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Purpose. +e objectives of our study were to assess the association of radiological imaging and gene expression with patient
outcomes in non-small cell lung cancer (NSCLC) and construct a nomogram by combining selected radiomic, genomic, and
clinical risk factors to improve the performance of the risk model.Methods. A total of 116 cases of NSCLC with CT images, gene
expression, and clinical factors were studied, wherein 87 patients were used as the training cohort, and 29 patients were used as an
independent testing cohort. Handcrafted radiomic features and deep-learning genomic features were extracted and selected from
CT images and gene expression analysis, respectively. Two risk scores were calculated through Cox regression models for each
patient based on radiomic features and genomic features to predict overall survival (OS). Finally, a fusion survival model was
constructed by incorporating these two risk scores and clinical factors. Results. +e fusion model that combined CT images, gene
expression data, and clinical factors effectively stratified patients into low- and high-risk groups. +e C-indexes for OS prediction
were 0.85 and 0.736 in the training and testing cohorts, respectively, which was better than that based on unimodal data.
Conclusions. Combining radiomics and genomics can effectively improve OS prediction for NSCLC patients.

1. Introduction

Non-small cell lung cancer (NSCLC) is one of the deadliest
diseases in humans. NSCLC occurs in approximately 80%–
85% of lung cancer patients. Surgery is still the only potential
cure for patients with early-stage NSCLC. However, 30% to
55% of NSCLC patients will relapse and die of the disease [1].
+erefore, effective prognostic tools are needed to help
predict and improve overall survival in patients with NSCLC
and to provide specific treatments to improve their quality
of life.

Radiomics refers to the extraction of many quantitative
image features from radiological data and data mining of
these features for clinical tasks, such as disease diagnosis and
prognostic analysis [2]. Image features used for extraction
and analysis in radiomics include intensity patterns, shape,

and a range of texture features [3]. +e image analysis is
completely computerized, and these features are extracted
automatically and with high-throughput [4]. Radiomics in
lung cancer has aroused great interest, including application
in diagnosis [5] and prognosis analysis [6]. Yang et al.
developed a radiomics nomogram by combining the opti-
mized radiomics signatures of CT images and clinical pre-
dictors to assess the overall survival of patients with NSCLC
[7]. Wang et al. demonstrated that a radiomics signature
with multiregional features could help to stratify the survival
risk of patients with clinical stage and pathologic stage IA
pure-solid NSCLC [8].

With the advancement of high-throughput sequencing
technology, using microarray gene expression profiling to
analyze gene expression characteristics and establish prog-
nostic gene signatures has also attracted significant research

Hindawi
Journal of Oncology
Volume 2022, Article ID 5131170, 8 pages
https://doi.org/10.1155/2022/5131170

https://orcid.org/0000-0002-1281-3389
https://orcid.org/0000-0001-6854-7270
https://orcid.org/0000-0003-3776-4912
https://orcid.org/0000-0001-7224-1848
https://orcid.org/0000-0002-5385-6115
mailto:qiaoxu@sdu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5131170


interest. Li et al. established a gene signature closely related
to the tumor immune microenvironment that can effectively
predict clinical outcomes [9].

+e above studies have greatly promoted the discovery of
biomarkers for the prognosis of NSCLC. However, most
methods are limited to a single-data model, and cross-modal
comprehensive methods are relatively underdeveloped. By
integrating multimodal data, such as gene expression, ra-
diological and histological imaging, and clinical data, more
detailed insights into the development and occurrence of
disease can be provided [10]. +erefore, by fusing in-
formation from radiological imaging, gene expression, and
clinical data, it is possible to significantly improve survival
prediction. Recently, this has been demonstrated for re-
currence prediction in NSCLC by combining radiological
imaging and gene expression data [11].

Multimodal approaches can extract more meaningful
features from multiple perspectives, leading to more reliable
characterization of tumors, and thus have great potential to
address the limitations of single-modality models.
According to this assumption, in this study, we tried to
provide a complete view of NSCLC characteristics for
survival prediction by integrating information from radio-
logical imaging, gene expression, and clinical data. To this
end, we first used CT images and gene expression data to
develop their respective risk scores and combined them with
clinical characteristics to construct the final survival analysis
model.We then investigated whether the fusionmodel could
improve the overall survival of NSCLC patients compared
with the models based on unimodal data [12].

2. Materials and Methods

An overview of our method is depicted in Figure 1. With
paired CT and gene expression data, our objective is to
develop multimodal representation from both modalities
that would outperform unimodal representations in NSCLC
survival prediction. For CT images, we followed the con-
ventional radiomics research pipeline, which mainly in-
cludes feature extraction, feature selection, and model
analysis. For gene expression data, we adopted a deep
learning architecture to extract the latent features that best
represent the data. For CT and gene expression data, we
calculated their respective risk scores. Finally, we fused these
risk scores with clinical data to obtain the final prognostic
analysis model.

2.1. Problem Formulation. Let (xi, ti, δi) denote each patient,
where xi corresponds to the features extracted from CT or
gene expression, ti is the survival time, and δi denotes the
censoring indicator. δi � 1 means a noncensored instance
and vice versa. +e purpose of survival analysis is to predict
the time duration until a specific event occurs. In this study,
the event was the death of a patient with NSCLC. +e Cox
proportional hazard model is one of the most popular
methods to model the hazards function [13]. It is built based
on the hypothesis that the hazard ratio between two in-
stances is time-independent and is defined as

h(t|x) � h0(t)exp αT
x􏼐 􏼑, (1)

where h0(t) corresponds to the baseline hazard and f(x) �

αTx is the risk function. α � (α1, α2, . . . αυ) is the regression
parameter that can be estimated by minimizing the fol-
lowing log partial likelihood function:

l(α) � − 􏽘
N

i�1
δi αT

xi − log 􏽘

j∈R ti( )

exp αT
xj􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (2)

where N denotes the number of patients and R(ti) is the risk
set at time ti, which represents the set of patients who are still
at risk before time ti.

2.2. Data Source. We used the NSCLC Radiogenomics
dataset, a public dataset of 211 patients who underwent
surgery for NSCLC between 2008 and 2012 [14, 15]. It
includes two cohorts from Stanford University School of
Medicine (AMC) and Palo Alto Veterans Affairs Health-
care System (R01). CTscans were performed using different
scanners and imaging protocols, with slice thicknesses
ranging from 0.625 to 3.0mm (median, 1.5mm), an X-ray
tube current of 124–699mA (mean, 220mA), tension of
80–140 kV (mean, 120 kV), and a field of view after manual
shortening ranging from 71 to 124 cm (mean 89 cm) [16].
+e corresponding gene expression data were downloaded
from Gene Expression Omnibus datasets (GEO;
GSE103584), which are composed of RNA sequences
(RNA-seq) described by fragments per kilobase of tran-
script per million mapped reads (FPKM) of 130 NSCLC
patients. We selected samples with paired CT scans and
gene expression data, and a total of 116 samples were
included in the study.

2.3. Construction of the Radiomics Model. For each CT
image, we extracted a wide range of features from the
segmented cancer region according to the radiomic features
described by the Imaging Biomarker Standardization Ini-
tiative (IBSI), including intensity features, shape features,
texture features, and wavelet features [8]. Intensity features
use first-order statistics, such as energy and entropy, to
quantify the tumor intensity characteristics. Shape features
describe the shape characteristics of the tumor, such as
sphericity or compactness. Texture features can quantify
intratumor heterogeneity by taking the spatial location of
each voxel compared with the surrounding voxels into ac-
count. Commonly used texture features include gray level
cooccurrence matrix (GLCM), gray level run length matrix
(GLRLM), gray level size zone matrix (GLSZM), neigh-
bouring gray tone difference matrix (NGTDM), and gray
level dependence matrix (GLDM). Wavelet features calcu-
late the intensity and textural features from wavelet de-
compositions to represent the tumor characteristics at
different frequencies. All feature extraction algorithms were
implemented in the Pyradiomics toolkit [17]. A detailed
description of these features can be found in the Supple-
mentary Appendix.
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To eliminate the differences in the value scales of the
radiomic features, feature normalization was performed
after feature extraction. For the extracted features in the
training cohort, each feature for a specific patient was
subtracted by the mean value and divided by the standard
deviation value from this cohort. +e same normalization
method was applied to features in the testing cohort using
the mean and standard deviation values calculated based on
the training cohort.

Including too many features will increase the compu-
tational cost, and redundancy between features will reduce
the accuracy of the model. Furthermore, the number of
features is more than the number of samples in this work,
which will increase the probability of overfitting. +erefore,
we needed to select a small number of informative radiomics
features to predict the survival risk of patients. In this study,
we used the least absolute shrinkage and selection operator
(Lasso) [18] for feature selection.

+e Lasso can shrink some regression coefficients to zero
and select important variables by adding an Li regularization
term to l(α), so the Lasso-Cox model can be formulated as

min l(α) + λ 􏽘

p

k�1
αk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭, (3)

where 􏽐
p

k�1 |αk| is the L1 regularization term and λ is a pa-
rameter to balance the two parts. We used 5-fold cross-
validation to determine the optimal value of λ.

2.4. Construction of Genomics Model. We chose the
autoencoder framework for processing gene expression data.
Autoencoders aim to reconstruct the input values using
combinations of nonlinear functions, and the bottleneck
layers are considered as the representation of the inputs [19].
Usually, the bottleneck layer has significantly fewer neural
units than the input layer, and thus can be regarded as
a compressed representation of the original input. Autoen-
coders have already been shown to be efficient for dimension
reduction of high-dimensional genomics data [20].

An autoencoder can be divided into an encoder and
a decoder. Let the original input be X ∈ RN×p, with N
samples and p features. We used a multilayer neural network
with parameter Φe as the encoder:

Encoder X, ϕe( 􏼁 � H ∈ R
N×k

. (4)

H is regarded as a compressed representation of input X.
+e encoder maps N samples from p-dimension space to k-
dimension space. Another multilayer r neural network with
parameter Φd is regarded as the decoder:

Decoder X, ϕd( 􏼁 � 􏽥X ∈ R
N×p

, (5)

where is 􏽥X reconstruction representation which has the
same shape as X. +e decoder maps N samples from k-
dimensional space back to p-dimensional space. +e whole
process of the autoencoder can be expressed as

Decoder Encoder X, ϕe( 􏼁,ϕd( 􏼁 � 􏽥X. (6)

+e parameters of the autoencoder can be estimated by
minimizing the following reconstruction error:

argmin
ϕe,ϕd

‖X − 􏽥X‖
2
F. (7)

+en, the latent representation H can be regarded as the
compressed form of X that can be used in subsequent tasks.

2.5. Validation of Radiomics and Genomics Models. For the
features selected from CT and gene expression data, we
constructed Cox models. +erefore, a risk score of each
patient can be computed by 􏽐

k
i�1 βi × fi, where fi denotes the

selected radiomic features or the compressed gene features,
and βi represents the estimated coefficient of the corre-
sponding features. According to this formula, the risk score
of each patient was computed. +en, all patients in the
training cohort were divided into high- and low-risk groups
with the median of the risk score as the cutoff. +en, the
survival differences between these two groups were evalu-
ated by a Kaplan–Meier (KM) survival curve. We used the
same category for the testing cohort. Accordingly, the
samples in the testing cohort were also divided into two risk
groups. +e difference in the survival curves of the high-risk
and low-risk groups was evaluated by the log-rank test.

2.6. Construction of a Nomogram Combining Two Risk Scores
and Clinical Factors. +e candidate prognostic indicators
included age, sex, stage, grade, and the above two risk scores.
We first used a LASSO Cox regression model to select the
final features for constructing the fusion model. +en,
a nomogramwas built using a multivariate Cox proportional

Feature extraction Feature selectionCT

Gene expression

Risk score

Risk scoreautoencoder

Clinical factors

Radiomics risk

Genomics risk

Fusion Model

Figure 1: +e flowchart of our study.
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hazard model. We used the same validation methods as
described in the validation of the radiomics and genomics
models.

2.7. Statistical Analysis. +e statistical analysis was per-
formed with R software, version 4.1.2, and Python software,
version 3.8.5. Cox regression was performed using the
“scikit-survival” package [21]. Nomograms were generated
using the “rms” package. +e differences in clinical factors
between the training and testing cohorts were assessed using
the “tableone” package [22].

3. Results and Discussion

3.1. Clinical Characteristics. We randomly split the dataset,
including 87 training and 29 testing samples. +e clinical
characteristics in the training and testing cohorts are
summarized in Table 1. +ere was no significant difference
in age, gender, N stage, M stage, or grade between the
training and independent testing cohorts (P> 0.05).

3.2. Construction and Validation of Radiomics Model.
+ere were 8 features with nonzero coefficients in the
LASSO Cox regression model. +e optimal λ selection in the
LASSO Cox regression model is shown in Figure 2. +e
radiomic signature based on the eight features and the
weight for each feature are given in Table 2.

+e radiomics signature achieved a C-index of 0.79 for
the training cohort, and 0.643 for the testing cohort,
demonstrating the predictive performance of the model.
Based on the risk score of patients in the training cohort, the
optimal cutoff was −0.150.+en, patients in both the training
and testing cohorts were stratified into low-risk and high-
risk groups, as shown in Figure 3. +e association of the
radiomics signature with OS was shown in the training
cohort (P< 0.001) and confirmed in the testing cohort
(P � 0.045).

3.3. Construction and Validation of Genomics Model. In the
autoencoder structure, the number of latent features is an
important parameter. To determine this parameter, we
preset the number of latent features to 5–12. For each set of
potential features, we further compressed it into two di-
mensions using multidimensional scaling (MSD) [23], as
well as the original gene, and then calculated the Euclidean
distance between the two projections. +e experimental
results showed that 10 dimensions had the lowest Euclidean
distance, so we set the number of hidden features to 10. +e
C-index of the genomics risk score was 0.716 for the training
cohort and 0.581 for the testing cohort. Based on the risk
score of patients in the training cohort, the optimal cutoff
was −0.006. +en, patients in both the training and testing
cohorts were stratified into low-risk and high-risk groups, as
shown in Figure 4. +e association of the radiomics sig-
nature with OS was shown in the training cohort (P< 0.001)
and confirmed in the testing cohort (P � 0.083).

3.4. Nomogram that Combines Multimodality. We used
LASSO analysis to select the optimal feature combination in
the multimodal analysis. A combination of the radiomics
risk score, genomics risk score, age, N grade, and stage was
finally selected.

+e combination nomogram for the prediction of 2-year
survival is displayed in Figure 5.+emultimodal-basedmodel
obtained a C-index of 0.85 in the training cohort and 0.736 in
the testing cohort. It is worth noting that the C-index of the
fusion model was the highest compared to that of the other
models in all cohorts. Furthermore, the fusion model ob-
tained the best prognostic ability in stratifying patients into
high-risk and low-risk groups with p � 0.0081, as shown in
Figure 6. In Table 3, we list the results of all models.

To further verify the effectiveness of our model, we
performed 5-fold cross-validation for all data. All patients
were randomly divided into 5 subsamples of equal size, and
in each fold, 4 subsamples were used as training data and the
remaining 1 subsample was used as validation data for
testing. For each fold, we used the method presented in this
paper separately. +e average and standard deviation of the
C-indexes over the 5-fold cross-validation are listed in
Table 3. As can be seen from the results, the C-indexes of the
5-fold cross-validation were consistent with the results of the
testing cohort, proving the stability of our model.

4. Discussion

Gene expression data, imaging data and clinical factors each
play an important role in the diagnosis and prognosis of
diseases. Merging these multimodal data may lead to new
prognostic cancer models and provide new support for
patient treatment strategies. Accordingly, increased atten-
tion is given to statistical methods and algorithms to analyze
and correlate multivariate imaging, clinical and gene ex-
pression data for disease diagnosis and prognosis. Our re-
search demonstrated the ability to integrate radiomics data,
genomics data, and clinical features for the stratification of

Table 1: Characteristics of patients in the training and testing
cohorts.

Characteristic Training cohort
(N� 87)

Testing cohort
(N� 29) p

Age (years)
>60 59 17 0.3669
<60 28 12

Gender
Female 22 7 0.9015
Male 65 22

N stage
N0 71 25 0.3854
≥N1 19 4

M stage
M0 85 27 0.2399
M1 2 2

Grade
0 64 19 0.6251
1 27 10
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Figure 2: Feature selection using the LASSO Cox regression model.

Table 2: Description and Cox proportional hazard weights of each feature in the radiomic signature.

Feature name Feature type Weight
ClusterProminence GLCM 1.0590
LargeDependenceLowGrayLevelEmphais GLDM 0.8589
Range Firstorder −1.3498
LargeAreaEmphasis GMSZM −1.0405
SizeZoneNonUniformity GMSZM −0.9399
Idmn GLCM −0.5833
MajorAxisLength Shape 2.0625
LargeDependenceHighGrayLevelEmphasis GLDM 1.3778

p < 0.00010.00
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Figure 3: Survival prediction of the risk score calculated from CT-based radiomics signatures. (a) Kaplan–Meier curves of the training
cohort. (b) Kaplan–Meier curves of the testing cohort.
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lung cancer patients. Unimodal analysis shows that only
using gene expression data, radiology data, or clinical features
cannot effectively stratify patients. With unimodal data, the
difference in survival between the two risk groups in the testing
group was not significant (p � 0.15 for radiomics model, p �

0.08 for genomics model, and p � 0.015 for clinical features
model). When using age, N stage, grade, radiomics risk score,
and genomics risk score, the model can significantly distin-
guish high-risk and low-risk groups (p � 0.0081).

+is study has some limitations. First, all the samples we
explored are public and the sample size is relatively small,
limiting the use of more advanced methods. Second, for
molecular data, we only used gene expression data. More
meaningful discoveries may be produced if data such as
miRNA and DNAmethylation data are fused.+ird, we only
discussed the handcrafted radiomic features. Many studies
have shown that features based on deep learning have better
predictive capabilities. We believe that the fusion of multiple
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Figure 4: Survival prediction of risk score calculated from genomics signatures. (a) Kaplan–Meier curves of the training cohort.
(b) Kaplan–Meier curves of the testing cohort.
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modalities can help detect more effective biomarkers and
improve lung cancer clinical decision-making. In future work,
we will solve the above limitations and conduct further
multicenter, large-scale researches to promote the application
of multimodal fusion in the management of lung cancer
patients.

5. Conclusions

In this study, the risk score developed based on multimodal
data has great potential to improve the determination of
overall survival of NSCLC patients compared with the
models based on unimodal data. We demonstrated that we
could gain more significant insights into cancer prognosis by
fusing imaging and genomic data. More studies that com-
bine more data sources, such as multiomics data and digital
pathology, are required to confirm the advantages of mul-
timodal fusion.
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