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Podocyte injury induced by hyperglycemia is the main cause
of kidney dysfunction in diabetic nephropathy. However, the
underlying mechanism is unclear. Store-operated Ca2+ entry
(SOCE) regulates a diversity of cellular processes in a variety of
cell types. Calpain, a Ca2+-dependent cysteine protease, was
recently shown to be involved in podocyte injury. In the present
study, we sought to determine whether increased SOCE
contributed to high glucose (HG)–induced podocyte injury
through activation of the calpain pathway. In cultured human
podocytes, whole-cell patch clamp indicated the presence of
functional store-operated Ca2+ channels, which are composed
of Orai1 proteins and mediate SOCE. Western blots showed
that HG treatment increased the protein abundance of Orai1 in
a dose-dependent manner. Consistently, calcium imaging ex-
periments revealed that SOCE was significantly enhanced in
podocytes following HG treatment. Furthermore, HG treat-
ment caused overt podocyte F-actin disorganization as well as a
significant decrease in nephrin protein abundance, both of
which are indications of podocyte injury. These podocyte
injury responses were significantly blunted by both pharma-
cological inhibition of Orai1 using the small molecule inhibitor
BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9
lentivirus. Moreover, activation of SOCE by thapsigargin, an
inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic re-
ticulum membrane, significantly increased the activity of cal-
pain, which was inhibited by BTP2. Finally, the calpain-1/
calpain-2 inhibitor calpeptin significantly blunted the nephrin
protein reduction induced by HG treatment. Taken together,
our results suggest that enhanced signaling via an Orai1/
SOCE/Calpain axis contributes to HG-induced podocyte
injury.

Podocytes are terminally differentiated glomerular visceral
epithelial cells, which constitute the outer layer of the
glomerular filtration barrier. Adjacent podocyte foot processes
are bridged by the porous slit diaphragm that forms the final
barrier to prevent albumin leakage (1). Accumulating evidence
* For correspondence: Rong Ma, Rong.Ma@unthsc.edu.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY license (http://creativecommons.org/licenses/by/4.0/).
suggests that podocyte injury is the key contributing factor in
the pathogenesis of most inherited and acquired glomerular
diseases, such as diabetic nephropathy (DN). During the past
decade, many studies have demonstrated that diabetes-
induced podocyte injury is the primary cause leading to pro-
teinuria and one of the major factors contributing to the
occurrence and progression of DN (2, 3). The DN-associated
podocyte injury includes foot process effacement, cell
detachment, and slit diaphragm disruption, which are further
manifested by the podocyte cytoskeleton disorganization and
podocyte phenotype marker protein loss. While the etiology of
podocyte injury is likely multifactorial, hyperglycemia is the
major pathogenic factor to drive podocytes injury in DN (4).
However, the molecular mechanisms underlying the
hyperglycemia-induced podocyte injury are not known with
certainty.

Podocyte structural integrity is dependent on intracellular
Ca2+ homeostasis. In this regard, the importance of transient
receptor potential canonical (TRPC) 5 and TRPC6 channels in
maintaining podocyte function and structure has been widely
studied (5–10). Although a recent study by Kim et al. reported
a contribution of store-operated calcium channel (SOC) to
podocyte injury (11), the function of the channel in podocytes
and the downstream mechanism mediating the channel
function is, at a large extent, not known. SOC is activated upon
depletion of the endoplasmic reticulum (ER) Ca2+. The plasma
membrane–localized Orai1 is the pore-forming unit of the
classical SOC (i.e., Ca2+ release–activated Ca2+ channel). In
addition, stromal interaction molecule 1 (STIM1), a trans-
membrane protein located on ER can sense the ER luminal
calcium concentration. Once ER calcium is depleted, STIM1s
diffusely distributed on the ER membrane are clustered and
relocated to the ER–plasma membrane junctions where they
interact with Orai1 channel proteins. The Orai1–STIM1 in-
teractions turn on the Orai1 channels and allow Ca2+ to enter
the cells (12–19). This Orai1-mediated Ca2+ entry, termed
store-operated Ca2+ entry (SOCE), has been known to be
essential for multiple cellular processes (20). Recently,
emerging evidence suggests that the function of SOCE is cell-
context and cell-type dependent. For instance, in the proximal
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Orai1–calpain signaling in podocytes
tubular epithelial cells Mai et al. reported that blockade of
SOCE inhibited TGF-β1-stimulated fibronectin protein
expression (21). On the contrary, in glomerular mesangial
cells, suppression of SOCE increased fibronectin protein
abundance (21, 22). Currently, the role of SOCE in podocyte
biology and physiology, particularly podocyte injury in the
settings of diabetes remains unclear. Calpains belong to the
family of Ca2+-activated cysteine proteases, which are mainly
activated by increased intracellular Ca2+ (23). Accumulating
evidence suggests that calpain overactivation can induce
podocyte injury. However, whether and how calpain contrib-
utes to DN-associated podocyte injury has not been studied. In
the present study, we aimed to determine that high glucose
(HG) treatment enhanced SOCE, and this enhancement
resulted in podocyte injury by upregulating calpain activity.
Results

SOC in human podocytes

SOC is an essential Ca2+ entry mechanism in both excitable
and nonexcitable cells (20). STIM1 and Orai1 are two key
components in this channel pathway (12–17). To verify the
existence of SOC in podocytes, we performed Western blot
and showed that both Orai1 and STIM1 proteins were present
in human podocytes (HPCs) (Fig. 1, A and B). CRISPR–
CRISPR-associated protein 9 (Cas9)/Orai1 lentivirus (Fig. 1A,
Orai LV) but not CRISPR-Cas9/control LV (Fig. 1A, CT LV)
deleted the Orai1 antibody-detected band, validating the
presence of Orai1 protein in podocytes. Also, the STIM1
antibody-detected band in podocytes was at the same size as
that in glomerular mesangial cells (Fig. 1B), a cell type known
to be rich in STIM1 protein (22, 24, 25), confirming the ex-
istence of STIM1 protein in podocytes.

To examine if the Orai1 channel is functional in podocytes,
we carried out electrophysiology experiments and measured
the channel currents in response to the channel activators and
blockers. Because SOC is more conductive to monovalent
cations over divalent cations (26–29), we measured Na+ cur-
rents using the mode of the whole-cell patch. As shown in
Figure 1C, thapsigargin (TG), a well-known activator of SOC
induced robust inward currents, which were greatly reversed
by La3+ (2 μM), an inhibitor of SOC (25, 30). Angiotensin II
(Ang II) plays an important role in podocyte physiology and
pathology (9, 10). Ang II-stimulated Ca2+ signaling involves
several type of Ca2+ channels, including SOC and receptor-
operated Ca2+ channels or TRPC channels (9, 22, 25). To
determine the physiological and pathological relevance of SOC
in podocytes, we also measured SOC currents in response to
Ang II. As shown in Figure 1, D and E, Ang II treatment
(1 μM) evoked robust inward currents. The Ang II-induced
currents were significantly, but not completely, blocked by
3,5-bis(trifluoromethyl) pyrazole (BTP) 2 (10 μM), a SOC
blocker, suggesting a component of SOC currents. The residue
currents in the presence of BTP2 might be attributed to TRPC
channels.

Taken together, these data suggest that podocytes express
functional SOCs.
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HG treatment increased Orai1 but not STIM1 protein
abundance in HPCs

To explore associations of SOCE signaling in podocytes
with DN, we conducted Western blot and evaluated Orai1
protein abundance in response to HG, a known pathogenic
factor to trigger podocyte injury and development of DN (31)
in HPCs. As shown in Figure 2, A–D, HG treatment signifi-
cantly increased abundance of Orai1 protein. The HG
response occurred as early as 2 h treatment and sustained for
at least 12 h (Fig. 2, A and C). Furthermore, HG increased
Orai1 protein content in a dose-dependent manner (Fig. 2, B
and D). The Orai1 response in HPCs was specific to HG
because this response was not observed in the cells with os-
motic CT.

STIM1 protein is another essential component of SOCE
signaling. We also performed Western blot in cultured HPCs
and assessed HG effect on STIM1 protein abundance. Unlike
Orai1, STIM1 protein levels were not significantly changed by
HG treatment at the same time periods (Fig. 2, E and G) and
glucose concentrations (Fig. 2, F and H) as those for Orai1.

HG treatment enhanced SOCE in HPCs

To evaluate the functional change of the podocyte Orai1
channels in response to HG treatment, we measured the Fura-
2 fluorescence-indicated SOCE response using the classic
“Ca2+ add-back” protocol described in our previous publica-
tions in podocytes with and without HG treatment (25, 32). As
shown in Figure 3, TG (1 μM) evoked a transient of [Ca2+]i in
0 mM Ca2+ bathing solution in HPCs both with and without
HG treatment. This initial response indicates the ER Ca2+

store depletion by TG, which is the trigger of SOC opening.
When replacing the Ca2+-free bathing solution with 2 mM
Ca2+ solution, [Ca2+]i rose. The amplitude of the [Ca2+]i
elevation indicated SOCE (30). In agreement with Western
blot results (Fig. 2, A–D), SOCE was significantly increased in
HPCs with HG treatment (25 mM for 12 h) compared with
HPCs without HG treatment. Thus, the calcium imaging data
provided functional evidence supporting that SOCE was
enhanced in podocytes exposed to ambient HG.

SOCE inhibition blunted HG-induced reduction of nephrin
protein abundance in HPCs

Indications of podocyte injury include loss of podocyte
phenotype protein markers, such as nephrin, podocin, and
synaptopodin (33, 34). We therefore examined if HG treat-
ment decreased abundance of those marker proteins and if
SOCE was involved in the responses. As shown in Figure 4,
HG treatment (25 mM for 24 h) but not the osmotic CT (high
osmolarity [HS]) significantly decreased nephrin protein con-
tent in HPCs. However, this HG effect was not observed in the
presence of BTP2 (4 μM), a selective SOC blocker (Fig. 4,
A and B). Similarly, deletion of Orai1 using CRISPR-Cas9
approach also abolished the HG-induced decrease in nephrin
protein abundance (Fig. 4, C and D).

We also evaluated HG effects on podocin and synaptopodin,
the other two podocyte phenotype marker proteins. However,
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Figure 1. SOC in cultured HPCs. A, Western blots showing expression of Orai1 (A) and STIM1 (B) proteins in HPCs. A, the blot is the representative of six
independent experiments. Fully differentiated podocytes were infected with CRISPR-Cas9 Orai1 lentivirus (Orai1 LV) or CRISPR-Cas9 control lentivirus (CT LV)
or without virus infection (UT). B, the lysates from glomerular mesangial cells (MC) were used as the positive control for HPCs. “L”: protein ladder. GAPDH
served as the loading control. C–E, whole cell current measurements obtained by a Gap-free protocol in HPCs stimulated with 2 μM TG (C) and 1 μM Ang II
(D and E) at a holding potential of -80 mV. The dashed lines indicate zero currents. Application of TG, Ang II, La3+, and BTP2 were indicated by solid lines on
top of the current traces. D, the vertical dashed lines indicate the place selected for analyzing the currents before administration of Ang II (a), the peak
current after Ang II treatment (b), and the current after application of BTP2 (c). E, summary data from the experiments presented in (D). The currents of pre-
Ang II, Ang II, and BTP2 were indicated by a, b, and c in panel (D), respectively. * denotes p < 0.05; ** denotes p < 0.01. “n”: the number of cells analyzed.
Ang II, angiotensin II; BTP, bis(trifluoromethyl) pyrazole; Cas9, CRISPR-associated protein 9; HPC, human podocyte; SOC, store-operated Ca2+ channel; STIM1,
stromal interaction molecule 1; TG, thapsigargin.
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Figure 2. HG treatment increased Orai1, but not STIM1 protein abundance in HPCs. A and B, representative Western blots, showing Orai1 protein
abundance in HPCs treated with HG for different time periods and treated with different glucose concentrations for 12 h. A, fully differentiated podocytes
were cultured in 0.5% FBS medium containing NG (5.6 mM D-glucose), HS (5.6 D-glucose + 20 mM L-glucose), or HG (25 mM D-glucose) for 2 and 12 h.
α-Tubulin (TB) was used as a loading control. B, fully differentiated podocytes were cultured in 0.5% FBS medium containing 5, 10, 15, 20, and 25 mM
D-glucose (D-glu) for 12 h. Appropriate concentration of L-glucose (L-glu) was added to adjust osmolality of all culture medium to 25 mmol/l. C and D,
summary data from experiments presented in (A) and (B), respectively. Protein abundance level in each group was normalized to TB and then the values in
each group were further normalized to those of the NG group. “n” indicates the number of independent experiments, *p < 0.05, **p < 0.01, ns: no
significant difference. One-way ANOVA followed by Tukey’s multiple comparison test. E and F, representative Western blots, showing STIM1 protein
abundance in HPCs treated with HG (25 mM) for different time periods and treated with different glucose concentrations for 12 h. The treatment protocols
were the same as Figure 2, A and B. G and H, summary data from experiments presented in (E) and (F), respectively. “n” indicates the number of inde-
pendent experiments, *p < 0.05, **p < 0.01, compared with NG; #p < 0.05, ##p < 0.01, compared with HS. ns: no significant difference, one-way ANOVA
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Orai1–calpain signaling in podocytes
no significant changes in abundance of the two proteins were
observed in HPCs with and without HG treatment (25 mM for
24 h) (Fig. S1).
SOCE inhibition blunted HG-induced HPCs cytoskeleton
dysregulation

Podocyte function and foot process mobility are highly
dependent on the actin cytoskeleton. No matter what the
initial cause is, the final pathway for podocyte injury is
cytoskeleton dysfunction and rearrangement (1). Studies have
shown that HG disrupts podocyte cytoskeleton, which is
characterized by central stress fiber disorganization and
increased assembly of F-actin in cortical regions (34, 35). To
determine whether SOCE contributed to the HG-induced
impairment of podocyte cytoskeleton, we assessed podocyte
F-actin arrangement in response to HG treatment with and
without blockade of SOCE. Alexa Fluor 488 Phalloidin was
used to stain F-actin. As shown in Figure 5, F-actins in the
podocytes cultured in normal glucose (NG) medium were
distributed as homogenous bundles that traversed the cells
along the axis of podocytes. HG, but not the osmotic CT (HS)
treatment, resulted in loss of central stress fibers and signif-
icantly increased formation of cortical F-actin. The cyto-
skeleton disorganization and increase in cortical F-actin were
significantly blunted by BTP2 (4 μM). To further determine
the role of Orai1 channels in HG-induced podocyte cyto-
skeleton disorganization, we constructed orai1 KO HPCs
using CRISPR-Cas9 LV (Fig. 5C) and evaluated F-actin or-
ganization in response to HG treatment. In agreement with
the results presented previously, HG treatment failed to
disrupt cytoskeleton and form the cortical F-actins in HPCs
infected with Orai1 CRISPR-Cas9 LV, but did in HPCs with
CT LV infection (Fig. 5, B and D). These results suggest that
followed by Tukey’s multiple comparison test. FBS, fetal bovine serum; HG, hig
STIM1, stromal interaction molecule 1.
SOCE signaling mediated HG-induced podocyte cytoskeleton
disruption.

SOCE mediated HG-induced calpain activation in HPCs

Calpains are the family of Ca2+-activated cysteine proteases,
which have high sensitivity to Ca2+ and are mainly activated by
increased intracellular Ca2+ (23). Recent studies also showed
that calpain activity regulates podocyte cytoskeleton organi-
zation and motility (36, 37). Therefore, we reasoned that
activation of calpain signaling was a downstream mechanism
for SOCE-induced podocyte injury in the HG condition. To
test this speculation, we first examined the podocyte calpain
activity with or without HG treatment. As shown in Figure 6A,
HG (25 mM D-glucose) but not its osmotic CT (5.6 mM D-
glucose + 20 mM L-glucose) significantly increased podocyte
calpain activity. To determine if this increased calpain activity
by HG treatment was mediated by SOCE activation, we
repeated the experiment under condition of SOCE inhibition.
In the presence of BTP2, HG treatment failed to increase
calpain activity anymore (Fig. 6A).

We next examined the direct effect of SOCE on calpain
activity. As shown in Figure 6B, TG (1 μM) but not its vehicle
CT (dimethyl sulfoxide at 1:1000) significantly increased cal-
pain activity in HPCs. The TG response was significantly
blunted by BTP2 (10 μM), suggesting the SOCE mechanism in
the TG-activated calpain. Taken together, these results suggest
that HG activated calpain signaling through activation of
SOCE in HPCs.

Calpain activity inhibition blunted HG-induced nephrin
protein reduction in HPCs

To further determine if activation of SOCE/calpain pathway
mediated HG-induced podocyte injury, we used calpeptin
h glucose; HPC, human podocyte; HS, high osmolality; NG, normal glucose;
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Orai1–calpain signaling in podocytes
(5 μM), a calpain inhibitor to inhibit calpain activity in the
presence of HG and evaluated the resultant effect on the
nephrin protein abundance. Consistent with data presented in
Figure 4, HG treatment for 24 h, but not its osmotic CT,
significantly decreased nephrin protein abundance. However,
calpeptin completely blocked the HG-induced response
(Fig. 7).
6 J. Biol. Chem. (2022) 298(6) 101990
Discussion
In this study, we evaluated the detrimental mechanisms of

overwhelming Orai1/SOCE/calpain signaling in ambient HG-
induced podocyte injury. Our results suggest that inhibition
of SOCE/calpain signaling pathway can protect podocytes
against injury induced by HG, a major contributor to the onset
and development of DN.
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Orai1–calpain signaling in podocytes
The structural and functional integrity of podocytes are
dependent on intracellular Ca2+ homeostasis. In this regard,
the importance of TRPC6 and TRPC5 Ca2+ channels in
maintaining podocyte physiology has been well studied. Gain
of function of TRPC6 mutations in podocytes resulted in renal
diseases (7, 38). TRPC6 activation in podocytes causes
required proteinuria kidney diseases and mediates Ang II-
induced podocyte injury (8–10). Dysfunction of TRPC5
channel also caused podocyte damage (6, 39). In the present
study, we reported another Ca2+ channel signaling, SOCE, as
another mechanism contributing to podocyte injury related to
diabetes mellitus. We showed biochemical and functional ev-
idence that this Ca2+ signaling in podocytes was upregulated
by HG. Most importantly, pharmacological or/and biological
inhibition on SOCE significantly blunted HG-induced podo-
cyte injury. Apparently, podocyte Ca2+ homeostasis is
controlled by multiple Ca2+ channel mechanisms and SOCE is
a component of the family. A disturbance of the homeostasis
derived from supernormal SOCE plays an indispensable role in
8 J. Biol. Chem. (2022) 298(6) 101990
podocyte injury and renal injury. In support, one recent study
by Mehrotra et al. reported that oral administration of BTP2
improved renal function and ameliorated renal fibrosis in
high-salt diet-induced chronic kidney disease rats (40).

It is known that both Orai1 and STIM1 are the essential
components of SOCE pathway (12–19). Activation of SOCE
requires the physical interactions between the two proteins at
STIM1–Orai1 stoichiometry ranging from 1:1 to 2:1 (41). In
the present study, we found that HG enhanced SOCE by
increasing abundance of Orai1 without change in amount of
STIM1 protein. It may be argued that with the interaction
ratio of 1:1 or 2:1 of STIM1:Orai1, no increase in number of
STIM1 molecules should not activate more Orai1 channels
and thus should not increase SOCE. However, the interaction
of STIM1 with Orai1 is not only determined by amount of the
protein but also the activity of STIM1. For instance, STIM1
interaction with Orai1 is tightly modulated by specific residue
phosphorylation (such as Ser575, Ser608, and Ser621) (42). One
recent study found that glucose-induced fluctuation in
O-GlcNAcylation can modulate STIM1 activation in HEK
cells. O-GlcNAcylation of STIM1 at Thr626 increased its
interaction with Orai1, probably via regulation of Ser621

phosphorylation (43). Therefore, it is possible that a portion
of STIM1 proteins in podocytes are not active under normal
condition (e.g., NG environment) but are activated through
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posttranslational modifications under the environment of
HG. Another simple explanation is that podocytes contain
more STIM1 molecules than Orai1 molecules for the 1:1 or
2:1 interactions, and HG treatment stimulates the spare
STIM1 proteins interacting with additional Orai1 proteins
induced by HG treatment.

A recent study by Jin et al. reported that the STIM1 protein
abundance was significantly increased in mouse podocytes
cultured with serum from rats with DN (44). Their findings do
not contradict with our findings in the present study. The
increase in STIM1 protein content in their study might not be
attributed to hyperglycemia but to the hormones, growth
factors, and/or transcription factors, the serum levels of which
are elevated in diabetes.

We noticed that in the present study, HG induced molec-
ular/event changes in podocytes sequentially in terms of time
periods. For instance, an increase in Orai1 protein abundance
and SOCE required at least 2 h treatment, but a decrease in
nephrin protein content needed a minimum of 24 h exposure
to HG, and the cortical F-actin formation even took about
7 days with HG treatment. This temporal sequence of the
biochemical/functional/structural changes suggest a serial
chain of signaling pathway initiated by HG, that is, HG/Orai1/
SOCE/nephrin/cytoskeleton. It is understandable that each
step in this chain requires certain period of time dependent on
the nature of the biological processes.

In addition to nephrin, changes in several other podocyte
phenotype marker proteins, such as podocin and synapto-
podin, are also associated with podocyte injury (45). How-
ever, we did not find a significant decrease in the content of
both podocin and synaptopodin proteins under the exper-
imental conditions in the present study (25 mM glucose for
24 h). One possibility is that nephrin is more susceptible to
a change in glucose concentration and the other two pro-
teins are more tolerant to HG treatment. Supportedly, one
recent study demonstrated that HG (22 mM) treatment for
7 days significantly decreased podocin protein abundance in
HPCs (46). Thus, nephrin might be an early indicator of
podocyte injury. Indeed, a recent study reported that the
urinary level of nephrin-positive podocyte-derived extra-
cellular vesicles was a biomarker of early podocyte injury
(47).

CRISPR-Cas9 technique was used to delete Orai1 in podo-
cytes in this study. Since podocytes are terminally differenti-
ated cells and are much easier to be infected by LV (48), we
used LV as the vehicle to deliver the CRISPR-Cas9 system. Our
study showed that with CRISPR-Cas9–Orai1 LV treatment,
HG failed to decrease nephrin protein abundance. In fact, the
level of the protein was significantly increased (Fig. 4, C and
D). These results suggest that SOCE not only mediates HG-
induced loss of nephrin protein but also has a tonic inhibi-
tion on the protein dynamics.

We showed that calpain was the effector of SOCE in
podocytes, mediating SOCE-induced nephrin protein reduc-
tion. Calpains are intracellular Ca2+-activated cysteine pro-
teases, which are mainly activated by increased intracellular
Ca2+ (23). Activation of calpain signaling was recently
demonstrated to mediate Ang II-induced podocyte injury (49).
Podocytes possess multiple Ca2+ entry pathways and different
Ca2+ signals may have distinct downstream effectors. For
instance, TRPC6-mediated Ca2+ influx upregulates the
calcium-dependent calcineurin/nuclear factor of activated T
cells pathway (50, 51). TRPC5-mediated Ca2+ influx acts on
synaptopodin and Rac1 (5, 6). However, the Ca2+-dependent
proteinase calpain seems to be a master effector serving
multiple Ca2+ signaling pathways. In addition to SOCE
pathway reported by the present study, both TRPC5 and
TRPC6 Ca2+ signals also activate calpain pathway (36, 37, 52).
Thus, Ca2+ signals from different sources in podocytes may
interact with each other at a site of a particular signaling
pathway. Another example is the finding from a recent study
that Orai1-mediated SOCE induces podocyte actin remodeling
by activation of calcineurin pathway (11), a pathway also
activated by TRPC6-mediated Ca2+ signals (50, 51). One
advantage of sharing the same effector among different Ca2+

pathways is that the Ca2+ signals from different sources
converge on one molecule where all signals are integrated to a
final message delivered to next event. Because podocyte injury
in many kidney diseases results from overloading intracellular
Ca2+ due to abnormal activation of various Ca2+ channels and
inhibition on calpain, the common effector of different Ca2+

signaling pathways may be a therapeutic option, as suggested
by a recent study (49).

The present study shows that HG-induced SOCE activation
contributes to podocyte calpain activation. Among 15 sub-
types, calpain 1, 2, 4, 6, 10, and 15 are expressed in podocytes
(37). The present study showed that the HG-induced podocyte
injury was ameliorated by calpeptin, which is a calpain-1/
calpain-2 inhibitor. Thereby, the subtypes of calpain-1 and
calpain-2 might be the major calpains involved in HG/SOCE/
podocyte injury cascade. Our results are consistent with a
recent study, which revealed that inhibition of calpain-1/
calpain-2 or KO of capn1/2 reduced proteinuria and stabi-
lized podocyte adhesion in mice with chronic kidney disease
(53).

It should be noted that store-operated Ca2+ signaling–
induced cell responses can be mediated by multiple signaling
pathways, such as calcineurin (11) and TGF-β1/Smad (20, 54,
55) pathways. Our findings in this study do not exclude a
possible involvement of a calpain-independent mechanism in
SOCE-induced podocyte injury.
Conclusion

Collectively, the present study identified a previously un-
recognized cascade of HG/Orai1/SOCE/calpain in podocytes,
upregulation of which induces podocyte injury manifested by
loss of nephrin and disorganization of cytoskeleton. Podocyte
injury is an early feature of DN and exacerbates the devastated
kidney disease. Our findings suggest that inhibition of SOCE
and/or calpain signaling pathway may be a therapeutic option
for DN.
J. Biol. Chem. (2022) 298(6) 101990 9
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Experimental procedures

Key resources table
Reagent Source Identifier

Antibodies for Western blots
Rabbit polyclonal anti-Orai1 Sigma–Aldrich Cat#: O8264
Rabbit polyclonal antipodocin Sigma–Aldrich Cat#: P0372
Rabbit polyclonal antinephrin Sigma–Aldrich Cat#: PRS2265
Rabbit polyclonal anti-STIM1 Proteintech Cat#: 11565-1-AP
Rabbit polyclonal antisynaptopodin NOVUS Cat#: NBP2-39100
Mouse monoclonal anti-GAPDH EMD Millipore Cat#: MAB374
Mouse monoclonal anti-α-tubulin Santa Cruz Biotechnology Cat#: sc-5286
goat anti-rabbit Ig HRP Invitrogen Cat#: 31460
goat antimouse Ig HRP Invitrogen Cat#: 31430

Reagents for calcium imaging
Thapsigargin Sigma–Aldrich Cat#: 586005
Fura 2-AM Invitrogen Cat# F1221
Pluronic F-127 Invitrogen P6867
EGTA Sigma–Aldrich E-0396
Ionomycin Sigma–Aldrich Cat# I3909

Reagents for F-actin staining
Alexa Fluor 488 Phalloidin Thermo Fisher Scientific Cat# A12379
TritonX-100 Sigma–Aldrich Cat#: T9284
Mounting medium with DAPI VECTOR H1200

Commercial kits and reagents for Calpain activity assay
Calpain activity assay kit Abcam Cat#: ab65308
Coomassie-based protein assay Thermo Fisher Scientific Cat#: PI23236

Cell culture reagents
RPMI1640 medium Gibco Cat#: 11875093
Fetal bovine serum (FBS) Gibco Cat#: 10082147
Insulin, transferrin, and selenium (ITS) Sigma–Aldrich Cat#: I-3146
RPMI1640 medium glucose free Sigma–Aldrich Cat#: R1383
D-glucose Sigma–Aldrich CAS#: 50-99-7
L-glucose Sigma–Aldrich G5500
Penicillin-Streptomycin (10,000 U/ml) Gibco Cat#: 15140122

Other reagents, chemicals, and experiment materials
BTP2 (YM58483) Tocris Cat#: 3939
Protease/phosphatase inhibitor Sigma–Aldrich Cat#: 11697498001
Polyvinylidene fluoride (PVDF) membranes Millipore IPVH00010
Calpeptin Sigma–Aldrich Cat#: C8999
Pico luminol/enhancer solution Thermo Scientific Cat#: 34580
SuperSignal West Femto Thermo Scientific Cat#: 34095

Abbreviations: Cat, catalog; DAPI, 4’,6-diamidino-2-phenylindole; HRP, horse radish peroxidase; Ig, immunoglobulin.
Cell culture

Immortalized HPCs were obtained from Dr Jochen Reiser
(Rush University) and cultured following the protocols they
provided (56). HPCs were cultured in 75 cm2

flask with
RPMI1640 medium (Catalog no.: 11875093; Gibco) containing
10% fetal bovine serum (FBS) (Gibco), 100 U/ml penicillin,
100 μg/ml streptomycin, 1 × insulin, transferrin, and selenium
(ITS) (Catalog no.: I-3146, Sigma–Aldrich) in a 33 �C with 5%
CO2 incubator for proliferation. When HPCs reached approx-
imately 60% confluence, they were moved to 37 �C for 10 to
14 days for differentiation. Cell culture media were changed
three times per week. Fully differentiated podocytes were
growth arrested with serum free (0.5% FBS) media overnight
prior to various experimental treatments as specified in figure
legends. Based on experimental design, the cell culture media
had three different concentrations of glucose as follows unless
specified in figure legend: (1) 5.6 mM D-glucose, designated as
NG; (2) 25 mM D-glucose, designated as HG; and (3) 5.6 mM
D-glucose + 20 mM L-glucose, designated as HS CT.

CRISPR-Cas9 LV infection

The Orai1 CRISPR LV (pLV[CRISPR]-hCas9:T2A:
Puro-U6>hORAI1[gRNA#117]) and EGFP CT LV (pLV
10 J. Biol. Chem. (2022) 298(6) 101990
[Exp]-EGFP:T2A:Puro- F1A>mCherry) were designed by
ourselves using the VectorBuilder online platform and were
generated by VectorBuilder Inc. The viruses were puromycin
resistant. Fully differentiated HPCs in a total number of about
13 × 104 were infected with orai1 CRISPR-Cas9 LV or CT LV
at 40 multiplicity of infection in RPMI media with 2% FBS
without penicillin/streptomycin for 48 h. Polybrene (5 μg/ml)
was used to increase the infection efficiency. Then, the culture
media were changed to complete RPMI media with 10% FBS.
Two days later, puromycin at the concentration of 2 μg/ml was
added to the culture medium for selecting positively infected
HPCs. The Orai1-deleted HPCs were randomly undertaken
with different treatments as indicated in figure legends.
Western blot analysis

Western blot was performed as described in our previous
publication (57). Proteins were extracted from cells using the
lysis buffer containing protease/phosphatase inhibitor (Sigma–
Aldrich). Equal amount of proteins (30 μg per lane) were
separated by 10% SDS-PAGE, transferred to polyvinylidene
fluoride membranes (Millipore), and probed with primary
antibodies at 4 �C overnight (anti-Orai1, 1:800; anti-STIM1,
1:2000; anti-nephrin, 1:1000; anti-synaptopodin, 1:800; anti-
podocin, 1:1000; anti-GAPDH, 1:300; and anti-α-tubulin,
1:200). After washing membranes with Tris-buffered saline
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with Tween for three times, the membranes were then incu-
bated with secondary antibodies (1:5000) in room temperature
(RT) for 1 h. Orai1 protein band was developed with Super
Signal West Femto, but all other protein bands were developed
with Pico Luminol/Enhancer Solution (Thermo Scientific).
The bands were visualized and captured using the AlphaEase
FC Imaging system (Alpha Innotech). The band density was
measured by AlphaEase FC software (Alpha Innotech) as
previously described (57).

Electrophysiology

The conventional whole-cell voltage-clamp configuration
was performed in single podocyte at RTwith a Warner PC-
505B amplifier (Warner Instruments) and Clampex 9.2
(Axon Instruments). Glass pipettes (plain, Fisher Scientific)
with resistances of 3 to 5 MΩ were prepared with a pipette
puller and polisher (PP-830 and MF-830, respectively, Nar-
ishige). When the whole-cell configuration was achieved, cell
capacitance and series resistance were immediately compen-
sated. The whole-cell currents were continuously recorded at a
holding potential of −80 mV until the end of each experiment
(10–15 min). Current traces were filtered at 1 kHz and
analyzed offline with Clampfit 9.4 (Axon Instruments). The
compositions of the pipette solution were (in mM): 135 Cs-
aspartate, 6 MgCl2, and 10 Hepes, pH 7.2. The compositions
of the bathing solution were (in mM): 120 NaCl, 5 KCl, 1
MgCl2, 10 CaCl2, 10 Hepes, pH 7.4.

Calcium imaging

Fura 2 fluorescence-indicated Ca2+ entry was measured to
evaluate SOCE in HPCs as described previously (25). Briefly,
HPCs, plated on a coverslip were loaded with 5 μM fura 2-AM
plus 0.018 g/dl pluronic F-127 for 45 min followed by a 20 min
incubation in fura-2 free physiological saline solution in dark
at RT. The coverslip was then mounted to a perfusion
chamber and placed on the stage of a Nikon Diaphot inverted
microscope. NIS Elements AR software (Nikon Instrument)
was used to monitor the 340 and 380 nm excitation wave-
length as well as 510 nm emission wavelength in dark room at
RT. [Ca2+]i was calculated using the software following the
manufacturer’s instruction. Calibrations were performed at the
end of each experiment by inducing the maximum calcium
entrance using 5 μM ionomycin, followed by a calcium
chelator EGTA (5 mM).

Staining of the actin cytoskeleton

HPCs were washed with prewarmed PBS two times before
fixed with 4% paraformaldehyde at RT for 15 min. Then, the
HPCs were rinsed three times with PBS, followed by per-
meabilization in 0.1% Triton X-100 in PBS for 15 min. Alexa
Fluor 488 Phalloidin for F-actin staining was dissolved in
150 μl dimethyl sulfoxide to yield a 400× stock solution at a
concentration of 2000 assays/ml, which is equivalent to
approximately 66 μM. The cells were then stained with Phal-
loidin and visualized using a confocal microscope (Olympus).
To evaluate normality of cytoskeleton arrangement, the
cortical F-actin in each podocyte was scored by an observer
blind to the experimental treatments. The scores of the
cortical F-actin in cells were assigned into 1 to 4 according to
the degree of cortical F-actin formation and central stress fiber
absence as follows: 0, no cortical F-actin, normal stress fibers;
1, cortical F-actin deposits on less than 1/2 of the cell border;
2, cortical F-actin deposits on more than 1/2 of the cell border;
and 3, complete cortical ring formatting or total absence of
central stress fiber.

Calpain activity assays

Calpain activity was determined according to the manu-
facturer’s protocol (Abcam). HPCs (approximately 2 × 106)
were seeded into a 10 mm dish. After treatment, cells were
harvested and resuspended in extraction buffer and incubated
on ice for 20 min. Samples were then centrifuged for 1 min in a
microcentrifuge (10,000g) at 4 �C, and the supernatant was
transferred into a clean tube. A volume of 85 μl supernatant
was then transferred to a 96-well plate and incubated with 5 μl
calpain substrates together with 10 μl reaction buffer for 1 h at
37 �C protected from light before reading the fluorescence
absorbance at Ex/Em = 400/505 nm. The absorbances were
then normalized to sample protein concentration measured by
Coomassie-based protein assay (Cat# PI23236; Thermo Fisher
Scientific).

Statistical analysis

All quantitative data passed Shapiro–Wilk normality test
before performing parametric test. All values were presented
as means ± SD and were analyzed using GraphPad Prism 7.
For comparisons between two independent groups, unpaired
Student’s t tests were performed; for comparisons of multiple
groups, one-way ANOVA followed by Tukey’s multiple
comparison test were performed. Comparisons between
treatment within one group was analyzed by paired t test.
Results with p value of less than 0.05 were considered sta-
tistically significant.

Data availability

All data are included in the article.

Supporting information—The article contains supporting
information.
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