
Deep learning on resting electrocardiogram to identify
impaired heart rate recovery
Nathaniel Diamant, BS,*1 Paolo Di Achille, PhD,*1 Lu-Chen Weng, PhD,†‡

Emily S. Lau, MD, MPH,†‡x Shaan Khurshid, MD, MPH,†‡x Samuel Friedman, PhD,*
Christopher Reeder, PhD,* Pulkit Singh, BS,* Xin Wang, MBBS, MPH,†‡

Gopal Sarma, MD, PhD,* Mercedeh Ghadessi, MS,k Johanna Mielke, PhD,{

Eren Elci, PhD,{ Ivan Kryukov, PhD,{ Hanna M. Eilken, PhD,k Andrea Derix, PhD,k

Patrick T. Ellinor, MD, PhD, FHRS,†‡x# Christopher D. Anderson, MD, MMSc,‡**††‡‡

Anthony A. Philippakis, MD, PhD,*‡xx Puneet Batra, PhD,*‡

Steven A. Lubitz, MD, MPH,†‡x# Jennifer E. Ho, MD‡kk
From the *Data Sciences Platform, Broad Institute of Harvard and theMassachusetts Institute of Technology,

Cambridge, Massachusetts, †Cardiovascular Research Center, Massachusetts General Hospital,
Boston, Massachusetts, ‡Cardiovascular Disease Initiative, Broad Institute of Harvard and the
Massachusetts Institute of Technology, Cambridge, Massachusetts, xDivision of Cardiology,
Massachusetts General Hospital, Boston, Massachusetts, kBayer, AG, Research and Development,
Pharmaceuticals, Leverkusen, Germany, {Bayer, AG, Research and Development, Pharmaceuticals,
Wuppertal, Germany, #Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital,
Boston, Massachusetts, **Department of Neurology, Brigham and Women’s Hospital, Boston,
Massachusetts, ††Center for Genomic Medicine, Massachusetts General Hospital, Boston,
Massachusetts, ‡‡Henry and Allison McCance Center for Brain Health, Massachusetts General
Hospital, Boston, Massachusetts, xxEric and Wendy Schmidt Center, Broad Institute of Harvard and the
Massachusetts Institute of Technology, Cambridge, Massachusetts, and kkCardiovascular Institute and
Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston,
Massachusetts.
BACKGROUND AND OBJECTIVE Postexercise heart rate recovery
(HRR) is an important indicator of cardiac autonomic function
and abnormal HRR is associated with adverse outcomes. We hypoth-
esized that deep learning on resting electrocardiogram (ECG) trac-
ings may identify individuals with impaired HRR.

METHODS We trained a deep learning model (convolutional neural
network) to infer HRR based on resting ECG waveforms (HRRpred)
among UK Biobank participants who had undergone exercise
testing. We examined the association of HRRpred with incident car-
diovascular disease using Cox models, and investigated the genetic
architecture of HRRpred in genome-wide association analysis.

RESULTS Among 56,793 individuals (mean age 57 years, 51%
women), the HRRpred model was moderately correlated with actual
HRR (r5 0.48, 95% confidence interval [CI] 0.47–0.48). Over a me-
dian follow-up of 10 years, we observed 2060 incident diabetes mel-
litus (DM) events, 862 heart failure events, and 2065 deaths. Higher
HRRpred was associated with lower risk of DM (hazard ratio [HR] 0.79
per 1 standard deviation change, 95% CI 0.76–0.83), heart failure
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(HR 0.89, 95% CI 0.83–0.95), and death (HR 0.83, 95% CI 0.79–
0.86). After accounting for resting heart rate, the association of
HRRpred with incident DM and all-cause mortality were similar. Ge-
netic determinants of HRRpred included known heart rate, cardiac
conduction system, cardiomyopathy, and metabolic trait loci.

CONCLUSION Deep learning–derived estimates of HRR using
resting ECG independently associated with future clinical outcomes,
including new-onset DM and all-cause mortality. Inferring postexer-
cise heart rate response from a resting ECG may have potential clin-
ical implications and impact on preventive strategies warrants
future study.
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KEY FINDINGS

� A deep learning model of resting electrocardiogram
(ECG) tracings can estimate heart rate recovery (HRR),
an important measure of cardiac autonomic dysfunction
that usually requires exercise provocation testing to
ascertain.

� Deep learning–derived estimates of HRR using resting
ECG independently associated with future clinical out-
comes, including new-onset diabetes mellitus and all-
cause mortality. Specifically, individuals with impaired
HRRpred had a more than 80% greater risk of future dia-
betes and 27% greater risk of death even after account-
ing for clinical risk factors including resting heart rate.

� Artificial intelligence–enhanced interpretation of a
resting ECGmay serve as a proxy for HRR and lend insight
into the association of cardiac autonomic dysfunction
with clinical outcomes. The ability to infer postexercise
heart rate response using widely scalable methods from
a resting ECG harbors potential clinical implications,
although utility with respect to potential screening,
identification of at-risk individuals, and impact on pre-
ventive strategies will require further study.
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Introduction
Cardiac autonomic dysfunction including sympathetic over-
activation and parasympathetic withdrawal has important
clinical consequences, and can occur in the setting of diabetes
mellitus with primary autonomic failure or as a result of car-
diovascular disease (CVD), including heart failure and
ischemic heart disease. The ascertainment of autonomic
dysfunction is challenging, and traditional metrics have
required either 24-hour Holter electrocardiogram (ECG)
monitoring, tilt table testing, or exercise provocation that
may shed light on specific aspects of cardiac autonomic con-
trol.1 One suchmetric that is ascertainedwith clinical exercise
testing is heart rate recovery (HRR), which is the dynamic
decline in heart rate after an acute bout of exercise and reflects
both parasympathetic reactivation and sympathetic with-
drawal in the recovery period.2 Cardiac autonomic dysfunc-
tion as measured by abnormal HRR has been independently
associatedwith all-causemortality across healthy individuals,
as well as patients with diabetes mellitus and heart failure.3–7

Importantly, the clinical implications of abnormal HRR
appear independent of resting heart rate, clinical risk
factors, and beta-blocker use. Further, initial studies have
shown that HRR is modifiable with exercise training.8,9

Recent studies have demonstrated the potential clinical
applicability of artificial intelligence–enhanced interpreta-
tion of ECGs, including deep learning–based ECG pheno-
typing that may enhance detection of CVD beyond
clinical ECG interpretation.10 Because HRR is a clinically
relevant measure of autonomic dysfunction but requires
exercise testing that may not be immediately available at
scale or feasible in all individuals, we investigated whether
deep learning on widely available resting ECG tracings may
identify individuals with impaired HRR. Further, we sought
to examine whether predicted HRR from a resting ECG
would be associated with clinical outcomes including inci-
dent diabetes mellitus, CVD, and all-cause mortality. Addi-
tionally, we sought to examine the genetic architecture of
predicted HRR based on our resting ECG deep learning
model, since prior studies have indicated that HRR is heri-
table.11 We used a unique resource of genome-wide geno-
typing to perform a genome-wide association study of
predicted HRR in order to identify potential genetic and bio-
logical pathways regulating cardiac autonomic function.
Methods
Study sample
The UK Biobank is a cohort study of 503,325 adults aged
40–69 years recruited between 2006 and 2010.12 Of this
sample, a total of 96,567 eligible participants underwent
exercise testing with ECG monitoring at the baseline ex-
amination and 75,766 had available full-disclosure ECG
data for this analysis, including pretest resting ECG trac-
ings. We excluded individuals who withdrew consent
(n 5 6), those without exercise (n 5 2306), those missing
full-length pretest/rest phase data (n510,163), those with
nonphysiologic HRR (n 5 615), those with ECG artifact
(n 5 5637), and those missing key clinical covariates
(n 5 246), leaving 56,793 participants for analysis
(Supplemental Figure 1). For diabetes-related analyses,
an additional 8693 individuals missing fasting glucose
values were excluded. All UK Biobank participants pro-
vided electronic signed consent at recruitment, and the
study protocol was approved by the UK Biobank Research
Ethics Committee (reference number 11/NW/0382). Use
of data (under UKB applications 7089 and 28807) for the
current study was approved by the Mass General Brigham
Institutional Review Board.

Exercise testing
Exercise testing was performed using an upright cycle ergom-
eter (eBike, Firmware v1.7, GE Healthcare, Amersham,
United Kingdom) among 76,146 participants.13 In brief, par-
ticipants underwent assessment of risk factors and an exercise
protocol was selected based on predicted absolute maximum
workload. Each protocol consisted of 2 minutes of loaded ex-
ercise at constant power, followed by incremental ramp over 4
minutes to peak power. Participants were instructed to pedal
at 60 revolutions per minute with total exercise duration of 6
minutes. ECG leads were applied over bilateral antecubital
fossa and wrists prior to the start of exercise with continuous
acquisition 4-lead ECGmonitoring starting 15 seconds before
exercise until 1 minute into recovery (CAM-USB 6.5, Cardi-
osoft v6.51, GE Healthcare, Amersham, United Kingdom,
and Activwave Cardio device, CamNTech, Papworth, United
Kingdom). Continuous ECG data were recorded at 500 Hz
and stored in XML files for analysis.
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ECG waveform processing
Three-lead ECG tracings obtained at the time of exercise
testing were downloaded in XML format from the UK Bio-
bank. In order to calculate the resting, peak, and recovery
heart rate, 3 segments were extracted from each tracing
(Supplemental Figure 2): (1) pretest: the first 15 seconds of
the ECG before exercise; (2) peak: starting 5 seconds before
the beginning of the recovery phase and ending 5 seconds af-
ter the start of the recovery phase; and (3) recovery: starting
50 seconds after the beginning of the peak trace and ending
50 seconds after the end of the peak trace.

The UK Biobank provided irregularly sampled heart rate
measurements throughout the waveform. In order to get heart
rate measurements at specific times, a Python library, Bio-
SPPy, was used to calculate pretest, peak, and recovery heart
from raw ECG tracings by taking the median heart rate among
the 3 leads.14 UsingBioSPPy also enabled comparison of heart
measurements across the leads as a quality control measure.
HRR was defined as the peak minus the recovery heart rate.
Deep learning model to predict heart rate recovery
To test whether HRR could be predicted from a resting ECG
tracing, we used convolutional neural networks (CNN), a
type of neural network architecture specialized for learning
from spatially or temporally structured data (eg, images and
time series). CNNs were trained to regress HRR on traces
from the pretest resting phase of the exercise tests. To obtain
model predictions on the entire cohort, the cohort was split
into 5 folds with nonoverlapping test sets with 20% of the
ECGs. The remaining 80% of each fold was then split into
70% for training and 10% for validation. A 1-dimensional
CNN based on the DenseNet architecture was trained on
each training split.15 DenseNet is a type of CNN with
many skip connections, which have been shown to facilitate
model training using typical backpropagation-based opti-
mizers.16 The input to the CNNs were 10-second segments
of lead I of the 15 seconds of pretest trace. Each time a trace
was input into the CNN during training, a random contig-
uous 10 seconds of the 15-second trace was selected, with
the goal of aiding the model to learn invariance to the phase
of the ECG signal. The CNNs were trained to predict HRR
standardized by the split’s training sample mean and stan-
dard deviation. The loss function was the log-cosh. Each
CNN was trained with the Adam optimizer with learning
rate 0.001 decayed by a factor of 10 2 times when the vali-
dation loss failed to improve for 20 epochs of the training
data until early stopping.17 The CNNs used the swish acti-
vation and were trained with a spatial dropout rate of 10%
on the convolutional layers and a dropout rate of 50% on
the final fully connected layer.18–20 The optimizer
settings, architecture, and the swish activation were
picked using performance on each fold’s validation set
(details in Supplemental Table 1).

The features learned by the CNNs were visualized using
2 methods. First, we examined saliency maps to demarcate
areas of the ECG waveform with greatest influence on the
CNN HRR predictions. Second, we graphed median ECG
waveforms for participants with high predicted HRR
(HRRpred) and with low HRRpred. In order to eliminate po-
tential effects of resting heart rate, ECG visualizations
were stratified by resting heart rate (within 5 beats per min-
ute [bpm] range of the 25th, 50th, and 75th percentiles of
resting heart rate). Within each group, we visualized the me-
dian ECG waveform of participants in the 5th and 95th
percentile of HRRpred to examine what ECG features were
most relevant to the deep learning model.
Clinical endpoints
Participants were followed longitudinally for the occurrence
of clinical outcomes of interest, including incident diabetes
mellitus, congestive heart failure, CVD (defined as myocar-
dial infarction, heart failure, or stroke), and all-cause mortal-
ity. Outcomes were defined using combinations of self-
report, inpatient International Classification of Diseases,
9th and 10th revision, and death registry information as pre-
viously outlined.21 Start of follow-up was defined as the date
of exercise testing, and was censored at the time of last avail-
able linked hospital data. Prevalent disease was excluded for
incident event-specific analyses.
Genome-wide association study
To examine genetic correlates of HRR predicted from resting
ECG, we performed a genome-wide association study
(GWAS) among 43,722 individuals of European ancestry
with genetic information available. As described previously,
UK Biobank samples underwent genotyping using either the
UK BiLEVE or UK Biobank Axiom arrays, with imputation
using the Haplotype Reference Consortium panel and
UK10K11000 Genomes panel.22 We used BOLT-REML
v2.3.4 to assess heritability of HRRpred and BOLT-LMM23

to examine the association of single nucleotide polymor-
phisms (SNPs) with HRRpred in analyses adjusted for age,
sex, array, and the first 5 principal components of genetic
ancestry. Results were deemed genome-wide significant at
P 5 5 ! 10-8.

To determine independently significant SNPs, we performed
pruning and thresholding using Plink v1.90 (–clump-kb
5000 –clump-r2 0.01 –clump-p1 5e-8) with linkage disequilib-
rium based on the hard-called variants in our study sample
(n 5 43,722). We constructed a polygenic risk score from the
8 identified independent SNPs meeting genome-wide signifi-
cance in the HRRpred GWAS with the score being the sum of
effect size! count of effect alleles. We examined the associa-
tion with incident disease outcomes among 21,865 individuals
after excluding individuals with available HRR data in order to
specify a discrete “validation” sample. Lastly, we constructed
polygenic risk scores of HRR from previously published studies
to examine associations with HRRpred.

24,25
Statistical analysis
Clinical characteristics of our sample were summarized by
HRRpred tertile. In order to assess HRRpred model fit, we



Table 1 Baseline clinical characteristics of UK Biobank sample by predicted heart rate recovery tertile

Clinical characteristic

HRRpred tertile

Total sample Tertile 1 Tertile 2 Tertile 3

N 5 56,793 N 5 18,931 N 5 18,931 N 5 18,931

Age, years 57.1 (8.1) 57.8 (8.1) 57.5 (8.1) 56.1 (8.2)
Men, n (%) 27,578 (49%) 10,947 (58%) 8834 (47%) 7797 (41%)
Race, n (%)
White 51,977 (91%) 17,382 (91%) 17,389 (91%) 17,206 (91%)
Black 1539 (3%) 507 (3%) 477 (3%) 555 (3%)
Other 3277 (6%) 1042 (6%) 1065 (6%) 1170 (6%)

Body mass index, kg/m2 27.4 (4.4) 29.2 (4.7) 27.3 (4.1) 25.7 (3.6)
Systolic blood pressure, mm Hg 137 (17) 141 (16) 138 (17) 134 (17)
Hypertension treatment, n (%) 11,131 (20%) 5395 (29%) 3477 (18%) 2259 (12%)
Diabetes mellitus, n (%) 1225 (2%) 722 (4%) 348 (2%) 155 (1%)
Current smoker, n (%) 4708 (8%) 1750 (9%) 1517 (8%) 1441 (8%)
Total cholesterol, mmol/L 5.7 (4.9, 6.4) 5.7 (4.9, 6.5) 5.7 (5.0, 6.5) 5.7 (5.0, 6.4)
HDL cholesterol, mmol/L 1.4 (1.2, 1.7) 1.3 (1.1, 1.6) 1.4 (1.2, 1.7) 1.5 (1.3, 1.8)
Lipid-lowering therapy 10,141 (18%) 4634 (25%) 3243 (17%) 2264 (12%)
Prevalent CVD, n (%) 1521 (3%) 543 (3%) 546 (3%) 432 (2 %)
Prevalent heart failure, n (%) 136 (0.2%) 71 (0.4 %) 43 (0.2%) 22 (0.1%)
Prevalent atrial fibrillation, n (%) 757 (1%) 291 (2%) 262 (1%) 204 (1%)
Resting heart rate, bpm 71 (63, 79) 81 (75, 88) 70 (65, 75) 62 (57, 67)
Observed HRR at 50 seconds, bpm 27 (21, 34) 22 (16, 28) 28 (22, 33) 32 (26, 38)
Predicted HRR at 50 seconds, bpm 28 (25, 31) 23 ( 21, 25) 28 (27, 29) 33 (31, 34)

Data are expressed as n (%), mean (standard deviation), or median (25th, 75th percentile) as appropriate.
CVD5 cardiovascular disease; HDL5 high-density lipoprotein; HRR5 heart rate recovery; HRRpred5 predicted HRR from resting electrocardiogram convolu-

tional neural network model.
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plotted actual vs predicted HRR and examined Pearson cor-
relation coefficients, mean error, and R2 in the out-of-
sample test set. To quantify how much of the HRR variance
could be explained by HRRpred and other clinical covariates
such as resting heart rate, we used a linear regression model.
To compare the CNN model to prediction of HRR using
resting heart rate, we constructed a random forest model
and compared R2 coefficients via 5-fold cross-validation.
In secondary analyses, we defined impaired HRR as the
lowest tertile of HRR in the test set (recognizing there is
no clinically accepted cut point to define impaired HRR)
and examined HRRpred as a predictor of impaired HRR us-
ing multivariable logistic regression, with adjustment for
age and sex. We calculated the % variance explained by
HRRpred and assessed model discrimination by calculating
the c-statistic. To examine clinical correlates of HRRpred

(dependent variable) we used a linear regression model
with clinical covariates including age, sex, systolic blood
pressure, use of antihypertensive medications, body mass
index, smoking status, diabetes mellitus, and prevalent
CVD. To examine contributions of clinical covariates to
HRRpred we took a stepwise approach with P for entry
,.1 and P for retention ,.05.

We then examined the association of HRRpred with inci-
dent disease outcomes including diabetes mellitus, heart
failure, CVD, and all-cause mortality using multivariable
Cox models. Models were first adjusted for age, sex, systolic
blood pressure, use of antihypertensive medications, body
mass index, smoking status, diabetes mellitus (with excep-
tion of diabetes analyses), and prevalent CVD (with excep-
tion of CVD models). Models for incident diabetes were
additionally adjusted for fasting glucose. In secondary ana-
lyses, we accounted for resting heart rate in the multivari-
able models. We quantified the degree of information
gained with the addition of HRRpred to the multivariable
model by examining the model area under the curve with
and without HRRpred.

26 Analyses were performed using
the lifelines Python package for survival analyses. For
outcome associations, a 2-sided P value ,.05 was deemed
significant.
Results
We studied 56,793 individuals with mean age 57 6 8 years
and 51% women. Few participants had prevalent CVD,
with 1% of individuals that had a prior history of atrial fibril-
lation and 0.2% prior heart failure. Actual and predicted HRR
were 27 bpm (interquartile range (IQR) 21, 34) and 28 bpm
(IQR 25, 31), respectively. Individuals in the lowest vs high-
est HRRpred tertile were more likely to be men (58% vs 41%),
with higher body mass index (28.6 vs 25.2 kg/m2) and greater
prevalence of comorbid conditions, including treated hyper-
tension (29% vs 12%) and diabetes mellitus (4% vs 2%,
Table 1).
Deep learning to estimate HRR using resting ECG
Deep-learned HRRpred was moderately correlated with
measured HRR (Pearson r 5 0.48 [95% confidence interval



Figure 1 Representations of deep learning electrocardiogram (ECG) model behavior, part 1. Saliency maps of the ECG convolutional neural network model
with areas on the ECG waveform of greatest influence on heart rate recovery predictions shown in darker gray and black. Saliency was averaged over 200
individuals and grouped based on resting heart rate (within 5 beats/min of the 25th, 50th, and 75th percentile of resting heart rate). bpm 5 beats per minute;
Rest HR 5 resting heart rate.

Diamant et al Learning Heart Rate Recovery from Resting ECG 165
(CI) 0.47–0.48], mean error5 6.78, 95% CI 6.73–6.82, R25
0.23). HRRpred generally made conservative HRR predic-
tions; Supplemental Figure 3 shows distributions of HRR
vs HRRpred. By comparison, a random forest model of resting
heart rate as a predictor of HRR explained only 14.6% of the
variance in HRR (Pearson r5 0.38, 95% CI 0.36–0.40, mean
error5 7.17, 95%CI 7.01–7.31). To examine which portions
of the resting ECG waveform were particularly relevant for
estimating HRRpred, we examined saliency maps to illustrate
areas of the ECG waveform with greatest influence on
Figure 2 Representations of deep learning electrocardiogram (ECG)
model behavior, part 2. Median ECG waveforms for a random sample of
100 individuals, each with high (green) vs low (red) predicted heart rate re-
covery (HRRpred) (90th and 10th percentile), grouped based on resting heart
rate (HR). A: Within 5 beats per minute (bpm) of the 25th percentile of
resting HR. B:Within 5 bpm of the 50th percentile of resting HR. C:Within
5 bpm of the 75th percentile of resting HR).
HRRpred (Figure 1). We also examined ECG waveforms for
those predicted to have high vs low HRRpred. Median wave-
forms were aggregated for individuals at 25th, 50th, and 75th
percentile of resting heart rate (Figure 2). For example, for in-
dividuals with median heart rate, those in the 5th percentile of
HRRpred had longer PR intervals, greater QRS voltage, and
greater QRSwidth compared with those in the 95th percentile
of HRRpred.

When defining impaired HRR using the lowest tertile, we
found that HRRpred correctly classified 70.5% of individuals
as having impaired vs normal HRR and incorrectly classified
29.5% of individuals. We next examined HRRpred as a pre-
dictor of impaired HRR using multivariable logistic regres-
sion (Supplemental Figure 4). A univariable model with
HRRpred showed a c-statistic of 0.735. When added to a
model with age and sex, HRRpred resulted in improved
discrimination as ascertained by the c-statistic (0.657 vs
0.770, P , .0001).
Association of HRRpred with clinical correlates and
cardiovascular outcomes
In cross-sectional multivariable analyses, we found that clin-
ical correlates of lower HRRpred included older age, male sex,
higher body mass index, higher systolic blood pressure, dia-
betes mellitus, and current smoking status (Supplemental
Table 2). The strongest predictor of lower HRRpred was
higher resting heart rate. Specifically, a 1 standard deviation
(SD) higher resting heart rate was associated with a 3.6 bpm
(standard error 0.01) lower HRRpred. Taken together, clinical
covariates explained 72.4% of the variance of HRRpred.

Over a median follow-up time of 9.9 (IQR 9.8, 10.1)
years, we observed 2361 incident diabetes, 862 incident heart
failure, 1591 incident CVD events, and 2065 deaths. We
found that higher HRRpred was associated with lower risk
of incident diabetes mellitus, heart failure, CVD, and death
in multivariable-adjusted Cox models (Table 2). Specifically,
a 1 SD higher HRRpred was associated with lower risk of
new-onset diabetes (hazard ratio [HR] 0.79, 95% CI 0.76–
0.83, P , .0001), a 11% incident heart failure (HR 0.89,
95% CI 0.83–0.95, P 5 .0009), and death (HR 0.83, 95%



Table 2 Association of predicted heart rate recovery and heart rate recovery with longitudinal outcomes

Outcome Predictor

Multivariable model† Multivariable 1 resting HR

HR (95% CI) P HR (95% CI) P

Incident DM HRRpred 0.79 (0.76, 0.83) ,.0001 0.77 (0.71, 0.83) ,.0001
N 5 2060 HRR 0.87 (0.83, 0.92) ,.0001 0.94 (0.89, 0.99) .02

Incident HF HRRpred 0.89 (0.83, 0.95) .0009 0.95 (0.84, 1.08) .43
N 5 862 HRR 0.86 (0.79, 0.93) .0002 0.89 (0.82, 0.97) .009

Incident CVD HRRpred 0.89 (0.85, 0.94) ,.0001 0.95 (0.87, 1.04) .27
N 5 1591 HRR 0.87 (0.83, 0.93) ,.0001 0.90 (0.85, 0.96) .002

All-cause death HRRpred 0.83 (0.79, 0.86) ,.0001 0.87 (0.81, 0.95) .0009
N 5 2065 HRR 0.84 (0.80, 0.88) ,.0001 0.89 (0.84, 0.94) ,.0001

CVD 5 cardiovascular disease; DM 5 diabetes mellitus; HF 5 heart failure; HR 5 hazard ratio; HRR 5 heart rate recovery; HRRpred 5 predicted HRR.
†Multivariable model adjusted for age, sex, systolic blood pressure, hypertension treatment, body-mass index, smoking status, diabetes mellitus (prevalent DM
excluded from incident DM analyses), and prevalent cardiovascular disease (prevalent CVD excluded from incident CVD analyses). DMmodels additionally adjusted
for fasting glucose. Hazard ratios are expressed per 1 standard deviation change in predictor variable (SD for HRRpred was 4.7 beats/min, and for HRR was 9.8
beats/min).
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CI 0.79–0.86, P , .0001). These findings mirrored associa-
tions of observed HRR with outcomes (Table 2).

After addition of resting heart rate to the multivariable
model, the association of HRRpred with incident diabetes
mellitus and all-cause mortality were similar (diabetes: HR
0.77, 95% CI 0.71–0.83; mortality: HR 0.87, 95% CI 0.81–
0.95, P� .001 for both). By contrast, associations of HRRpred

with incident heart failure and incident CVD were attenuated
(P . .2 for both).

When added to a clinical model predicting incident dia-
betes mellitus, HRRpred improved model discrimination (c-
statistic 0.805 [95% CI 0.798–0.809] vs 0.808 [95% CI
0.802–0.816], P , .0001 for difference, Supplemental
Table 3). Interestingly, a multivariable clinical model con-
taining HRRpred had better model discrimination with respect
to future risk of diabetes (c-statistic 0.808 [95% CI 0.802–
0.816]) compared with a model containing resting HR (c-sta-
tistic 0.807 [95% CI 0.802–0.814]) as well as observed HRR
(c-statistic 0.806 [95% CI 0.800–0.812]).

We next examined the association of impaired HRRpred as
defined by the lowest HRRpred tertile (compared with highest
tertile) with incident outcomes (Figure 3). Participants with
impaired HRRpred had an 83% higher risk of future diabetes
(multivariable-adjusted HR 1.83, 95% CI 1.55–2.16) and
27% higher risk of all-cause death (HR 1.27, 95% CI 1.09–
1.49) even after accounting for resting heart rate
(Supplemental Table 4).

Genetic determinants of HRRpred
The estimated age- and sex-adjusted heritability of HRRpred

was h2 5 0.209 (standard error 0.014). The genetic correla-
tion between actual HRR and HRRpred was 0.541. In a
GWAS of HRRpred (genomic inflation factor lambda 1.048)
we found 8 genome-wide significant loci associated with
HRRpred (Table 3, Figure 4) with the following genes in
closest proximity: CCDC141, GJA1, GNB2, CAV1,
BCAG1, MYH6, KIAA1755, and C21orf37. Among these
loci, variants near CCC141, BCAT1, and KIAA1755 have
been previously related to heart rate or related traits in other
genetic studies,27,28 and variants near GJA1, GNB1, and
MYH6 have been associated with conduction system abnor-
malities and other structural heart disease (Table 3).29–31

Lastly, CAV1 has previously been associated with insulin
resistance and metabolic syndrome,32,33 in addition to HRR
and other ECG-related traits.24,34 In comparing SNPs associ-
ated with HRRpred against published GWAS on type 2 dia-
betes mellitus, we found that rs6127466 in KIAA1755 was
also associated with diabetes (P 5 1.1 ! 10-4).35

We next created 2 polygenic risk scores of HRR from
prior published GWAS to examine its association with
HRRpred. After adjustment for age, sex, array, and 5 principal
components, we found that HRR polygenic risk scores were
associated with HRRpred (P 5 1.6 ! 10-15 for SNPs identi-
fied in Ramirez and colleagues25; P 5 3.2 ! 10-31 for 22
SNPs in Verweij and colleagues24, Supplemental Figure 5).
Further, we constructed a polygenic risk score for HRRpred,
and found associations with incident diabetes (HR per 1
SD increase in polygenic risk score 0.97, 95% CI 0.96–
0.99, P5 4.1! 10-5) but not heart failure (P5 .43), mirror-
ing previous trait analyses.
Discussion
Our study demonstrates that a deep learning model of resting
ECG tracings can estimate HRR, an important measure of
cardiac autonomic dysfunction that usually requires exercise
provocation testing to ascertain. While HRRpred was only
moderately correlated with actual HRR, it was independently
associated with incident clinical outcomes, including new-
onset diabetes and all-cause mortality. Specifically, individ-
uals with impaired HRRpred had a more than 80% greater
risk of future diabetes and 27% greater risk of death even af-
ter accounting for clinical risk factors including resting heart
rate. Lastly, the genetic correlates of HRRpred include known



Figure 3 Overall cumulative incidence of cardiovascular events by predicted heart rate recovery (HRRpred) tertile. Panels show plots for future risk of A: dia-
betes mellitus, B: heart failure, C: cardiovascular disease, and D: all-cause mortality across HRRpred tertiles, with tertile 1 representing most impaired HRRpred.
Predicted HRR ranges in tertile 1: 8.9–26.2 beats per minute (bpm); tertile 2: 26.2–30.3 bpm; tertile 3: 30.3–44.2 bpm. Numbers of individuals at risk in each
tertile are shown at the bottom of each panel.
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heart rate, cardiac conduction system, cardiomyopathy, and
metabolic trait loci. Taken together, these findings support
the idea that artificial intelligence–enhanced interpretation
of a resting ECG may serve as a proxy for HRR and lend
Table 3 Genetic loci associated with predicted heart rate recovery

Chr SNP

Effect
allele /
Referent
allele EAF Gene Location Beta

2 rs142556838 C/T 0.91 CCDC141 Intron 0.3
6 6:122113614 CT/C 0.90 GJA1 0.3
7 rs221789 C/T 0.15 GNB2 5’ utr -0.2

7 rs1997571 A/G 0.41 CAV1 Intron -0.1

12 rs4963772 A/G 0.85 BCAT1 Intergenic -0.2
14 rs422068 T/C 0.64 MYH6 Intron 0.2

20 rs6127466 G/A 0.53 KIAA1755 Intron -0.1
21 rs2846867 C/T 0.98 C21orf37 Intergenic 0.1

BCAT15 branched chain amino acid transaminase 1; CAV15 caveolin-1; CCDC14
allele frequency; GJA1 5 gap junction protein alpha 1; GNB2 5 G protein subunit
nucleotide polymorphism.
insights into the association of cardiac autonomic dysfunc-
tion with clinical outcomes. The ability to infer postexercise
heart rate response using widely scalable methods from a
resting ECG harbors potential clinical implications, although
s.e. P Selected prior trait associations

06 0.055 2.30E-08 Heart rate27

78 0.052 3.30E-13 Cardiac conduction29

46 0.043 4.80E-09 Familial sinus node and atrioventricular
conduction dysfunction30,33

97 0.032 5.60E-10 Insulin resistance, metabolic
syndrome32

44 0.044 2.20E-08 Heart rate variability28

05 0.033 1.70E-10 Familial cardiomyopathy, rare variant
also associated with sick sinus
syndrome31,42

97 0.031 2.50E-10 Heart rate27

81 0.031 7.40E-09

15 coiled-coil domain containing 141; Chr5 chromosome; EAF5 estimated
beta 2; MYH6 5 myosin heavy chain 6; s.e. 5 standard error; SNP 5 single



Figure 4 Manhattan plot of genome-wide association study (GWAS) of predicted heart rate recovery. Chromosomes are represented across the x-axis, and
-log10(P value) on the y-axis. The dashed line indicates genome-wide significant P value threshold of 5 ! 10-8. Most significant genetic loci are annotated
on the plot. Sample size for GWAS was n 5 43,722.
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utility with respect to potential screening, identification of at-
risk individuals, and impact on preventive strategies will
require further study.

Recent studies have demonstrated the potential value of
deep learning methods including CNNs applied to the
ECG, which have enabled detection of silent or future atrial
fibrillation, asymptomatic left ventricular systolic dysfunc-
tion, and overall survival, among other health condi-
tions.10,36–38 CNNs in particular enable the application of a
sequence of learned spatial filters (convolutions) to data
and have proven effective on time series data including
ECG tracings. By extracting complex and subtle
information contained within the ECG, these methods have
the potential to enhance human ECG interpretation in a
meaningful way. We now show that a deep learning model
can infer postexercise HRR from a resting ECG, and that
predicted HRR is strongly and independently associated
with clinical outcomes. We note that resting ECGs are
scalable and widely available across health systems, and
that continued advances in wearable ECG monitors may
expand potential applicability even further. Whether
deployment of deep learning inferences on HRR as an
important measure of cardiac autonomic dysfunction may
be used as a screening tool remains unknown, though this
concept is well supported by a recent pragmatic,
randomized clinical trial that demonstrated that an artificial
intelligence–enabled ECG algorithm was feasibly deployed
within the primary care setting and enabled early diagnosis
of patients with a reduced ejection fraction.37

The clinical importance of HRR has long been recog-
nized, with known associations with all-cause mortality and
sudden cardiac death among relatively healthy adults.3,4

More importantly, these associations appear independent of
exercise workload, change in heart rate, or use of beta-
blockers. Prognostic value has also been demonstrated across
individuals with heart failure and left ventricular systolic
dysfunction.5,6 Although HRRpred is related to resting heart
rate, we found that associations with clinical outcomes
appear to be robust even after accounting for resting heart
rate in our study, underlining the potential additive
prognostic information contained within HRRpred. In addi-
tion to all-cause mortality, we find that HRRpred is strongly
and independently associated with future risk of diabetes
mellitus. This mirrors prior clinical studies showing that heart
rate–related measures of autonomic dysfunction were associ-
ated longitudinally with incident diabetes.39,40 Interestingly,
measures of autonomic dysfunction including HRR
improved among individuals randomized to the lifestyle
modification group in the Diabetes Prevention Program,
and were associated with lower risk of diabetes development
independent of weight change.41 These findings highlight the
clinical importance of HRR as an early harbinger of cardio-
metabolic disease and the future potential of HRRpred in
this context as a widely available screening tool.

We studied genetic determinants of HRRpred and found 8
genome-wide significant loci, which demonstrate overlap
with prior heart rate–related traits including resting heart
rate, cardiac conduction dysfunction, and heart rate vari-
ability. Further, genetic loci associated with HRRpred were
also associated with structural heart disease, as well as cardi-
ometabolic disease including insulin resistance and meta-
bolic syndrome. For example, rs6127466 in KIAA1755 has
previously been associated with resting heart rate and dia-
betes mellitus27,35; the C allele was associated with geneti-
cally lower HRRpred and higher risk of diabetes, mirroring
clinical trait associations. We also found that genetic associ-
ations of HRR identified in prior GWAS are also associated
with HRRpred. Taken together, these studies confirm plau-
sible biologic genetic associations with HRRpred that indicate
both cardiovascular and metabolic underpinnings and further
substantiate our observed associations of HRRpred with inci-
dent diabetes and cardiovascular outcomes.

Several limitations deserve mention. We recognize that
the correlation of HRRpred with observed HRR was modest,
and potential misclassification of individuals with and
without impaired HRR could be possible. However, even
with modest performance, the potential of HRRpred as a
screening tool to enrich for high-risk individuals with cardiac
autonomic dysfunction may be useful in the context of clin-
ical trials or other settings. We note that HRRpred was based
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on 3-lead resting ECG tracings prior to exercise testing, and
future refinements using 12-lead ECG may be able to
improve upon our current model. Further, the sample
included in this study was subject to potential selection
bias, given that exercise protocols among UK Biobank par-
ticipants were based on clinical risk factor assessment, and
individuals deemed at high risk did not undergo exercise
testing.13 In addition, exercise testing protocols in the UK
Biobank were not symptom-limited but rather time-limited,
which could have affected peak heart rate achieved during
the test. In the context of an observational study, we acknowl-
edge that causal inferences cannot be drawn, and while we
accounted for traditional cardiovascular risk factors, residual
confounding may be present. Lastly, future studies across the
disease spectrum may address generalizability to other sam-
ples.
Conclusion
In sum, we show that a deep learning model of resting ECG
tracings can estimate HRR, an important measure of cardiac
autonomic dysfunction. We find that HRRpred is indepen-
dently associated with new-onset diabetes and all-cause mor-
tality in a large population-based cohort. Genetic
determinants of HRRpred substantiate associations with heart
rate, cardiac conduction system, cardiomyopathy, and meta-
bolic trait loci. Taken together, our study demonstrates that
the resting ECG may serve as a proxy for HRR and lend in-
sights into the association of cardiac autonomic dysfunction
with clinical outcomes. The utility of HRRpred as a widely
scalable tool to infer postexercise heart rate response, and
subsequent screening and therapeutic implications, are
important areas of future study.
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