
HEALTHCARE

Received 23 December 2021; revised 6 April 2022; accepted 24 May 2022.
Date of publication 2 June 2022; date of current version 10 June 2022.

Digital Object Identifier 10.1109/JTEHM.2022.3179874

Machine Learning-Based Continuous Intracranial
Pressure Prediction for Traumatic Injury Patients

GUOCHANG YE 1, (Graduate Student Member, IEEE), VIGNESH BALASUBRAMANIAN 1,
JOHN K-J. LI2, (Life Senior Member, IEEE), AND MEHMET KAYA 1

1Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
2Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ 08901, USA

CORRESPONDING AUTHOR: MEHMET KAYA (mkaya@fit.edu)

ABSTRACT Structured Abstract— Objective: Abnormal elevation of intracranial pressure (ICP) can
cause dangerous or even fatal outcomes. The early detection of high intracranial pressure events can be crucial
in saving lives in an intensive care unit (ICU). Despite many applications of machine learning (ML) tech-
niques related to clinical diagnosis, ML applications for continuous ICP detection or short-term predictions
have been rarely reported. This study proposes an efficient method of applying an artificial recurrent neural
network on the early prediction of ICP evaluation continuously for TBI patients. Methods: After ICP data
preprocessing, the learning model is generated for thirteen patients to continuously predict the ICP signal
occurrence and classify events for the upcoming 10 minutes by inputting the previous 20-minutes of the ICP
signal. Results: As the overall model performance, the average accuracy is 94.62%, the average sensitivity
is 74.91%, the average specificity is 94.83%, and the average root mean square error is approximately
2.18 mmHg. Conclusion: This research addresses a significant clinical problem with the management of
traumatic brain injury patients. Themachine learningmodel data enables early prediction of ICP continuously
in a real-time fashion, which is crucial for appropriate clinical interventions. The results show that our
machine learning-based model has high adaptive performance, accuracy, and efficiency.

INDEX TERMS Computer-assisted decision making, intracranial pressure, intracranial hypertension,
machine learning, traumatic brain injury.

Clinical and Translational Impact Statement—Continuous detection of short-term future high ICP incidents
might help save lives of TBI patients. The detection algorithm can also be integrated into infusion pumps for
automated intravenous injection treatments.

I. INTRODUCTION
Patients diagnosed with traumatic brain injury (TBI), a major
cause of death and disability worldwide, require immediate
treatments in an ICU with restless support from different
medical specialists [1]. In prevalent cases of TBI, the occur-
rence of hemorrhage causes an increased ICP. The elevated
ICP, along with impaired cerebrovascular autoregulation, can
lead to brain ischemia and subsequent hypoxia [2]. Besides
that, the brain tissue is sensitive to compression. During the
high ICP, vital brainstem structures have an increased inci-
dence of pressure exposures, shortly resulting in dangerous
or even fatal outcomes [2], [3]. Referring to the guidelines for
TBI management [4], continuous ICP monitoring is assigned
to the patients to detect prolonged elevated ICP events, which
is believed to improve the survival rate. Targeted treatments to

maintain the ICP below a critical threshold for a sufficiently
long term are considered to decrease the likelihood of unfa-
vorable outcomes.

There have been previous efforts on developing nonin-
vasive ICP monitoring methods, including the transcranial
Doppler techniques [5], optic nerve sheath diameter measure-
ments [6]–[9], and imaging-based methods (e.g., computed
tomography (CT) [9], [10], magnetic resonance imaging
(MRI)) [11].Machine learning (ML) techniques have become
a powerful tool to make predictions or perform classifications
for medical diagnoses [12]. Three previous studies proposed
a noninvasivemethodology on early intracranial hypertension
detections based onML techniques using ICPwaveform anal-
ysis or image features (including midline shift, intracranial
cavities, and ventricle size) extracted from medical imaging
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modalities (e.g., CT or MRI) [13]–[15] with varying degrees
of prediction accuracy. The classification accuracy in the
first study [13] was about 74% in ICP levels predicted with
multiple features sources. The second study [14] reported
an accuracy of 91% for predicting increased ICP classi-
fication for children. Another study based on noninvasive
ICP data with thirteen patients reported a root-mean-square
error (RMSE) of 3.7 mmHg with their ICP estimation [15].
All these three studies [13]–[15] used noninvasive methods
to achieve ICP estimates. The first two methods [13], [14]
predicted the ICP based on CT scans. The CT scan can only
be executed on the patients a limited number of times due
to the risks of ionizing radiation exposure. Also, the CT
scan requires a particular time to be performed, which causes
the real-time ICP estimation to be unachievable. The ICP
signal is a time series of physiological data. Thus, models
to provide binarized classification may still be too simple
to achieve ICP tracking and predictions in a real-time and
continuous manner. The third study [15] highly relies on the
excellent quality signal, which may not apply to real-world
medical scenarios. The waveform-targeted method may be
sensitive to the noise components of ICP signals that occur
during TBI patients’ routine care (e.g., patient movements,
bed adjustment, or simple connection problems), which may
hinder the accuracy and unavoidably yield unreliable diagno-
sis predictions [10]. Compared to their methods, our machine
learning pipeline provides continuous ICP estimation in real-
time. Furthermore, our method is designed to compensate for
the noise/artifact frequently evident in clinical data. Overall,
our proposed method provided a better performance on ICP
predictions, confirmed by the higher accuracy and the lower
RMSE.

The accurate way to monitor ICP is using invasive
techniques (including fluid-based systems and implantable
micro-transducers) along with certain risks of intracranial
infection and hemorrhage [10], [16]. ML applications on ICP
data collected invasively are not commonly found. ML tech-
niques were applied to the ICP data collected invasively by
Scalzo et al. [17]. They suggested using extremely random-
ized decision trees to predict intracranial hypertension with
ICP wave morphology-related features and obtain improved
results compared to multiple linear regression models and the
adaptive boosting algorithm. Time components intrinsically
increase the complexity of a sequenced dependence among
the ordered data. Thus, conventional regression models may
not perform well with the time series forecasting problems.
Our study is a step forward as it proposes an ML application
for early detection of the upcoming intracranial hyperten-
sion in a real-time manner. In this work, a Long Short-
Term Memory (LSTM) model [18], as an artificial recurrent
neural network (RNN), is used for predicting ICP events.
First, a statistical-based method is applied for smoothing the
ICP data and minimizing the negative effect caused by the
noisy data. Second, with the processed ICP data, an LSTM
model was generated for each patient and predicted the fol-
lowing ICP signal in every next 10-min period after the model

initialization. The normal adult ICP is typically within a range
of 5 to 15 mmHg; mild intracranial hypertension is described
with an ICP readout from 20 to 30 mmHg [19], [20]. Thus,
20 mmHg on ICP readouts is selected conservatively as the
criterion for the ICP event classification in this study. Lastly,
accuracy, sensitivity, specificity, and RMSE were calculated
to evaluate the models’ performance.

II. METHODS AND PROCEDURES
A. DATABASE
The CHARIS database [21] used in this study was obtained
from the PhysioNet [22]. The studies were approved by the
Rutgers Research Ethics Committee (IRB) and have been per-
formed in accordance with the ethical standards as laid down
in the 1964 Declaration of Helsinki and its later amendments
or comparable ethical standards. The study was exempt from
informed consent since no patient contact nor identity was
involved, and no procedures were performed [21]. The ICP
data (unit: mmHg)weremonitoredwith either a subarachnoid
bolt or ventriculostomy of thirteen patients diagnosed with
traumatic brain injury (TBI). All the data acquisitions were
initialized from patients arriving in surgical ICU rooms of
Robert Wood Johnson Medical center of Rutgers University
(NJ, USA). During the data acquisition, the sampling rate was
0.02 seconds per sample. The resolution of 1.41 mV at ±5 V
analog input range was equivalent to a pressure resolution
of 0.14 mmHg and a dynamic range of ±500 mmHg. The
sampling duration was varied for different subjects. The data
involved high-frequency noise and signal distortion. Addi-
tionally, patient demographic information was not originally
included.

B. DATA PREPROCESSING
Due to the appearance of the noise and signal distortion,
data preprocessing steps, including denoising and smoothing,
were critical for achieving better prediction outcomes from
the neural network model. As the first step, based on the
visual inspection of the histogram of all the ICP data, global
thresholding values were selected, and all reasonable ICP
data ranges (from −5 to 50 mmHg) were kept. All other data
points that fall out of the ranges were set to null and forward
filled with the first available previous values to maintain
the data continuity. In the second step, the processed data
was input into the smoothing algorithm. In this algorithm,
a sliding smoothing window with a length of 60000 data
points (a 20-min period) was activated at the beginning of the
data. The mean and the standard deviation (SD) of all the data
points inside the window were calculated. Any value out of
+/- 3 times the standard deviation was classified as an outlier
and replaced with the mean of the current smoothing window.
Next, the window was moved toward the end with a step of
3000 data points (5% of the window length) until reaching
the end of the data. As the last step of the data preprocessing,
the ICP data was compressed from 0.02 seconds per sample
(50 Hz) to 60 seconds per sample (0.017 Hz). The average
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Data Preprocessing Procedure∗

Input: x: raw ICP signal
Output: y: processed ICP signal
1: initialize: w← 60000: Size of the sliding window; st← 3000:
Steps of window moving
2: i← 1;
3: while i + w <= Length(x) do
4: Segment: seg← x[i: i + w]
6: for j in Range(1, w) do
7: if seg[j] > 50 or seg[j] < −5 do
8: seg[j]← NULL
9: end if
10: end for
11: seg← FillNull(seg): Forward filling NULL with the first
available previous data
12: Mean:m←Average(seg); Standard deviation: s← SD(seg)
13: for k in Range(1, w) do
14: if seg[k] > m + 3∗s or seg[k] < m - 3∗s do
15: seg[k]← m
16: end if
17: end for
18: i← i + st
19: end while
20: y←Compress(seg): down sampling to 60 seconds per sample
21: return y
∗Annotation: ←: value assigning; Length(): the function return the length of input; Average(): the function

return the average of input; SD(): the function return the standard deviation of input; Compress(): the down

sampling function.

of every 3000 data points was assigned as one data point
in the compressed data. Although effective data processing
techniques were applied to the raw data, visual inspection
was still needed for removing the meaningless data segments
(continuous abnormal high/low ICP measurements) from the
input data. One patient’s ICP data is randomly selected to
illustrate the data preprocessing steps; raw data and processed
data are shown in the results section for comparison.

C. MODEL TRAINING
The machine learning code was written using Python 3.6
[23]. The LSTMmodel was from Keras [24], a popular open-
source library for artificial neural networks on Python. After
preprocessing the raw ICP data of each subject, a scalar (50
mmHg) was used for normalizing the processed ICP data.
For compiling the LSTM model, the number of units was set
to 100. The training epoch was set to 15, the mean square
error (MSE) was chosen as the loss function during the model
training, and Adam (learning rate= 0.001) [25] was selected
as the optimizer algorithm. The first 30-min ICP data was
used for starting the LSTM model. To ensure the model
training efficiency, the model takes 20 data points to predict
one data point representing the ICP data for the following 1-
min, and this predicted value was appended to the previous
input to predict the next data point until a total of 10-min ICP
data (10 data points) were generated. After the model’s acti-
vation, every 1-min of the upcoming raw ICP data (3000 data
points) was preserved for data preprocessing in a real-time

FIGURE 1. Flowchart of the data processing pipeline.

fashion. All the processed ICP data was stored historically
(by expanding the ICP record). With every last 20-min ICP
data on the ICP record, LSTM predicted a result representing
the following 10-min (10 data points) after 10-min from the
previous prediction. Simultaneously, this 10-min prediction
was classified as an incident of high or low ICP (intracranial
hypertension or intracranial normotension) compared with
the ground-true label (generated from the smoothed ICP data
within the same time frame). To determine a high or low
ICP event, if there were more than 60% of data (6 data
points) above 20 mmHg, this whole 10-min ICP segment
was labeled as a high event; otherwise, it was labeled as low.
The accuracy, sensitivity, and specificity as additional metrics
for the model validation were calculated after classification.
The model was trained recursively along with the passing
time. After each prediction, the ground-true data served as the
next input for training the model to yield an updated model.
These prediction steps were continued until the end of the
ICP signal for each patient. A flowchart is shown in Fig. 1 for
clarification.

D. STATISTICS
For analyzing the statistical significance of the differ-
ence between the actual and predicted ICP data, regres-
sion analysis was performed. The Pearson correlation was
calculated for evaluating the linear relationship, and the
Spearman rank-order correlation was used to quantify the
strength of a monotonic relationship. The RMSE, accu-
racy, sensitivity, and specificity were calculated to fur-
ther validate the accuracy of the model. By defining a
high ICP incident as a positive case, the sensitivity value
was calculated by dividing true-positive counts with the
sum of true-positive counts and false-negative counts. The
specificity value was calculated by dividing true-negative
counts by the sum of true-negative counts and false-positive
counts.
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TABLE 1. Statistical analysis of the raw ICP data and the processed ICP data.

FIGURE 2. Resulting plots illustrating the data preprocessing steps (all sampling points are plotted). A. the raw ICP data plot
(from the 6th patient); B. the resulting data plot after data thresholding; C. the resulting data plot after applying the smoothing
technique. In A, B, and C, the sampling frequency is 50 samples per second (0.02 second per sample), and the scale of the x-axis
is 106 samples D. an outcome plot of the data preprocessing steps where the sampling frequency is reduced to 1 sample per
minute (60 seconds per sample), and the unit of the x-axis is one sample per minute.

III. RESULTS
Statistical analysis of the raw ICP data and the processed ICP
data are shown in Table 1 to demonstrate the effectiveness of
the proposed data preprocessing method. Among the original
ICP data from the 6th patient, the range of the raw ICP
data was from −395.51 to 400.66 mmHg, and artifacts were
evident (Fig. 2A). After global thresholding, nearly all the
significant artifacts with abnormal high/low readouts were
removed, as shown in Fig. 2B. By applying the described data
smoothing methods, the ICP data were further smoothened,
and abnormal peaks were removed, as shown in Fig. 2C.
During this step, outliers were recognized and discarded
locally. Lastly, the processed ICP data were downsampled

(the outcome is shown in Fig. 2D). The overall trend of
ICP data for the 6th patient can be clearly observed. Con-
sidering the fact that the ICP waveform information was
prone to distortion and would yield false diagnosis pre-
dictions, it would not be much beneficial to maintain the
physiological ICP waveforms during the data preprocessing.
Instead, the features related to the ICP trend were focused
on in this study. After the data preprocessing, statistical
analysis results (Table 1) showed that the range of the pro-
cessed ICP data was close to a physically reasonable range
(from 1.60 to 31.34 mmHg) with lower SD values. For the
other patients, similar statistical analysis results are obtained,
as shown in Table 1; the effectiveness of the proposed data
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TABLE 2. Regression analysis of the ICP predictions with the actual ICP
data for all 13 patients.

preprocessing method was observed among all the patients’
data.

Table 2 shows the regression analysis performed for each
patient to reveal the high degree of similarity between the
model predictions and the actual ICP data. The Pearson
correlation coefficients of determination (R2) ranged from
0.58 to 0.97, and the p-values indicated significant correla-
tions between the predictions and the actual ICP data. The
linear relations between the predictions and the actual data
varied among the patients. According to [26], a strong linear
correlation (R > 0.7) was found in all patients. The strength
of the relation between the actual data and the predicted ICP
was shown during Spearman’s rank correlation. The minimal
Spearman’s rank correlation coefficients were 0.82, which
was considered a strong correlation (in a monotonic relation-
ship), and the p-values indicated the significant correlations
between the predictions and the actual ICP data. With a
positive Spearman correlation coefficient, when the actual
ICP data increase, the predicted ICP data increase with a
nonconstant rate, whereas the rate of increase (or decrease)
in a linear relationship is constant. When the input data to the
LSTM model is abnormally lower (or higher), the prediction
will decrease (or increase) but in a nonlinear manner. Thus,
the LSTM predictions should show more stability following
the overall trend and less likely to be affected by extreme
input values. In this study, the LSTM models were able to
follow the data trends during the entire period.

In Figure 3, the predicted ICP data (labeled in red) resulting
from the proposed method were plotted against the actual
ICP data (labeled in black) for all patients. Our models’
ICP predictions accurately followed the trend of the actual
ICP data with small errors. It is difficult to visually dis-
tinguish subtle differences between the actual ICP data and

TABLE 3. Summary of the scoring metric for each individual LSTM model
(all the 13 patients).

the predicted ICP data, even if different colors are used.
In Table 3, a total of 7127 ICP incidents (2452 high ICP
incidents) were detected among all the patients, and the num-
ber of ICP incidents ranged between 138 and 1920. Since
the ICP signals included inconsistent amounts of noise close
to the end of the data collection, these portions of noise
were truncated manually. Thus, the incident number and the
duration of hospital stays were not in a linear relationship
after the proposed data processing steps. The percentage
of high ICP incidents ranged from 0% to 69.69%, and the
average was 22.06%. The 9th patient had an absence of a high
ICP event. Thus, the sensitivity was shown with NaN (Not a
Number). After excluding the 9th patient, the overall LSTM
model performance was as follows: the average accuracy was
94.62%, the average sensitivity was 74.91%, and the average
specificity was 94.83%. Aminimum of 93.70% accuracy was
found among nine patients, and a minimum of 96.14% accu-
racy was found among seven patients. The lowest accuracy
(88.91%) was found for the 2nd patient. A minimal 87.50%
sensitivity was found among six patients, and a sensitivity of
less than 70% was found among 5 patients. The sensitivity
values were lower for the 3rd, 7th, 8th, 12th, and 13th patients
who had a low percentage of high ICP incidents (ranging from
1.72% to 6.88%). The relatively small number of high ICP
events caused underfitting problems for predicting high ICP
incidents. A minimal 92.75% specificity was found among
11 patients. Among all the patients, the minimal specificity
was 80.41% and was found in the 2nd patient who had the
highest ICP incidence rate. Since high ICP events were found
more frequently and the low ICP events were rarewith the 2nd
patient, this unbalanced event ratio could cause a relatively
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FIGURE 3. The ICP prediction plots for all 13 patients. The predicted ICP data from the proposed method are labeled in red; the actual ICP data are
labeled in black. The patient ID numbers (from 1 to 13) are labeled alphabetically from A to M.

higher sensitivity value with a lower specificity value. Among
all the patients, the average RMSE was 2.18 mmHg and
ranged from 0.89 to 4.31 mmHg, indicating that the model
predictions followed the target data trend quite well without
large errors. Besides the imbalanced data effect, the proposed
ML method can achieve high accuracy, high specificity, and
good sensitivity for all the patients for the continuous real-
time ICP event predictions in the short-term period.

IV. DISCUSSION
In this study, an effective smoothing method was developed
which selectively suppressed the native noise from raw ICP
signals. After the ICP data were preprocessed, an LSTM
model was applied to monitor the next ICP event in the

upcoming 10-min period for each patient. Despite the varying
degrees of noise and data imbalance, the LSTM model can
correctly identify ‘low’ events (with 95.62% precision) and
‘high’ events (with 90.21% precision). The low RMSE and
the strong correlation coefficients between the actual and the
predicted ICP data show that themodel follows the trend quite
well. The significant difference test results also verify that.
In a real-world scenario, varying degrees of noise/artifact will
always exist. These noise/artifact components are efficiently
compensated in the data preprocessing steps in our method.
Therefore, our method is highly feasible and practical in
performing transfer learning to new patients.

Although an experienced doctor may be able to predict the
trend when looking at the preprocessed data, this relies on
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some well-trained doctors who may not always be available.
Also, continuous ICP assessment for days and nights during
the long duration of patient stays might be challenging. Addi-
tionally, the ICP estimation obtained via visual inspection is
prone to subjective errors, especially with the existence of
noise/artifact. Thus, the ICP assessment performed by contin-
uously monitoring a screen may not be feasible or efficient.
The proposed model in this study predicts the ICP trend in
the following 10 minutes, which can provide extra assis-
tance for decision-making on arranging medical treatments.
Furthermore, continuous ICP evaluation shows that mannitol
can lower the ICP after intravenous administration [27]. The
ICP trends and predictions can be integrated into infusion
pumps for automatically controlled intravenous injections.
The availability of infusion treatments in real-time could be
useful in generating a personalized ICP monitoring/therapy
plan for future intracranial hypertension prediction tasks. The
ICP data applied in our study were collected from actual clin-
ical settings. During signal collections, any artifact or sensor
disturbance caused in surgical procedures are not labeled in
the original data. Despite the noise involvedwith the ICP data,
our method provides accurate ICP estimations continuously
with high applicability. There are only limited ICP predic-
tions using ML models, and this work would be a beneficial
step forward for future time-series machine modeling of ICP
predictions.

There are some similar studies focusing on machine learn-
ing methods for ICP event prediction. In the first study
[13], the dataset contains CT scans from 17 patients with
mild to severe TBI. The CT scan features were combined
with demographic information to predict a raised ICP event.
Their model achieved 73.7% accuracy, 76.6% specificity, and
68.6% sensitivity. In the second study [14], the dataset also
consists of CT scans collected from 475 children. Theirmodel
predicted ICP increases based on CT scans and achieved an
accuracy of 91% for the testing data. Compared to these two
studies, our model performed better and achieved 94.62%
accuracy, 74.91% sensitivity, and 94.83% specificity. The
dataset in the third study [15] was collected from 13 patients.
The mean ICP value was estimated from measured blood
pressure and cerebral blood flow volume. Nearly 7-hours
of data were analyzed (in comparison, we analyzed 1195
hours of data). Their method yielded ICP estimations with
an RMSE of 3.7 mmHg. Still, our model performed better,
and the RMSE in our work was 2.18 mmHg.

In the past, Scalzo et al. [17] used ML to improve the
temporal accuracy of finding changes in ICP values for find-
ing intracranial hypertension events. Their method relies on
monitoring both the arterial blood pressure (ABP) and ICP
and changes in the slope of a linear relationship between the
two signals [21]. However, they cannot predict the spurious
ICP events in advance. Differently, our models uniquely pro-
vided a prediction of a future (10-minutes) ICP event with
good accuracy. Another recent outcome predictionmodel was
developed using statistical and frequency features of ICP,
ABP, and carotid perfusion pressure to predict neurological

outcomes in patients with TBI using Gaussian processes
[28]. They tried to predict an intracranial hypertension event
30 minutes in advance based on 4-hour continuous data from
TBI patients. Instead of focusing singularly on predicting
classification, our model predicts ICP estimation and classi-
fies the ICP events with real-time ICP pressure signals accu-
rately alone without knowing other physiological parameters;
this capability distinguishes our work from previous studies.
Extra medical monitoring activity unavoidably increases the
cost of critical care medicine for the patients and introduces
task complexity for the medical staff. Even though ABP
data is available in the CHARIS database, the tremendous
amount of noise made the blood pressure data unbeneficial
to be included in this study. Additionally, our model could
be initialized quickly with a half-hour ICP signal from the
beginning of ICP monitoring, which provides fast installation
and flexibility. Furthermore, the short-term ICP data pre-
diction will be more practical than knowing the ICP event
classification in the long term. For the one-hour case, it may
turn out high-risk ICP events could have happened earlier or
later within an hour, but knowing the ICP events in the next
10 mins could largely reduce this uncertainty. Therefore, the
proposed method can help monitor patients’ ICP and effi-
ciently forecast the occurrence of short-term ICP escalations.

Due to the individual differences between the patients, one
conventional model/method may not always perform well for
all the subjects. Personalized healthcare is currently receiving
more andmore attention [29]. In this work, the ICP prediction
model is generated uniquely for each patient. The major
benefit of creating a unique model for each new patient is
to better fulfill personalized medicine needs. Our machine
learning pipeline can provide continuous ICP estimation for
the following 10 min at a real-time pace. Additionally, the
LSTMmodel featured with fast installation/deployment only
required the first 30 min of ICP data to be initiated. After the
activation, the predictions are generated accurately until the
release of the patients. Since the LSTMmodel is applicable to
high-dimensional data, for future research, combining addi-
tional patient information (e.g., simultaneous and continuous
blood pressure) with the current ICP readout might help
provide long-term ICP prediction (more than 10 min ahead
in time). Additionally, a pre-trained LSTM model capable
of being activated instantly without initialization could be
tested. This approach might ease the transfer learning of the
proposed method. As suggested by [30], cerebral hemody-
namics models can generate simulated ICP data to develop
a pre-trained LSTM model. This approach might improve
the efficiency of the LSTM model development. Addition-
ally, the patients’ demographic information (e.g., age, gen-
der) and anatomical features (e.g., brain width) extracted
from CT scans would be valuable for designing a patient-
specific cerebral hemodynamics model geared toward pre-
cision medicine. There is room for future improvement on
the proposed method; however, this research showed the
feasibility of using the LSTM model to predict ongoing ICP
for patients in a crucial short-term period.
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V. CONCLUSION
This study introduces an efficient artificial recurrent neu-
ral network model for the following 10-min prediction
of ICP changes and events in a real-time fashion for
1195 hours. The proposed ML method achieved good accu-
racy in terms of continuous predictions of the ICP event.
The high adaptive performance of the LSTM model has
been demonstrated among varying patients’ data. Continu-
ous ICP prediction and detection of future incidents of high
ICP might help save the lives of TBI patients. This tech-
nology can help perform timely and appropriate treatment
plans.
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