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Immune checkpoint inhibitors (ICIs) block inhibitory molecules, such as cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its
ligand, programmed cell death protein ligand 1 (PD-L1) and enhance antitumor T-cell
activity. ICIs provide clinical benefits in a percentage of patients with advanced cancers,
but they are usually associated with a remarkable spectrum of immune-related adverse
events (irAEs) (e.g., rash, colitis, hepatitis, pneumonitis, endocrine, cardiac and
musculoskeletal dysfunctions). Particularly patients on combination therapy (e.g., anti-
CTLA-4 plus anti-PD-1/PD-L1) experience some form of irAEs. Different mechanisms
have been postulated to explain these adverse events. Host factors such as genotype, gut
microbiome and pre-existing autoimmune disorders may affect the risk of adverse events.
Fatal ICI-related irAEs are due to myocarditis, colitis or pneumonitis. irAEs usually occur
within the first months after ICI initiation but can develop as early as after the first dose to
years after ICI initiation. Most irAEs resolve pharmacologically, but some appear to be
persistent. Glucocorticoids represent the mainstay of management of irAEs, but other
immunosuppressive drugs can be used to mitigate refractory irAEs. In the absence of
specific trials, several guidelines, based on data from retrospective studies and expert
consensus, have been published to guide the management of ICI-related irAEs.

Keywords: cancer, cytotoxic T lymphocyte-associated protein (CTLA-4), immunotherapy, immune checkpoint
inhibitor (ICI), immune-related adverse event (irAE), programmed cell death protein -1 (PD-1), PD-L1
INTRODUCTION

Immune checkpoint inhibitors (ICIs) have revolutionized the management of several advanced
cancers (1, 2) and can result in durable responses in a percentage of patients (3–5). ICIs are
monoclonal antibodies (mAbs) that block inhibitory molecules involved in regulation of immune
system pathways, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (e.g.,
ipilimumab), programmed cell death protein 1 (PD-1) (e.g., nivolumab, pembrolizumab,
cemiplimab), or its ligand programmed cell death protein ligand 1 (PD-L1) (e.g., atezolizumab,
org March 2022 | Volume 13 | Article 8045971
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avelumab, durvalumab) in the tumor microenvironment, which
leads to systemic immune cell activation (Figure 1) (6, 7).
Immune checkpoints constitute mechanisms of central
relevance in the regulation of immune response to avoid
autoimmunity and limit tissue damage (8, 9). Immune
checkpoints can be exploited by cancer cells as mechanisms of
immunoevasion and immunoresistance (10).

ICIs activate T cells and are often associated with a large
spectrum of autoimmune responses, which are commonly
referred to as “immune-related Adverse Events” (irAEs). The
pleiotropic manifestations of irAEs can affect almost any organ
(e.g., skin, colon, endocrine organs, joints, heart and lungs) and
clinicians should be able to recognize and treat the
heterogeneous manifestations of irAEs. Several comprehensive
reviews have examined in detail the toxicity of ICIs affecting the
skin (11–13), the gastrointestinal (14–16) and cardiovascular
systems (17–24), the lung (25, 26), the endocrine organs (27–29),
the joints (30, 31), the nervous (32) and the hematologic systems
(33). In this review, we summarize the most recent observations
and the complex pathophysiology and clinical characteristics of
irAEs and their putative predictors and emerging therapies.
INCIDENCE/PREVALENCE OF IrAEs

Distinct immunological mechanisms underlie anti-CTLA-4
(ipilimumab) and anti-PD-1/PD-L1 checkpoint blockade (34).
Therefore, it is not surprising that the incidence of any irAEs
with these two groups of ICIs varies greatly. The pattern,
incidence and severity of irAEs vary according to the type of
ICI (anti-CTLA-4 or anti-PD-1/PD-L1) and the treatment
schedule (monotherapy or combination therapy). It has been
estimated that the incidence of irAEs in patients treated with
anti-CTLA-4 mAb (ipilimumab) is higher than in those treated
with anti-PD-1/PD-L1 mAbs (35). The highest incidence and the
high-grade irAEs are usually associated with combination
therapy of ipilimumab plus anti-PD-1/PD-L1 (36). In a large
meta-analysis examining 16,485 patients, colitis and
Abbreviations: ACPA, anti-citrullinated peptide antibodies; B. intestinalis,
Bacteroides intestinalis; CT, chest computed tomography; CICB, combined
immune checkpoint blockade; CCP, cyclic citrullinated peptide; CTLA-4,
cytotoxic T-lymphocyte-associated protein 4; DMARDs, disease modifying anti-
rheumatic drugs; FMT, fecal microbiota transplant; G-CSF, granulocyte colony-
stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor;
GNAL, guanine nucleotide-binding protein G subunit alpha; HLA, human
leukocyte antigen; ICIs, immune checkpoint inhibitors; irAEs, immune-related
adverse events; IBD, inflammatory bowel disease; ITM2B, integral membrane
protein 2B; IVIG), intravenous immunoglobulin therapy; MRI, magnetic
resonance imaging; MACE, major adverse cardiac events; mAbs, monoclonal
antibodies; MCP-1, monocyte chemoattractant protein-1; NCI-CTCAE, national
cancer institute common terminology criteria for adverse events; NSCLC, non-
small cell lung cancer; PD-1, programmed cell death protein 1; PD-L1,
programmed cell death protein ligand 1; PRS, polygenic risk score; RCT,
randomized controlled trial; RF, rheumatoid factor; SS-A, Sjogren’s syndrome
antibodies anti-Ro; SS-B, Sjogren’s syndrome antibodies anti-La; TG,
thyroglobulin; TPO, thyroid peroxidase; Trm, tissue-resident memory T; 18F-
FDG, tomography/computed tomography with 2-[18F] fluorodeoxyglucose;
TNF-a, tumor necrosis factor-a; T1D, type 1 diabetes.
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hypophysitis were more frequent with ipilimumab, while
diabetes and pneumonitis were more frequent with anti-PD-1/
PD-L1 (35). Colitis, hepatitis, pancreatitis, and ICI-associated
diabetes are more likely to be high-grade (37).
TIMING OF IrAEs

In melanoma patients treated with ipilimumab, the time of onset
of skin-related irAEs is two to three weeks after ICI initiation,
gastrointestinal and hepatic irAEs after six weeks, and endocrine
irAEs after six to nine weeks (38, 39). Most high-grade irAEs
A

B

FIGURE 1 | Schematic representation of immune mechanisms of immune
checkpoints and immune checkpoint inhibitors (ICIs). (A) T cells, particularly
CD4+ T cells in the lymph node, recognize tumor antigens in the context of
MHC molecules or antigen-presenting cell (APC) and T cell receptor (TCR) on
T cells. The interaction between CD80 (also known as B7-1) or CD86 (also
known as B7-2) on APC and CD28 mediates T cell co-stimulation in
conjunction with TCR signals. CTLA-4 on activated T cell interacts with both
ligands (i.e., CD80 or CD86) with higher affinity and avidity than CD28 and,
unlike CD28, sends an inhibitory signal to T cell. Monoclonal antibodies anti-
CTLA-4 (i.e., ipilimumab) block this inhibitory pathway restoring T cell activity.
(B) T cells, particularly cytotoxic CD8+ T cells, which recognize tumor
antigens in the context of MHC class, result in the adaptive expression of PD-
L1 on the surface of tumor cells. The interaction between PD-1 and PD-L1
negatively regulates the anti-tumor T cell response. This interaction is useful in
preventing autoimmunity in physiological conditions, whereas cancer cells
exploit this mechanism to escape from immune system upregulating PD-L1
expression. Anti-PD-1 (i.e., pembrolizumab, nivolumab and cemiplimab) and
anti-PD-L1 mAbs (i.e., atezolizumab, avelumab and durvalumab) block this
inhibitory pathway restoring T cell activity.
March 2022 | Volume 13 | Article 804597
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resolve in two to five weeks with immunosuppression but some,
such as arthritis, tend to persist (40). Endocrine irAEs (e.g.,
diabetes, thyroid dysfunctions) are usually irreversible and
require prolonged hormone replacement therapy (39).

Fatal ICI-related irAEs tend to occur in the early phases of
therapy and the incidence varies with the type of treatment.
Fatalities are more common with combination therapy than with
anti-PD-1/PD-L1 or anti-CTLA-4 (20). Fatality rates were
approximately 39% for myocarditis and 5% for colitis (20).

There are some similarities between autoimmune
manifestations of ICI-related irAEs and their spontaneous
autoimmune counterparts but also several differences (41). For
instance, ICI-induced diabetes can manifest with diabetic
ketoacidosis, similar to T1D (42). The frequency of
autoantibodies in ICI-induced diabetes is lower than in T1D
(42, 43). ICI-induced hyperthyroidism is typically found
at presentation and usually progresses to hypothyroidism
(44, 45). ICI-induced colitis differs from inflammatory bowel
disease (IBD) because is usually reversible (14).
LONG-TERM ADVERSE EFFECTS OF ICIs

ICIs have been successfully introduced in the treatment of
various cancers only a few years ago. Therefore, there is
limited experience on the long-term side effects of ICIs. Acute
irAEs have thus far attracted major attention owing to their
dramatic clinical presentation and need for urgent treatment.
However, increasing evidences indicate that chronic irAEs are
more prevalent than originally recognized (46, 47).
Endocrinopathies (such as ICI-induced hypothyroidism and
diabetes) and rheumatological toxicities (such as arthritis) are
the most common chronic irAEs (48, 49). Endocrinopathies
provide classical examples of irreversible damage of the relevant
hormone-secreting cells. These syndromes are usually
irreversible and require the use of lifelong exogenous hormone
replacement therapy (45, 50). On the other hand, ICI-induced
arthritis provides a classical example of smouldering
inflammation in which ICIs trigger persistent subacute or
chronic arthritis, closely mimicking that of rheumatoid
arthritis (48, 51).

Several experimental studies have demonstrated that CTLA-4
and PD-1/PD-L1 axes are critical negative regulators of
atherosclerosis (52–55). A recent retrospective study by Drobni
et al. reported an association between ICIs with accelerated
progression of atherosclerosis and cardiovascular events (56).
They found increased atherosclerotic inflammatory activity 5
months after ICI therapy (57). Another retrospective study on 20
patients with melanoma found by positron emission
tomogr aphy / compu t ed t omog r aphy w i th 2 - [ 1 8F ]
fluorodeoxyglucose (18F-FDG) that ICI therapy induced
inflammatory activity in large arteries (57). The results of these
two studies will certainly influence the approach to
cardiovascular care for individuals receiving ICIs. Cardiac
evaluation before initiation of ICI treatment should focus on
long-term prevention rather than focusing only on early irAEs.
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Moreover, cancer trials should prospectively examine not only
early but also late cardiovascular events (58).
PATHOPHYSIOLOGY OF IrAEs

Several immunopathogenic mechanisms (i.e., cellular
autoimmunity, autoantibodies, complement activation, cytokines/
chemokines release, genetics and alterations of the gut microbiome)
have been suggested to be involved in the development of ICI-
related irAEs (Figure 2).

Cellular Autoimmunity
The importance of T cells in the mechanisms of ICI-associated
irAEs is supported by genetic loss-of-function studies in mice
(67, 68). Autoreactive T cells can be activated by shared antigens
between tumor and peripheral tissues. Shared T cell clones in the
tumor, heart, and skeletal muscle were found in melanoma
patients, who died from fatal myocarditis and myositis after
treatment with anti-CTLA-4/PD-1 mAbs (76). The exact
mechanism of cardiac toxicity remains unknown, but it has
been suggested that shared antigens may drive both antitumor
responses and organ-specific autoimmunity (24). Shared T cell
antigens were found in the skin and tumor of lung cancer
patients who developed skin toxicities (77). Similarly, vitiligo is
common in melanoma patients treated with ICIs (78). Recently,
Lozano and collaborators demonstrated that in melanoma
patients treated with anti-PD-1 or anti-PD-1 and anti-CTLA-4
combination, two pretreatment factors in peripheral blood -
activated CD4 memory T cell abundance and TCR diversity -
were associated with severe irAEs development (79).

CTLA-4 is a modulator of Tregs (80) and these cells act as
gatekeepers for the prevention of autoimmunity. The role of
Tregs in ICI-induced irAEs deserves additional studies (81). It
has been suggested that tissue-resident memory T cells (Trm) in
tumor microenvironment can play a role in irAEs (82). Single-
cell analysis of ICI-associated colitis patient samples found
expansion of CTLA-4+ Treg cells and differentiation of CD8
Trm cells to cytotoxic effector cells (83).

Humoral Immunity
Anti-thyroglobulin (TG) and/or anti-thyroid peroxidase (TPO)
autoantibodies are found in 13–70% of patients who develop ICI-
related thyroid dysfunction (44, 59, 60, 84). Thyroid
autoantibodies increase the risk of ICI-induced thyroid
dysfunction (85–87) and b-cell autoantibodies are found in
approximately 50% of patients with ICI-induced diabetes (42,
43, 88). Autoantibodies anti-BP180 can be found in the majority
of patients with anti-PD-L1-associated bullous pemphigoid (61).

Human pituitary cells express CTLA-4 at both mRNA and
protein levels and in an animal model the injection of anti-
CTLA-4 antibodies induced lymphocytic infiltration and
complement activation of the pituitary gland (62). Anti-
pituitary antibodies were detected only in patients with
ipilimumab-associated hypophysitis but not in those without
hypophysitis (62). Autoantibodies against guanine nucleotide-
March 2022 | Volume 13 | Article 804597
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binding protein G subunit alpha (GNAL) and integral
membrane protein 2B (ITM2B) have been found associated
with ICI-induced hypophysitis (63). These findings implicate
both autoantibodies and T cell-mediated processes in ICI-
associated pituitary destruction (89). Overexpression of
pituitary CTLA-4 was reported in a patient with severe
ipilimumab-associated hypophysitis (90). It has been suggested
that hypophysitis is caused by complement activation from
endogenous autoantibodies and/or exogenous IgG1 anti-
CTLA-4 (ipilimumab) (62). IgG1, used in ipilimumab,
activates the classic complement pathway explaining the
elevated frequency of pituitary gland damage compared with
its occurrence in patients treated with anti-PD-1/anti-PD-L-1
IgG4 antibodies (91, 92).
Frontiers in Immunology | www.frontiersin.org 4
Anti-acetylcholine receptor antibodies can be found in
approximately 50% of patients with ICI-induced myasthenia
gravis (64). Patients with ICI-induced arthritis are commonly
rheumatoid factor (RF) and cyclic citrullinated peptide (CCP)
negative (69). Unfortunately, in the majority of these studies the
presence of autoantibodies prior to ICI initiation has not
been evaluated.

Cytokines and Chemokines
Cytokine release syndrome (CRS) is a systemic inflammatory
disorder characterized by a massive release of cytokines (93). It
can present with a variety of symptoms ranging from mild (e.g.,
fever, fatigue, nausea, rash) to life threating, sometime fatal. A
recent analysis of WHO global pharmacovigilance database,
FIGURE 2 | Proposed immunopathogenic mechanisms for the development of immune checkpoint-induced immune-related adverse events. A proposed
mechanism postulates that self-antigens (e.g., heart and skeletal muscle antigens) activate T cell clones driving antitumor responses and organ-specific autoimmunity
(24). Thyroid autoantibodies may be involved in patients who develop thyroid dysfunction (44, 59, 60), ICI-associated diabetes (42, 43), bullous pemphigoid (61),
hypophysitis (62, 63), and myasthenia gravis (64). Cytokines/chemokines released from immune cells can cause immune-mediated tissue damage (12, 65, 66). The
pivotal role of genetic factors in the development of ICI-associated irAEs, originally highlighted in mice (67, 68), has been confirmed in patients with arthritis (69), ICI-
associated diabetes (42, 43, 70), and pruritus (71). There is growing evidence that gut microbiome may play a role in the development of experimental irAEs (72, 73)
and of colitis in patients with melanoma (74, 75). irAEs contributing to most fatalities are presented in red.
March 2022 | Volume 13 | Article 804597
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found that ICI-related CRS can occur in ICI-treated patients
(94). On similar ground, cytokines and chemokines are involved
in different irAEs. Increased baseline IL-17 concentrations were
temporally associated with subsequent development of ICI-
associated colitis (65). Increased IL-6 and IL-10 concentrations
were found in patients with skin irAEs (12). Increased
concentrations of IL-1b, IL-2, and GM-CSF at baseline have
been associated with ICI-related thyroid dysfunction (66). High
concentrations of T cell chemotactic chemokines (i.e., CXCL9
and CXCL10) are associated with irAEs (95). A recent study in
patients with melanoma treated with combined immune
checkpoint blockade (CICB) targeting CTLA-4 and PD-1 who
developed ≥ grade 3 colitis demonstrates an intestinal
overexpression of IL1b and TNF compared to normal tissue (96).

Genetic Factors
Genetic factors influence the development and progression of
several autoimmune disorders. The importance of genetic factors
in the development of ICI-associated irAEs was originally
highlighted by genetic loss-of-function studies in mice (67, 68).
Thus, the possibility exists that genetic susceptibility may play a
role in the pathogenesis of irAEs. Experimental studies have
demonstrated that CTLA-4 and PD-1 deletion or inhibition can
cause autoimmune myocarditis with lymphocytic infiltration of
cytotoxic T-cells (67, 97–99). The majority (≅ 52%) of patients
with ICI-related arthritis possess the RA-associated HLA-DR
susceptibility allele (69). The majority of patients with ICI-
related diabetes had at least one HLA-DR risk allele (70).
HLA-DR4 predominance has been reported in patients with
ICI-induced diabetes (42, 43). HLA-DRB1*04:05 has been
associated with ICI-induced arthritis (69) and HLA-
DRB1*11:01 with pruritis (71). A multicenter study found that
a polygenic risk score (PRS) for thyroid disorders is associated
with developing thyroid irAEs in patients with non-small cell
lung cancer (NSCLC) treated with anti-PD-1 or anti-PD-1 and
anti-CTLA-4 combination (84). In this study, thyroid irAEs were
associated with better response to ICIs. Moreover, in a phase 3
randomized controlled trial (RCT), it was found that PRS for
dermatological autoimmune diseases were associated with
increased risk for skin irAEs and longer overall survival in
bladder cancer patients treated with atezolizumab (100).

Microbiome
The multiple interactions among tumor microenvironment,
microbiome, host factors, and response to ICI, and the
development of ICI-associated irAEs are largely unknown
(101). There is evidence that the gut microbiome might play a
role in tumor response (102–104). For instance, gut microbiome
modulates response to anti-PD-1 in melanoma patients (105)
and epithelial tumors (103). Mice repleted with B. fragilis less
likely developed irAEs after exposure to anti-CTLA-4 inhibitors
(72). Moreover, microbiota-derived peptides from Bacteroides
induced autoimmune myocarditis (73).

Melanoma patients treated with ipilimumab and with baseline
gut microbiome enriched for Faecalibacterium and other
Firmicutes had longer progression-free survival and overall
survival (74). In a prospective study of melanoma treated with
Frontiers in Immunology | www.frontiersin.org 5
ipilimumab, patients with abundant Bacteroidetes phylum less
likely developed ICI-induced colitis (75). A recent study found
that gut microbiota signatures are associated with irAEs to CICB
targeting CTLA-4 and PD-1 in melanoma patients and in
experimental models (96). In this study, the rate of any grade of
irAEs was high (93.5%) and 49% of patients experienced severe
(≥ grade 3) irAEs. The alpha diversity of the gut microbiome in
patients who did or did not develop severe irAEs was similar.
However, Bacteroides intestinalis (B. intestinalis) were more
abundant in patients with ≥ grade 3 irAEs versus those who did
not. In melanoma patients who developed colitis there was an
overexpression of mucosal IL1b and IL-17, but not TNF. These
fascinating results were corroborated by results in experimental
models in which mice, gavaged with different strains of B.
intestinalis following gut sterilization with antibiotics, showed
overexpression of Il1b. Moreover, fecal microbiota transplant
(FMT) in antibiotic-treated animals using fecal material from
human donors harboring high endogenous levels of B. intestinalis
induced ileal overexpression of Il1b after administration of CICB.
Collectively, these human and experimental studies highlight a
contribution of commensal microbiota to intestinal damage
associated with CICB.
PUTATIVE BIOMARKERS OF IMMUNE-
RELATED ADVERSE EVENTS

Several studies have or are evaluating the possibility of identifying
biomarkers of irAEs associated with different types of ICIs. Table 1
lists genetic, clinical, immune, microbial and tumor biomarkers
that have been linked to irAEs. In particular, some studies have
identified an association between HLA and irAEs. The association
of baseline antibodies (85–87, 109, 110), baseline cytokine levels
(65, 66, 111, 112), and immune cell changes (79, 83, 113–116)
suggests that humoral and cellular immunity play a role in some
specific irAEs. In particular, activated CD4 memory T cell
abundance and TCR diversity in peripheral blood are associated
with severe irAEs development in patients with melanoma (79).
The emerging results from parallel human and experimental
models highlight a contribution of specific gut microbiota to the
development of intestinal irAEs (74, 75, 96). It should be
emphasized that the small size of these studies requires validation
in larger cohorts of patients with different types of cancer.
CLINICAL MANIFESTATIONS OF ICI
ASSOCIATED AUTOIMMUNITY

The results of a meta-analysis of 35 trials demonstrated the
extreme heterogeneity of manifestations and severity of
autoimmune complications of ICIs (35). Figure 3 illustrates
that irAEs can affect nearly every organ in association with ICIs.

Skin Rash
Skin manifestations during ICI therapy show the highest
incidence of irAEs and appear higher in patients with
March 2022 | Volume 13 | Article 804597
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melanoma than in patients with other malignancies (124). ICI-
related skin manifestations include maculopapular, eczematous,
psoriasiform, lichenoid, and bullous eruptions, frequently
associated with pruritus (125). Vitiligo associated with anti-
PD-1 therapy differs from canonical vitiligo because of a
patchy distribution, occurring in sun-exposed areas, and
lacking the Köebner phenomenon (126). Bullous skin disease
tends to occur in patients treated with anti-PD-1/PD-L1 rather
than ipilimumab (127). Rare cases of severe Stevens-Johnson
syndrome/toxic epidermal necrolysis have been reported (128).

Most patients have mild skin reactions, while severe (grade
3-4) toxicities are found in a low proportion of patients (5.8%
for the ipilimumab + nivolumab combination, even lower
values for anti-PD-1 monotherapy), significantly lower than
the toxicities of other sites (such as hepatic or gastrointestinal)
(129). The management of skin toxicities needs specific
treatment for the type and severity of the condition: topical
glucocorticoids are effective in treating low-grade skin
reactions, whereas high-grade events must be treated with
systemic glucocorticoids.

Diarrhea and Colitis
Diarrhea is the most frequent manifestation of gastrointestinal
toxicity from ICI and is one of the main causes of emergency
department visits for patients treated with ICI (130). Colitis
occurs more commonly with ipilimumab and with CICB than
Frontiers in Immunology | www.frontiersin.org 6
with anti-PD-1/PD-L1 mAbs alone (120, 131). No differences
have been described in the incidence of diarrhea/colitis in
different types of malignancy (132). The presence of ulcerative
lesions appears to be related to a greater probability of
glucocorticoid resistance and greater severity of diarrhea (133).
Lesions primarily affect the distal colon, but lesions can occur in
more proximal tracts. Colitis-associated autoantibodies are
seldom present (134). Prophylactic budesonide is not effective
against ipilimumab-induced colitis (135). Infliximab induces a
shorter time to symptom resolution than glucocorticoids (136).
Vedolizumab (an antibody directed against a4-b7 integrin), has
also been used as glucocorticoid sparing agent (137). There is
some evidence that early treatment with either infliximab or
vedolizumab reduces symptom duration and glucocorticoid
administration (138). Several clinical trials are evaluating the
safety and efficacy of infliximab (NCT05034536, NCT03293784,
NCT04407247) or certolizumab (NCT03293784) in clinical
response of ICI-induced colitis.

Recent clinical and experimental models indicate that higher
abundance of B. intestinalis is associated with high grade-colitis in
melanoma patients treated with CICB (96). The gut microbiome
appears to mediate intestinal toxicity via IL-1b and treatment of
mice with an anti-IL-1R antagonist (anakinra) reduced intestinal
inflammation. A clinical trial is evaluating the safety and efficacy of
anakinra on irAEs and cytokine profiles in patients with different
cancers (NCT04576429).
TABLE 1 | Putative predictors of immune adverse events associated with immune checkpoint inhibitors.

Genotype HLA-DR4 association with ICI-associated diabetes in patients with a variety of cancers treated with anti-PD-1/PD-L1 (42).
HLA-DR4 association with ICI-associated diabetes in patients treated with anti-PD-1/PD-L1 (43).
HLA-DRB1*04:05 association with ICI-induced arthritis in patients with a variety of cancers (69).
HLA-DRB1*11:01 association with ICI-induced pruritis and HLA-DQB1* 03:01 and colitis in patients with non-small lung cancer (NSCLC) or
melanoma treated with anti-PD-1, anti-CTLA-4 or their combination (71).

Pre-existing
autoimmune disease

irAEs are more frequent and occur sooner in patients with autoimmune disease treated with anti-PD-1 (106, 107).
Pre-existing autoimmune disease associated with modest increases in hospitalization with irAEs in patients treated with ICIs (108).

Baseline
autoantibodies

Thyroid autoantibodies (anti-TPO, anti-tg) at baseline increases the risk of thyroid dysfunction in patients treated with nivolumab or
pembrolizumab (85–87, 109).
Baseline autoantibody signatures, such as those targeting TNF-a signaling pathways may be predictive of irAEs in patients with melanoma
treated with anti-CTLA-4, anti-PD-1 or their combination (110).
Skin irAEs may be more frequent in patients with positive RF at baseline in patients with NSCLC treated with nivolumab or pembrolizumab (87).

Baseline cytokine
levels

Baseline IL-17 serum levels may predict ICI-induced colitis in patients with melanoma treated with ipilimumab (65).
Baseline IL-6 serum levels were associated with higher risk of toxicity in melanoma patients treated with ipilimumab (111).
Cytokine toxicity score predictive of severe irAEs in patients with melanoma treated with ipilimumab, anti-PD-1 or their combination (112).
Baseline serum levels of IL-1b, IL-2, and GM-CSF predict thyroid dysfunction in patients with a variety of cancers (66).

Immune cell changes Reduction in circulating B cells, increase in CD2lo PD-1+ B cells and plasmablasts precede adverse events in patients with melanoma treated
with ipilimumab, anti-PD-1 or their combination (113).
Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio may predict appearance of irAEs in patients with NSCLC treated with anti-PD-1/
PD-L1 (114).
High baseline absolute eosinophil count (AEC) (> 135/ml) correlates with the risk of irAEs in patients with melanoma, renal cell carcinoma, and
NSCLC treated with anti-CTLA-4 (115, 116).
High proliferative index in circulating effector and control memory CD8+ T lymphocytes at early time points in melanoma patients treated with
CICB who developed ≥ grade 3 irAEs (96).
Lower expression of surface CD28 and CD27 on circulating CD4+ and CD8+ effector T lymphocytes of melanoma patients treated with CICB
who did not develop severe irAEs (96).
Increased activated CD4 memory T cells and TCR diversity in peripheral blood are associated with severe irAEs in patients with melanoma
treated with anti-PD-1 or anti-PD-1 and ipilimumab combination (79).

Microbiome Bacteroidetes phylum may be protective for development of colitis in melanoma patients treated with ipilimumab (75).
Faecalibacterium may be predictive of colitis in melanoma patients treated with ipilimumab (74).
Bacteroides intestinalis is associated with ≥ grade 3 colitis in patients with melanoma treated with combined ipilimumab and PD-1 blockade (96).

Tumor burden High tumor burden is associated with higher risk of severe irAEs in patients with NSCLC (117).
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FIGURE 3 | The spectrum of organs affected by irAEs associated with immune checkpoint inhibitors (ICIs) is very broad. Shown are the most common immune-
related adverse events (irAEs) that clinicians can encounter in cancer patients treated with ICIs. irAEs contributing to most fatalities are highlighted in red [modified from
(19)]. ICI-associated diabetes is almost exclusively seen in patients treated with anti-PD-1/PD-L1 antibodies, and rarely with ipilimumab monotherapy (42, 118). By
contrast, hypophysitis occurs more often in patients receiving ipilimumab (119). Colitis occurs more commonly with ipilimumab and with combined immune checkpoint
blockade than with anti-PD-1/PD-L1 alone (112, 120). Endocrinopathies (such as hypothyroidism, hypophysitis, and adrenal insufficiency) and rheumatological
disorders have the highest incidence of development into subacute/chronic toxicity (49). Endocrine toxicities, unlike many other irAEs, are not managed using high-
dose glucocorticoids, which have no effect on either initial severity and resolution (121, 122). Although acute myocarditis was the first cardiovascular irAEs associated
with ICIs (123), an important unanswered question relates to the long-term cardiovascular sequelae of ICIs (49, 56, 57).
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Hepatitis and Pancreatitis
Immune-mediated liver injury caused by ICIs can present with
fatigue, fever, nausea, and jaundice. The severity of hepatic
toxicity can be classified in relation to the increase in liver
enzymes (AST and ALT) and bilirubinemia. The incidence of
irAEs varies between 3% to 9% for anti-CTLA-4, and 0.7% to
1.8% for anti-PD-1/PD-L1 (139). CICB (ipilimumab +
nivolumab) is associated with an incidence of any-grade
hepatotoxicity of 29% and high-grade hepatotoxicity of 17%
(39). Approximately 50% of the patients with ICI-associated liver
injury have antinuclear antibodies and 19% have anti-smooth
muscle antibodies (140). Pancreatitis can also occur in response
to ICIs (141).

Thyroiditis
Thyroid dysfunction is the most common endocrinologic irAEs
due to ICIs (27, 29, 45). The median time of onset is
approximately 6 weeks after the start of immunotherapy. ICI-
associated thyroid dysfunction is more common after anti-PD-1/
PD-L1 antibodies or combination therapy than with ipilimumab
alone (41, 142, 143). Patients receiving ICIs should undergo
regular thyroid testing (i.e., TSH and T4). Patients usually
experience a first transient phase of hyperthyroidism, followed
by euthyroidism or hypothyroidism (45, 144). The presence of
thyroid autoantibodies (anti-TPO and anti-TG) before ICI
treatment increases the risk of thyroid dysfunction in patients
treated with nivolumab or pembrolizumab (85–87, 109). The
mechanism responsible for ICI-induced thyroid dysfunction is
unclear. It has been hypothesized that polymorphic variants of
the PDCD1 in some individuals might predispose them to an
increased risk of thyroid dysfunction (145). It is also unknown
whether thyroid autoantibodies are the cause of thyroid
dysfunction or the result of an immunological response to
thyroid antigens released during ICI-related thyroiditis (146).
ICI therapy can be continued with close follow-up and
monitoring of TSH and T4 in the context of thyroiditis. In the
presence of more severe irAEs, ICI should be held until
symptoms resolve. Glucocorticoids do not improve the clinical
course of thyroid dysfunction (121).

Hypophysitis
Hypophysitis is a specific complication of ipilimumab treatment
and rarely occurs in anti-PD-1/PD-L1-treated individuals (62,
91, 92). Most patients present with headache and/or fatigue (147,
148). Magnetic resonance imaging (MRI) of the brain highlights
an expansion of the pituitary gland and/or infundibulum (147–
149). Enlargement on MRI precedes the clinical diagnosis of
ipilimumab-related hypophysitis (147). The pituitary gland
decreases in size over 4-12 weeks leading to atrophy (147, 150,
151). Importantly, a normal MRI does not completely rule out
hypophysitis, and therapy should be based on clinical symptoms
and pituitary hormone levels (152). Glucocorticoids do not
improve the degree or duration of hypophysitis (149).
Hormone deficiencies are managed with the corresponding
hormone replacement (149).
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Diabetes
Although not very common (42), PD-1 pathway blockade can
cause autoimmune ICI-induced diabetes mellitus, which usually
(≅ 70%) presents as diabetic ketoacidosis (29, 50, 153–156). ICI-
associated diabetes rarely occurs in patients treated with
ipilimumab (42, 118). In these individuals, C-peptide levels are
very low and approximately 50% of patients have T1D associated
antibodies (anti-glutamic acid decarboxylase) (43). Human
leukocyte antigen risk alleles (HLA-DR4, -DQ8, -DR3, and
DR2) can be associated with high frequency of spontaneous
T1D (157). In ICI-induced diabetes, there is a predominance of
HLA-DR4, which is present in approximately 70% of patients.
Other HLA alleles associated with high risk of spontaneous T1D
are not overrepresented in ICI-associated diabetes (42, 43). ICI-
induced diabetes tends to be permanent (50) and attempts with
glucocorticoids administration showed no recovery (158).

Pneumonitis
Early clinical trials and meta-analyses suggested an incidence of
ICI-associated pneumonitis of 3-5% (159–163); recent studies
examining real-world populations suggest this could be as high
as 13-19% (164–166). While the incidence of all-grade
pneumonitis appears to be higher in the real-world population
as opposed to clinical trials, the percentage of ≥ grade 3
pneumonitis appears to be relatively consistent across both
populations (163–165, 167).

Immune-related pneumonia represents one of the main
causes of death during treatment with anti-PD-1/PD-L1 alone
and the fourth cause during combined treatment with
ipilimumab plus anti-PD-1/PD-L1 (14% of total cases) after
colitis, myocarditis and hepatitis (20). Anti-CTLA-4 treatment
causes a lower incidence of immune-related pneumonia
compared to treatment with anti-PD-1/PD-L1 alone (168).
Immune-related pneumonia are usually associated with CICB
(169). One-third of these patients are asymptomatic, whereas the
others present with dyspnea and/or cough (159). Radiographic
findings on chest computed tomography (CT) do not highlight
specific characteristics (159, 170). Previous thoracic radiotherapy
and previous lung disorders are predictors of pneumonitis
associated with anti-PD-1 (171, 172). The differential diagnosis
of these patients should be made after ruling out other causes of
similar lung involvement. This issue is particularly relevant
during the current outbreak of COVID-19 (173). Guidelines
on the management of ICI-related pneumonitis have been
published from ESMO (174) and ASCO/NCCN (175–177). A
clinical trial is evaluating the safety and efficacy of infliximab
versus intravenous immunoglobulin therapy (IVIG) in treating
glucocorticoid-refractory pneumonitis (NCT04438382).

Arthritis
Arthritis is not very common (≅ 4%) in patients with ICIs (178).
A systematic review encompassing 372 patients found that the
time of onset of arthritis ranged from 1 day to 53 months
(median time: 4 months) (51); 49% had polyarthritis, 17%
oligoarthritis, 10% arthralgia, and 21% polymyalgia rheumatica
(178–181). More than half of patients had a “rheumatoid
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arthritis-like” presentation (51). RF and anti-citrullinated
peptide antibodies (ACPA) are present in ≅19% of patients
(51, 180, 182). Treatment of irAEs should be guided by
severity (183). Most patients can be managed with non-
steroidal anti-inflammatory drugs or intra-articular
glucocorticoid injections. More severe patients, especially those
who received CICB, require systemic glucocorticoids (182).
Arthritis often persists even after stopping ICIs and may
require prolonged immunosuppression with biological disease-
modifying anti-rheumatic drugs (DMARDs) (40). Diagnostic
and management algorithms for rheumatoid irAEs have been
recently proposed (183).

Myositis
ICI-related myositis can manifest in the form of acute or
subacute myalgia or muscle weakness (183, 184). When
concomitant myocarditis and myasthenia gravis-like symptoms
(e.g., ptosis and oculomotor weakness) occur, fatality rates are
relatively high (185). Muscle biopsy shows inflammation and
myonecrosis (184). Myositis-associated antibodies (anti-TIF1-y,
SRP, Ro52; PL-7, PL-12, or SRP) can be detected in ICI-
associated myositis (186). Anti-striated muscle antibodies can
be found even without clinical evidence of myasthenia gravis
(187, 188). Glucocorticoids are the first-line therapy for ICI-
associated myositis. Initial dosing can range from 0.5 mg/Kg
prednisone daily up to 2,000 mg IV methylprednisolone (183).
IVIG and plasmapheresis have been used in refractory cases
(183, 184, 186).

Myocarditis
The true incidence of ICI-associated myocarditis remains
uncertain. Early ICI-based cancer trials did not prospectively
screen for myocarditis (189). Moreover, because the diagnosis of
myocarditis can be difficult, cases could easily be missed. Recent
reports suggest that the incidence of ICI-associated myocarditis
is 0.27% to 1.14% (76, 190). Myocarditis is an infrequent, but
often lethal complication of ICI therapy (76, 191). Elevated
troponin level and abnormal electrocardiogram were found in
the majority of these patients with ICI-associated myocarditis.
Interestingly, half of these patients showed preserved ejection
fraction (190). The clinical manifestation of ICI-associated
myocarditis is variable. Fulminant cases characterized by early-
onset have been described (19, 123, 192). In these cases, cardiac
arrhythmias are common (23, 190). The association of skeletal
myositis and myasthenia gravis following ICI therapy should
orientate for myocarditis (185, 193). “Smouldering” cases of
myocarditis have been also reported (194).

Diagnosis of ICI-associated myocarditis is challenging and
includes a combination of biomarker tests (troponin), cardiac
MRI, late gadolinium enhancement, and possibly biopsy (T cell
infiltrate) (195). Major adverse cardiac events (MACE) can occur
also in patients with preserved ejection fraction. A troponin T
level ≥ 1.5 ng/mL was associated with a marked increase in
MACE during follow-up (190). The precise mechanisms by
which ICIs cause cardiotoxicity remain undefined. Existing
data support T cell-mediated immunity as a major component
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in pathogenesis, but many fundamental questions remain (24).
Early and aggressive treatment with high doses of glucocorticoids
is critical (132, 190, 196). Treatment of ICI-associated
myocarditis includes ICI discontinuation, supportive
management, and glucocorticoids (175). Prednisone (0.5 to 2.0
mg/kg), followed by 4–6 week taper upon symptoms
improvement, is recommended (24, 175, 197). Despite this
treatment, mortality remains substantial, and individual case
reports demonstrate successful treatment with alemtuzumab
(anti-CD52 mAb) (198), or abatacept (a fusion protein
composed of the extracellular domain of CTLA-4 and the
Fc region of human IgG1) (1). Prospective clinical trials are
needed to compare the safety and efficacy of different
immunosuppressive therapies in ICI-associated myocarditis.
Recent experimental data point to the hypothesis that anti-
PD-1 therapy induces a smouldering disruption of cardiac
immunity towards an inflammatory phenotype, with manifest
consequences on cardiac function in the presence of a second hit,
in the form of systemic stress induced by presence of a tumor
(199). This also indicates the possibility that the inflammatory
phenotype raises the risk for the development of myocarditis
upon exposure to additional, yet unknown risk factors (200).
Furthermore, treatment with anti-PD-1 may first produce only a
latent inflammatory involvement associated to dysregulated
cardiac metabolism that may progress to overt myocarditis in a
subset of patients (200, 201).

Neurological
Neurological complications of ICIs (headache, myasthenia
gravis, peripheral neuropathy, meningitis, and encephalitis) are
uncommon (≅ 1%) (32, 77, 184, 202, 203). Myasthenia gravis
(77) and encephalitis are more common with anti-PD-1
antibodies, whereas Guillain Barré and meningitis are more
common with ipilimumab. MG associated with myositis and
myocarditis has a poor prognosis (64, 203). Approximately 50%
of MG patients have anti-acetylcholine receptor antibodies (64).
Glucocorticoids and, in some patients, IVIG, are the mainstay of
therapy (64).

Hematologic
In contrast to other anticancer therapies, hematological irAEs in
patients treated with ICIs are uncommon. Neutropenia,
autoimmune hemolytic anemia, and immune thrombocytopenia
can occur rarely (≅ 5%) (204, 205). A positive direct antiglobulin
test is present in the majority (≅ 60%) of patients with ICI-related
autoimmune hemolytic anemia (206). Glucocorticoids are the first
line of therapy; IVIG or rituximab can be considered in difficult
cases. Neutropenic patients can be treated with G-CSF (204, 206).

Renal
Renal dysfunction is rare with ipilimumab and with anti-PD-1/
PD-L1 therapies occurring in <1% of patients (207). The
incidence is higher with combination of ipilimumab plus anti-
PD-1/PD-L1 reaching approximately 4% (208, 209). Renal
dysfunction is usually due to acute interstitial nephritis (210)
or, more rarely, to glomerulonephritis (211).
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Ocular
irAEs of the eye are rare and occur in <1% of patients treated
with ICIs (212, 213). Uveitis can be a complication of ICI
treatment (214). Few cases of Vogt-Koyanagi-Harada disease
have been described in melanoma patients, which hinted a
possible cross-reactivity between T lymphocytes targeting
melanoma cells and the melanocytes of the eye (215). In the
cases of ICI-associated sicca syndrome, oral manifestations are
more common than the ocular ones (216). Anti-Ro (SS-A) and
anti-La (SS-B) are usually negative (216).
PRE-EXISTING AUTOIMMUNE DISEASE
AND ICIs

Cancer patients with underlying autoimmune disease were
initially excluded from ICI RCT (162, 217–219). Therefore, the
prevalence and incidence of exacerbations of pre-existing
autoimmune disorders was not immediately appreciated.
Patients with autoimmune disease, however, represent 20 to 50
million people in the United States alone, and one study reported
that approximately 13% of lung cancer patients had a concurrent
diagnosis of autoimmune disease (220).

There is now evidence that irAEs are more frequent and occur
faster in cancer patients with several autoimmune diseases
(psoriasis, rheumatoid arthritis, IBD, systemic lupus
erythematosus, vasculitis) (106–108). These findings suggest
that a close monitoring is mandatory during early phases of
treatment. The majority of autoimmune flares and irAEs can be
managed without ICI discontinuation, but fatalities can occur
(221). Conflicting results have been reported in studies
concerning the risk of autoimmune flares or irAEs in patients
with active versus inactive autoimmune disease (106, 108, 221,
222). Patients with underlying autoimmune disorders should be
carefully managed by multidisciplinary teams.
IrAEs AND EFFICACY OF ICIs

In one large, retrospective study of ipilimumab, the treatment
outcomes were similar in patients with and without irAEs (223).
Subsequent studies reported that melanoma patients who
develop vitiligo or endocrine complications have better tumor
response and improved survival (122, 175, 224–226). The results
of randomized trials have shown that patients who discontinue
ICIs due to toxicity respond better than patients without irAEs
(227). Patients that developed thyroiditis after PD-1 or PD-L1
blockade had longer overall survival compared to the thyroid
irAE negative group (60, 225). Prospective studies are needed to
verify whether different irAEs are associated with improved
tumor response to ICIs.
MANAGEMENT OF IrAEs

No trials are evaluating the efficacy of different irAEs treatments.
Therefore, management of irAEs are based on retrospective
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studies and expert consensus (11, 29, 31, 45, 174, 175, 228,
229). Low-grade irAEs usually do not need ICI discontinuation
and immunosuppressive treatment. Higher grade irAEs may
require both therapeutic strategies. Table 2 schematically
summarizes the anti-inflammatory and immunosuppressive
drugs routinely used to treat ICI-related irAEs.

Glucocorticoids are powerful anti-inflammatory and
immunosuppressive drugs commonly employed as first-line
treatment in patients with ICI-induced irAEs. The efficacy of
glucocorticoids varies tremendously in the treatment of different
types of irAEs. For instance, these compounds are effective in
most cases but do not reverse hypophysitis, and high doses may
worsen outcomes (122). By contrast, initial high-dose
glucocorticoids were superior to intermediate and low-dose
steroid in the treatment of ICI-associated myocarditis (242).
Another important issue is the timing of initiation of
glucocorticoid administration. In the above retrospective,
observational study, early (≤ 24 hours) administration of
glucocorticoids can also vary in different irAEs. For example,
arthritis is also unique since inflammation often persists even
after stopping ICIs and may require prolonged glucocorticoid
treatment (40) and/or biological DMARDs (243).

Glucocorticoids are associated with potential multiple side
effects and impact on anti-tumor response. Low doses of
glucocorticoids used to treat irAEs do not affect the response
rates and/or the survival of ICI-treated patients (223, 224, 230). A
meta-analysis found that glucocorticoids do not negatively affect
survival (230). However, glucocorticoids before or early during
ICI treatment may negatively affect outcomes (231–234). Baseline
treatment of lung cancer patients with anti-PD-1 and high doses
(> 10 mg/day) of prednisone negatively affects outcomes
compared to those treated with low dose glucocorticoids (231,
235). The side effects of glucocorticoids depend on the daily dose,
the cumulative dose administered and possibly the type of
underlying disease (244). Therefore, awareness of specific
glucocorticoid-induced side effects is required.

irAEs refractory to glucocorticoids may require the
administration of a mAb targeting TNF-a (i.e., infliximab) to
treat certain irAEs such as colitis (16, 136, 237, 245) and
pneumonitis (25, 175, 246). Preclinical studies suggest that
prophylactic TNF-a inhibition eliminated ICI-induced colitis
without affecting anti-tumor response (241). There is conflicting
evidence on the effect of short-term TNF-a inhibition with
infliximab to treat ICI-induced irAEs on overall survival in
cancer patients (237–240). A comprehensive review has
examined in detail the role of different cytokines in the
pathophysiology of irAEs. In addition, the authors provided an
in-depth analysis of strategies to uncouple the cytokine response
that participates in ICI-associated irAEs (247).
POTENTIAL THERAPIES AND
PREVENTION OF IrAEs

The increasing use of ICIs in a growing number of solid and
hematologic cancers requires us to offer the best-targeted therapies
of irAEs. Table 3 summarizes the potential therapies of irAEs.
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Understanding the pathophysiology of ICI-associated
myocarditis and developing effective treatments is of great
importance. The quest for novel therapies for glucocorticoid-
resistant ICI myocarditis is a clinical unmet need. If symptoms
and laboratory findings in ICI myocarditis do not regress upon
high-dose glucocorticoids, other immunosuppressant agents [e.g.
mycophenolate mofetil, methotrexate, calcineurin inhibitors,
intravenous immunoglobulin (IVIG), anti-thymocyte globulin,
rituximab and infliximab] may be considered for treatment of
ICIs cardiotoxicity, but data are still controversial (201, 259, 260).

Alemtuzumab (anti-CD52 mAb) and abatacept, a protein
consisting of the human CTLA-4 extracellular domain fused to
the Fc portion of IgG, acting as a CTLA-4 agonist, have been
employed for the treatment of single cases of glucocorticoid-
refractory myocarditis (198, 250). Concerns with abatacept are
possible infections and tumor progression. Abatacept has also
been used to treat ICI-induced MG (261). Alemtuzumab causes
T cell depletion and its impact on tumor growth remains
unknown. Overall, the evidence available at present is
insufficient to support any of the anecdotal, albeit reasonable,
strategies outlined above and more evidence-based guidance in
this critical care is urgently needed. While blocking TNF-a
in heart failure (HF) has been proven contraindicated in
symptomatic (NYHA III and IV) patients (262, 263), anti-
TNF-a may be a promising approach to prevent the early
stages of cardiotoxicity from anti-PD-1 immunotherapy (200).

Vedolizumab is a specific anti-integrin a4b7 antibody, used
for the treatment of IBD (264–266). Preclinical studies have
reported that vedolizumab induces remission in ICI-induced
glucocorticoid-refractory colitis with good safety profiles (137,
248). Early treatment with vedolizumab is a potential treatment
of ICI-associated colitis (138). Two clinical trials are evaluating
the safety and efficacy of vedolizumab in the treatment of ICI-
induced colitis (NCT04407247, NCT04797325).

Rituximab, a mAb targeting CD20, has been used in
glucocorticoid-refractory encephalitis and myasthenia gravis
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(251, 252), bullous pemphigoid-like skin disease (12), renal
vasculitis (253), and hematological complications (204).

Tocilizumab, a mAb anti-IL-6 receptor, has been used to treat
ICI-associated arthritis (255) and glucocorticoid-refractory
irAEs (254). The safety and efficacy of tocilizumab on ICI-
associated irAEs are under evaluation in two clinical trials
(NCT03999749, NCT04691817).

IL-17 blockade has been used in few patients with colon
cancer and melanoma (256, 257). A recent study found that there
is an upregulation of intestinal IL-1b in melanoma patients
treated with CICB who developed high-grade colitis (96). In
two mouse models, CICB was associated with intestinal
inflammation characterized by upregulation of Il1b, but not
Tnfa or Il6. Interestingly, mice concurrently treated with CICB
and anakinra (anti-IL-1R) showed less intestinal inflammation.
These parallel studies in humans and mice suggest that severe
intestinal inflammation associated with CICB could be prevented
by an IL-1R antagonist. A clinical trial is evaluating the safety
and efficacy of anakinra on ICI-induced irAEs (NCT04576429).

Gut microbiome can influence efficacy of PD-1-based
immunotherapy (103, 105). A clinical trial is prospectively
analyzing the intestinal microbiome as predictor of ICI-
associated irAEs (NCT04107311). Fecal microbiota transplant
(FMT), which transfers an entire microbiome from a healthy
donor to a recipient, is a therapeutic tool with several potential
applications but numerous caveats (267). FMT may be a
potential mechanism for treating ICI-induced colitis (258).
FMT can be performed via an oral capsule containing fecal
extracts (268–270), colonoscopy-guided transfer (269, 271) or
enema (272, 273). Microbiome composition varies widely among
healthy donors and can affects success rates (274, 275). FMT
involves the risk for transmission of infectious agents via FMT
(276). Regulatory authorities have released specific guidelines to
offer FMT with safety at the time of COVID-19 pandemic (277).
Two patients with refractory ICI-associated colitis were
successfully treated with FMT (258). Clinical and experimental
TABLE 2 | Therapies used for immune adverse events associated with immune checkpoint inhibitors.

Drug Mechanism of
action

Efficacy in
reversing irAE

Effect on tumor response Clinical trial

Glucocorticoids Anti-inflammatory
and
immunosuppressive

First line therapy
for most ICI-
induced irAEs
Not effective for
reversing
endocrinopathies

Some studies suggest that response rates and survival are not
affected by low doses of glucocorticoids (223, 224, 230),
whereas others (122, 231–235) show negative impact of high
doses.
In vitro experiments data suggest negative impact of high dose
glucocorticoids on anti-tumor effects of T cells (236).

Infliximab Anti-TNF-a mAb Colitis (16). Controversial results on the net effect of TNF-a inhibition on
tumorigenesis (237–240).
In murine models, prophylactic TNF-a inhibition eliminated ICI-
induced colitis without affecting anti-tumor response (241).

NCT05034536: Comparison of
pembrolizumab + infliximab versus
pembrolizumab + placebo in patients with
melanoma.
NCT03293784:
Comparison of infliximab or certolizumab +
nivolumab + ipilimumab in patients with
melanoma.
NCT04407247: Comparison of
vedolizumab versus infliximab for clinical
remission/response of ICI-associated
diarrhea/colitis.
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studies are needed to evaluate the efficacy of this approach as well
as to provide further mechanistic insights. In summary, there is
some evidence that microbiome manipulation could potentially
impact cancer course and perhaps ICI-associated irAEs. Several
clinical trials are evaluating the safety and efficacy of FMT on the
prevention/treatment of intestinal irAEs (NCT04038619,
NCT04163289, NCT03819296).
CONCLUSIONS AND PERSPECTIVES

Emerging real-world data suggests the incidence of ICI-
associated irAEs may be higher than previously found in
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clinical trials. This trend has the potential to increase further
as the use of canonical ICIs (anti-CTLA-4 and anti-PD-1/PD-
L1), alone or in combination, is increasing exponentially and
nearly 50% of patients treated will experience some form of irAEs
(278). Furthermore, the combination of first and/or second
generation of ICIs (e.g., anti-TIGIT) or with anti-angiogenic
agents (279) could open a new scenario of irAEs associated with
novel forms of cancer immunotherapy.

Great efforts have been devoted to the identification of genetic,
humoral and cellular biomarkers predictive of irAEs associated
with ICIs. Although these putative biomarkers have not been
incorporated into clinical practice, they have highlighted some
novel aspects of irAE pathogenesis. For instance, recent human
TABLE 3 | Emerging and potential future therapies for immune adverse events associated with immune checkpoint inhibitors.

Drug Mechanism of
action

Efficacy in reversing irAE Effect on tumor response Clinical trial

Vedolizumab Anti-integrin a4b7
mAb

Colitis (137, 248).
Prevention of autoimmune flares in patients with IBD
(249).

Favorable clinical outcomes
(248, 249).

NCT04407247: Comparison of
vedolizumab versus infliximab for
clinical response of ICI-induced
diarrhea/colitis.
NCT04797325:
Comparison of vedolizumab versus
prednisolone for clinical response of
ICI-induced colitis.

Alemtuzumab CD52 mAb Myocarditis (198). Unknown
Abatacept CTLA-4 agonist Myocarditis (250). Unknown
Rituximab Anti-CD20 mAb Neurological complications (e.g., encephalitis and

myasthenia gravis), bullous pemphigoid-like skin
disease, renal vasculitis, hematological complications
(12, 175, 204, 251–253).

Progression, partial and
complete responses reported
(251–253).

NCT03719131: Evaluation of rituximab
on ICI-induced irAEs.

Tocilizumab Anti-IL-6 receptor
mAb

Pneumonitis, colitis, and pancreatitis (254).
Inflammatory arthritis (255).

Clinical improvement with
trend towards worse survival
with increased doses of
tocilizumab (254).
1/3 patients maintained anti-
tumor response (255).

NCT03999749: Evaluation of
tocilizumab on diarrhea and/or colitis
and/or arthritis induced by ICIs.
NCT04691817: Evaluation of
tocilizumab on irAEs in patients with
non-small lung cancer (NSCLC)
treated with atezolizumab.

Secukinumab Anti-IL-17A mAb Psoriatic rash and colitis (256).
Psoriasiform dermatological complication (257).

Tumor progression occurred
in one patient (256). No
impact on tumor response
(257).

Anakinra IL-1 receptor
antagonist

Experimental intestinal inflammation associated with
combined immune checkpoint blockade in mice (96).

Unknown NCT04576429:
Evaluation of anakinra on irAEs and
cytokine profile in patients with
different cancers.

Fecal
microbiota
transplant

Possibly increased
Tregs and
decreased effector
T cells (258).

Colitis (258). Unknown NCT04038619: Phase I trial of fecal
microbiota transplant (FMT) for ICI-
induced colitis/diarrhea.
NCT04163289:
Prevention of irAEs using fecal
microbiota transplant.
NCT03819296: Prevention of
gastrointestinal irAEs by FMT in
patients with melanoma or
genitourinary cancer.

Certolizumab anti-TNF-a NCT03293784:
Comparison of infliximab or
certolizumab + nivolumab +
ipilimumab in patients with melanoma.

Intravenous
immunoglobulin
(IVIG)

NCT04438382:
Comparison of infliximab versus IVIG in
patients with pneumonitis.
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and experimental studies have highlighted the contribution of
specific gut microbiota to intestinal damage caused by CICB in
melanoma patients (96). This study also suggests that specific
peripheral blood signatures are associated with a risk of
developing toxicity after CICB. Of course, additional studies of
larger cohorts of ICI-treated patients with different cancers will be
needed to validate these findings.

Management of irAEs is essentially based on retrospective
studies and expert consensus (11, 29, 31, 45, 174, 175, 228, 229).
Glucocorticoids, commonly employed as first-line treatment of
irAEs, do not affect certain toxicities, and high doses may
negatively affect outcomes (122, 231–234). Awareness of
glucocorticoid-induced side effects is required. A wide
spectrum of emerging therapeutic options, including mAbs
(anti-TNF-a, anti-IL-6, anti-CD20, anti-IL-1R) (12, 96, 241,
251, 252, 254) and FMT (96, 258) are under clinical and
experimental investigations. There is currently no clinical
evidence that irAEs can be pharmacologically prevented.
However, there is experimental evidence that prophylactic
administration anti-TNF-a (241) or anti-IL-1R (96) is
associated with less intestinal inflammation caused by CICB in
different tumor models.

Table 4 presents some of the outstanding pathophysiological
and therapeutic questions that should be addressed to better
understand the complexity of different irAEs. Due to the clinical
complexity surrounding autoimmune disease development and
management, Clinical Immunologists should be involved in the
care of cancer patients before, during, and after checkpoint
blockade. Perhaps, multidisciplinary irAE management teams,
Frontiers in Immunology | www.frontiersin.org 13
facilitating prompt diagnosis and treatment should be enlisted.
Further research is needed to improve early diagnosis,
understand immunological and genetic mechanisms, and
develop management algorithms for these disorders.
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