
of NDVI was the smallest. This was mainly related to the expansion of Xi’an and Xianyang
City to the surrounding area to occupy part of the farmland, and the regional vegetation
cover had deteriorated [1]. The length of the time series segments of max NDVI before
the breakpoint was longer in most parts of southern and central Shaanxi, and relatively
shorted in sporadic parts of this region and Northern Shaanxi. Trends along time terms
showed that breakpoints of max NDVI frequently occurred between 2005 and 2010 in
Shaanxi Province, but mainly concentrated in Northern Shaanxi. The distribution and
dynamics of vegetation in Shaanxi Province had obvious spatial variation, which might
have been related to the combined influence of several factors [66,67].

4.2. Effects of Different Factors on NDVI

Climate factors have an important influence on the growth and development of
vegetation [68]. Many studies have demonstrated that temperature and precipitation were
the main meteorological factors affecting the vegetation index evolution [11,61,69]. From
1982 to 2015, Shaanxi Province showed a warmer trend, which was consistent with the fact
of global warming. However, the precipitation in southern Shaanxi showed a drier trend
and that in northern Shaanxi revealed an upward trend. According to the average values
of the whole Shaanxi Province, the annual mean NDVI was strongly positively correlated
with the annual mean temperature and was slightly less sensitive to the annual mean total
precipitation. From the pixel scale, partial correlation results indicated that the number of
pixels with a significant correlation coefficient (p < 0.05) between NDVI and temperature
accounted for 76.8%, and the number of pixels with significant correlation coefficient with
precipitation only accounted for 29.8%.

Consequently, it can be concluded that temperature had a greater influence on NDVI
evolution than precipitation in Shaanxi Province from 1982–2015. This may be because the
moderate increase in temperature is conducive to improving the photosynthetic efficiency
of plants and soil water use efficiency, and promoting the growth of vegetation [67]. By
calculating the phenological information of this region, we also found that from 1982 to 2015,
the relationships between temperature, eos and sos all reached significant level, which also
showed that climate change had a great impact on vegetation growth in this region. Besides,
the effect of temperature on NDVI evolution was greater after the implementation of the
fallowing project [19]. Under the condition of global warming, Tucker [70] also indicated
that the long-time series vegetation coverage in the middle latitudes of the northern
hemisphere showed an increasing trend. From a large regional scale, most researchers
demonstrated that NDVI was more sensitive to precipitation changes [16,17,71]. However,
we analyzed the relationships in parts of the season (around max NDVI and TI_NDVI); the
correlations between seasonal precipitation and max NDVI and TI_NDVI were still not
significant. TI_NDVI and max NDVI were more sensitive to spring’s seasonal temperature.

As is known, vegetation growth is also affected by other environment factors. Topog-
raphy controls the spatial redistribution of solar radiation and precipitation [72]. Shaanxi
Province has complex landscape types from north to south, with large topographic un-
dulations and different vegetation index variation characteristics at different elevations
and slopes. To obtain the individual and combined influence of various environmental
influences on NDVI, we conducted the RDA and BRT method. Results revealed that
the combined influence of climatic factors and geographic location factors on NDVI was
the highest in various land use type regions. This result was consistent with the pre-
vious research about Loess Plateau [19]. Human activities such as the implementation
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of reforestation and grass restoration projects had a positive effect on the restoration of
vegetation [1]. Through the change in land use type area, this paper reflected the impact
of anthropogenic activities on vegetation was mainly positive. A variety of influencing
factors were separately analyzed in this study, but the codominant factors of the dynamic
changes of vegetation cover need to be further discussed.

The BRT model can further analyze the relative influence magnitude of various
influencing factors on NDVI and the variation of NDVI with the influencing factors in the
region. In Figure 13, we found an interesting phenomenon that the altitude of Shaanxi
Province was mainly between 1000–1500 m, but the average vegetation coverage was not
the highest. Through BRT model, we indicated that altitude has little impact on forest
land, crop land and grassland, but had a greater impact on barren land (Figure 21). After
1000 m, there was an obvious downward trend. From this point, it can be seen that
the BRT model can explain some of the more subtle heterogeneity phenomena than the
RDA method and other simple correlation statistical analysis methods can. Overall, RDA
method gets the fitted values of environmental factors and NDVI after linear regression, the
calculation speed is fast. The BRT model does not need to consider the interaction between
environmental factors. However, this approach is highly flexible and very time-consuming
for computation.

The pixel scale analysis can accurately analyze the spatial and temporal variation of
each location in the study area and the influence of environment factors on a small area, so
that the spatial continuity and heterogeneity can be better reflected and analyzed. From
the perspective of practical application, especially the ecological restoration projects such
as reviving farmland to forest and afforestation, we should study the correlation between
NDVI and environmental factors on a small regional scale or even a pixel scale in order to
take appropriate ecological restoration measures for different regions.

5. Conclusions

In this paper, we conducted on the spatial and temporal variability characteristics of
NDVI (1982–2015) and its driving factors in Shaanxi Province from pixels scale using trend
analysis, correlation analysis, the RDA and the BRT method. This study was meaningful for
understanding the indirect response of vegetation to climate warming and anthropogenic
activities at the local and regional levels.

(1) The annual mean NDVI in Shaanxi Province from 1982–2015 was 0.4361, with an
overall fluctuating upward trend, increasing at a rate of 0.0018/year. The average
NDVI of each season showed different degrees of increase, and the increasing trend:
spring > summer > autumn > winter. The difference between start and end time of
growing season increased gradually indicated that temporal “greening” across most
Shaanxi Province;

(2) In general, the NDVI values in Shaanxi Province demonstrated a high spatial distribu-
tion in the south and low one in the north, 98.83% of the areas indicated a stable and
increased trend of annual average NDVI in Shaanxi Province in past 30 years, and
only 1.17% of the areas demonstrated a decreasing trend of multi-year annual average
NDVI. Pixel scale analysis showed that there was spatial continuity and heterogeneity
in NDVI changes in the study area;

(3) In terms of temporal variation, the correlation coefficients between NDVI metrics
(annual mean NDVI, max NDVI, TI_NDVI, eos, sos), and temperature all reached
significant level. However, the evolutionary trends of NDVI in this study area were
not sensitive to precipitation. The results of spatial correlation analysis showed that
76.80% of the study areas showed a significant correlation with temperature, and only
29.82% significantly correlated with precipitation. The NDVI values were partially
decreasing at elevations below 500 m and slopes in the range of 0◦–5◦, while the rest
mostly increased;

(4) The results of RDA and BRT method showed that the combined influence of climatic
and geographic location factors was the greatest in most land use type regions,
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and temperature may be the dominant factor in NDVI evolution dynamics in grass
land area.

In this paper, the influence of human activities on NDVI was only considered from
the change in land use type area based on the GLASS-GLC-7 data set [46], which had only
four land use types (crop land, forest, grass land, barren land) in Shaanxi Province. As
is known, vegetation growth is affected not only by temperature and precipitation, but
also by population density, light duration, soil humidity and other factors. Therefore, in
future research, according to the ecological data of ground-based observations, we will
also include these factors in more comprehensive research.
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