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Abstract

Motivation: Next-generation sequencing technologies have accelerated the discovery of single nucleotide variants
in the human genome, stimulating the development of predictors for classifying which of these variants are likely
functional in disease, and which neutral. Recently, we proposed CScape, a method for discriminating between can-
cer driver mutations and presumed benign variants. For the neutral class, this method relied on benign germline var-
iants found in the 1000 Genomes Project database. Discrimination could, therefore, be influenced by the distinction
of germline versus somatic, rather than neutral versus disease driver. This motivates this article in which we con-
sider predictive discrimination between recurrent and rare somatic single point mutations based solely on using
cancer data, and the distinction between these two somatic classes and germline single point mutations.

Results: For somatic point mutations in coding and non-coding regions of the genome, we propose CScape-somatic,
an integrative classifier for predictively discriminating between recurrent and rare variants in the human cancer gen-
ome. In this study, we use purely cancer genome data and investigate the distinction between minimal occurrence
and significantly recurrent somatic single point mutations in the human cancer genome. We show that this type of
predictive distinction can give novel insight, and may deliver more meaningful prediction in both coding and non-
coding regions of the cancer genome. Tested on somatic mutations, CScape-somatic outperforms alternative meth-
ods, reaching 74% balanced accuracy in coding regions and 69% in non-coding regions, whereas even higher accur-
acy may be achieved using thresholds to isolate high-confidence predictions.

Availability and implementation: Predictions and software are available at http://CScape-somatic.biocompute.
org.uk/.

Contact: mark.f.rogers.phd@gmail.com or C.Campbell@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing technologies have accelerated the dis-
covery of single-nucleotide variants (SNVs) in the human genome,
stimulating the development of predictors for classifying which of
these variants are likely functional in disease, and which neutral.
Predictors have been developed for variants in both coding and non-
coding regions of the human genome. For example, in Shihab et al.
(2015), we developed such a predictor based on pathogenic disease-
driver germline variants from the Human Gene Mutation Database
(HGMD) (Stenson et al., 2014), and assumed neutral variants from
the 1000 Genomes Project Consortium (1000G) (The 1000
Genomes Project Consortium, 2012). Multiple types of data may be
informative, so we used an integrative binary classifier which
weighted component data types according to their relative inform-
ativeness (Shihab et al., 2015). A variety of similar predictors have

been proposed (Adzhubei et al., 2010; Kircher et al., 2014; Kumar
et al., 2009; Liu et al., 2017; Quang et al., 2015; Reva et al., 2011).
In Rogers et al. (2017a), we proposed CScape, a classifier for pre-
dicting the driver status of SNVs in the human cancer genome with
a follow-on investigation of biological insights in Darbyshire et al.
(2019). By a driver, we mean a disease enabler, therefore including
the sub-instances of gain-of-function, loss-of-function or both
simultaneously.

As tumors evolve, they accrue thousands of somatic mutations
that are commonly labeled according to their role in cancer develop-
ment: driver mutations are subject to positive selection during a
tumor’s evolutionary progress, as they confer a growth advantage
and contribute to tumor growth. Passenger mutations accumulate as
tumors evolve, and may confer no advantage or may even inhibit
tumor fitness (Pon and Marra, 2015; Stratton et al., 2009).
Oncogenesis is believed to be caused by a small number of key driver
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mutations (Darbyshire et al., 2019; Martincorena et al., 2017) that
trigger tumor growth and induce subsequent passenger mutations as
tumors proliferate (Bozic et al., 2010; McFarland et al., 2014; Pon
and Marra, 2015). Many more passenger than driver mutations
exist in cancer cells and distinguishing between the two classes
remains a significant challenge (Marx, 2014). Germline mutations
have been identified as drivers in genes such as BRCA1 and BRCA2,
but it is estimated that up to 90% of cancer-related genes are influ-
enced by somatic mutations: those that accrue during a patient’s life-
span (Futreal et al., 2004). Furthermore, the immune system could
be expected to tolerate germline mutations but remove cells with
particular types of somatic mutation, leading to differing distribu-
tions between germline and somatic variation. Hence, understanding
particular characteristics that differentiate somatic and germline
mutation will be crucial to our understanding of how the disease
progresses.

In this article, we focus on a machine learning approach to dis-
tinguishing between driver and passenger SNVs across the human
cancer genome. The development of such classifiers will be import-
ant for interpreting cancer sequence databases currently being com-
piled, such as the Cancer Genome Atlas (Weinstein et al., 2013), the
International Cancer Genome Consortium (ICGC) (Zhang et al.,
2011) and national programmes, such as the Genomics England
(100 000 genomes) Project. Mirroring previous methods (Rogers
et al., 2015, 2017a; Shihab et al., 2015), we use an integrative classi-
fier and select features from a wide variety of data sources. Using
leave-one-chromosome-out cross-validation (LOCO-CV), the pro-
posed method, which we call CScape-somatic, outperforms alterna-
tive models, achieving balanced test accuracies of 74% in coding
regions and 69% in non-coding regions.

We also associate a confidence measure to the predicted class
assignments (cf. Supplementary Section S1). To interpret this confi-
dence measure, in Supplementary Section S4, we consider two
thresholds, a default threshold and a high-confidence threshold. If
we restrict prediction to highest confidence instances only (cautious
classification) then balanced accuracy in LOCO-CV increases to
92% for coding regions and 87% for non-coding regions, though
with this level of test accuracy is confined to 10% of coding and 9%
of non-coding nucleotide positions across the genome, respectively.

2 Materials and methods

2.1 Recurrence thresholds
We assembled two datasets based on variants found in the COSMIC
database (version 84, February 2018) (Forbes et al., 2010). Among
the COSMIC database annotations is the recurrence level, or the
number of times a mutation has been observed in different cases. In
the discussion below, highly recurrent variants have a recurrence of
r � q, where we select q¼8 in non-coding regions and q¼7 in cod-
ing regions. The dependence of predictive accuracy on unseen valid-
ation data, versus recurrence level r, is depicted in Figure 1. For
somatic variants, the other category of interest will be rare somatic
SNVs which occur once in the whole dataset (r¼1). These two cate-
gories of somatic alterations will contain variants with differing
disease-driver statuses. It is reasonable to assume that some highly
recurrent variants, specific to cancer samples and absent from
healthy individuals, are actually neutral passengers. A recurrent
somatic SNV could be closely co-located within a region where there
is an active disease driver. Similarly, a rare somatic SNV (r¼1)
could actually be a rare driver. However, it is plausible to assume
that recurrently observed somatic SNVs, which are restricted to can-
cer samples, are enriched for driver mutations. Similarly, rare somat-
ic SNVs could be expected to be enriched for neutral variants. Even
if this statement were challenged, we point out that the consequence
of this study is to show that membership of these two classes can be
predicted with a non-trivial accuracy on unseen test data, and hence
these two classes must have different enrichments and characteris-
tics. Our interest in discriminating recurrent somatic SNVs from
rare somatic SNVs is therefore that it provides an alternative insight
beyond a discrimination between germline neutrals (from healthy

individuals) and recurrent somatic variants from cancer patients, ab-
sent from healthy individuals (Rogers et al., 2017a). This latter dis-
tinction could be influenced by a bias toward germline versus
somatic discrimination, rather than the intended distinction of pas-
senger versus disease driver.

A further possible bias may be introduced if our class of negative
examples, say the rare variants, are located in different genomic
regions from the positive examples, the highly recurrent variants.
For example, the positives may appear predominantly near tran-
scription start sites while negatives are distributed more broadly
(Kircher et al., 2014; Ritchie et al., 2014; Shihab et al., 2015). To
ensure the locations of rare somatic mutations approximate those of
recurrent somatic mutations, we select only those rare mutations
found within a window w of a recurrent mutation. For coding exam-
ples, we use w¼10 000, and for non-coding examples, we use
w¼1000 (Supplementary Section S1). Hence our final training sets,
outlined in Supplementary Tables S1 and S2, consist of 27 575 cod-
ing examples and 10 908 non-coding examples.

2.2 Feature groups
All of our data are based on the GRCh37/hg19 version of the human
genome and detailed further in Supplementary Material. Following
our previous work (Rogers et al., 2015, 2017a,b; Shihab et al.,
2015), we annotated our datasets using more than 30 feature groups
that could be predictive of pathogenicity. For discriminating be-
tween somatic variants, we found the following feature categories to
be predictive:

• Genomic: genomic features include GC content, local mutation

frequency (Martincorena and Campbell, 2015), sequence spectra

(Leslie et al., 2002), proximity to gene features, such as splice

sites or transcription factor binding sites, predicted functional

elements and measures of region uniqueness.
• Evolutionary: evolutionary features include a comprehensive set

of conservation-based measures provided by tools, such as

Fig. 1. Balanced accuracy for models at different COSMIC recurrence levels shows

that the coding models achieve a peak validation accuracy of 74.1% at a recurrence

threshold of q¼ 7 (top), whereas the non-coding models achieve a peak accuracy of

69.5% at a recurrence threshold of q¼8 (bottom)
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PhastCons (Siepel et al., 2005), PhyloP (Pollard et al., 2010) and

FATHMM (Shihab et al., 2015).
• Consequences (coding only): using the Variant Effect Predictor

(McLaren et al., 2016), we use binary vectors to represent allele

consequences and the affected amino acids within all transcripts

associated with a mutation.

The COSMIC database also provides a set of mutational signa-
tures that are specific to oncogenic mutations. These are associated
with various distinct forms of mutation, such as DNA replication
errors, defective DNA repair, enzymatic DNA modification and ex-
posure to mutagens (Alexandrov et al., 2013). However, this signa-
ture set is still evolving and may represent only a subset of potential
oncogenic driver signals. Furthermore, metrics used to derive some
of these signatures are based in part on drivers gleaned from the
COSMIC database and potentially could bias our models. Hence,
our final models use seven distinct feature groups: Conservation,
GC content, Sequence uniqueness, Local mutation frequency,
Proximity to gene features, Spectrum and Functional elements.
More detailed descriptions of these feature groups, and the machine
learning method used, appear in Supplementary Material and in
Rogers et al. (2017a).

2.3 CScape-somatic models
We evaluated all models using LOCO-CV testing (Table 1), omitting
mitochondrial and allosomal (X and Y) chromosomes from testing
as these have evolutionary characteristics distinct from autosomal
chromosomes, and tend to yield fewer examples. For each fold, we
leave out one test chromosome while the remaining 21 chromo-
somes are used to train the model, using the same model parameters
for all folds. Except where noted, we trained models using randomly
selected, balanced sets of 4000 positive and 4000 negative examples.
This smaller subset of examples yields accuracy nearly as high as
with complete training sets but takes less time to train, and allows
us to estimate the variability of test results across multiple LOCO-
CV runs. For testing, we used all available examples for the left-out
chromosome, resulting in slightly unbalanced test sets for coding
and non-coding (Supplementary Table S2). For the training datasets,
we balanced examples by class, and report results for balanced train-
ing for all test set estimations.

We integrated data from the feature groups outlined above and
used them to train two distinct sub-classifiers: one for coding regions
(CSS-coding), and a second for non-coding regions (CSS-noncod-
ing). The simplest kernel method for integrating different data sour-
ces is to combine features from all sources into a single kernel. In
previous work (Rogers et al., 2017a,b), we have found that this ap-
proach yields excellent performance that may surpass multiple ker-
nel methods (Rogers et al., 2017b), as single kernel methods allow
models to learn interactions between features from different sources.
Given at least 30 possible data sources, the number of possible com-
binations of feature groups makes exhaustive testing impractical.
Instead, we use a forward selection approach based on previous
work in which we found that sequential learning could be an effect-
ive means to identify an optimal combination of feature groups
(Rogers et al., 2015). To identify the data sources to include in each
model, we first rank all feature groups by balanced accuracy.
Starting with the top-ranked feature group by validation accuracy,
we iterate over the remaining feature groups, creating models by
combining each of the remaining groups with the top-ranked group
to form a single kernel. If any of these models yield higher balanced
accuracy than the best model, it becomes the new best model. We
continue this process until none of the subsequent models yields sig-
nificantly higher balanced accuracy than the current best model in
LOCO-CV (Supplementary Fig. S1). We evaluate all combinations
with and without data normalization, where we standardize features
by subtracting the mean and dividing by the standard deviation. For
these models, we observed no difference in performance between the
raw feature values and standardized data. The final CSS-noncoding
model includes five feature groups: Conservation, Local mutation
frequency, Distance from gene features and two related to sequence:

GC content and Sequence uniqueness. For CSS-coding, the best
model uses all of the feature groups used in CSS-noncoding plus
the Functional elements and Spectrum groups (Supplementary
Section S2).

3 Results

3.1 Measurable differences between germline and

somatic neutral variants
The methodology we use will be similar to that used with CScape
(Rogers et al., 2017a). However, the key difference is that we wish
to explore the potential for discriminating between two different
classes of somatic variants: highly recurrent SNVs, which we label
as positives, and rare SNVs which we label as negatives. The other
distinction is between the neutral germline variants we used to train
our CScape models and the r¼1 somatic SNVs in cancer samples.
To investigate this latter distinction, we evaluated 30 different fea-
ture groups to detect differences between these latter two classes of
variants.

3.2 Non-coding data: germline versus somatic
In non-coding regions, several feature groups yielded different distri-
butions for r¼1 somatic variants and germline neutral variants.
These are depicted in Figure 2 and Supplementary Figure S2, and the
distinction is highly significant by hypothesis testing. For example,
PhyloP conservation scores for r¼1 somatic variants tend to be
higher (associated with more highly conserved regions) and fall
within a narrower range than neutral germline variants (Fig. 2, top).
Based on our mutation tolerance measure, r¼1 somatic variants
reside in regions where somatic variants typically cluster, while be-
nign germline variants appear in these regions less often (Fig. 2, bot-
tom). These patterns are consistent with other features in the same
groups (Supplementary Fig. S2), and hence supports our hypothesis
that by developing models focused solely on somatic variants, we
may begin to tease out differences between cancer drivers and puta-
tive passenger variants. However, one should be cautious about
drawing inferences from these results. For example, germline neutral
variants have higher percent GC content scores in coding regions,
but lower scores in non-coding regions, so it is unclear whether GC
content plays a significant role, or whether it merely correlates with
other features.

3.3 Coding data: germline versus somatic
Conservation estimates feature prominently in many methods
designed to predict pathogenic or oncogenic variants in coding
regions of the genome, including our own FATHMM-MKL (Shihab
et al., 2015), FATHMM-XF (Rogers et al., 2017b) and CScape
(Rogers et al., 2017a). The selection of positive examples (pathogen-
ic or oncogenic) is relatively clear, but selecting appropriate neutral
examples may be challenging. Hence, we used conservation scores
to assess characteristic differences between neutral germline and
somatic variants. For our analysis, we use three different methods
for scoring conserved positions in a genome: PhastCons (Siepel
et al., 2005), PHYLOP (Pollard et al., 2010) and FATHMM (Shihab
et al., 2013). PhastCons produces scores that correspond to the
probability that a particular position is in a conserved region: high
scores correspond to high conservation probability. PHYLOP yields
scores in a broader range, but positive scores generally correspond
to conserved regions and negative scores, to variable regions.
FATHMM scores also span a relatively broad range. In this case,
negative scores correspond to conserved regions and positive scores
reflect variable regions.

In coding regions, conservation scores tend to yield good dis-
crimination between pathogenic and benign germline variants
(Rogers et al., 2017b; Shihab et al., 2015), or between somatic
driver and neutral germline variants (Rogers et al., 2017a). Hence, it
is not surprising that several conservation scoring methods also ex-
hibit different distributions between rare somatic variants and neu-
tral germline variants in coding regions (Fig. 3). Here, we show the

CScape-somatic 3639

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa242#supplementary-data


results for two methods: PhastCons (Siepel et al., 2005) and
PHYLOP (Pollard et al., 2010) [we find similar results for scores
from FATHMM (Shihab et al., 2013), Supplementary Fig. S3]. For
conservation scores, we found that putative somatic passenger var-
iants tend to have score distributions associated with more highly
conserved regions than neutral germline variants. Note that, we
observed the same pattern in conservation scores for non-coding
variants, where rare somatic variants were also associated with
more highly conserved regions (Fig. 2). These results are consistent
with the idea that germline variants under selective pressure occur
less frequently in conserved regions that are intolerant to variation.
By contrast, rare somatic variants are under little or no selective
pressure once tumors proliferate, and hence may tend to arise in
conserved regions with a greater frequency.

3.4 Classifying recurrent and rare somatic variants
3.5 X indicate non-coding

3.5.1 Classifying somatic variants in non-coding regions
Cancer specific predictors have been proposed for prediction in cod-
ing regions of the cancer genome (Adzhubei et al., 2010; Kumar
et al., 2009; Wong et al., 2011). General purpose predictors have
also been proposed for prediction across the entire genome (coding
and non-coding regions) using catalogued disease drivers across a
variety of disease traits [e.g. HGMD (Stenson et al., 2014)], and re-
cently, we have seen the emergence of classifiers designed to

discriminate between cancer drivers and presumed benign variants
from germline databases (Fu et al., 2014; Rogers et al., 2017a).
However, there is currently a lack of predictors specifically trained
to discriminate between somatically acquired putative drivers and
passengers, particularly for non-coding regions of the cancer
genome.

Here, we consider the distinction between rare somatic variants
and highly recurrent somatic variants, with the working assumption
that the former class is enriched for neutral passengers while being
distinct from germline neutrals, and with the latter class enriched for
drivers. In Figure 4, we present results demonstrating that CSS-non-
coding outperforms rival prediction tools for this distinction, based
on the use of COSMIC data, both in terms of accuracy (top) and
area-under-ROC-curve (AUC) score (bottom). In comparison with
general-purpose classifiers such as CADD (Kircher et al., 2014), and
cancer-specific methods such as CScape (Rogers et al., 2017a) and
FunSeq2 (Fu et al., 2014), our CScape-somatic model yields dramat-
ically higher accuracy and AUC performance. CScape-somatic test
accuracy with LOCO-CV is 69.2% while its nearest competitor,
FunSeq2 yields 52.7%. Similarly, CScape-somatic yields an AUC
score of 0.73 substantially higher than its nearest competitor,
FunSeq2, with 0.52.

3.5.2 ICGC test data
ICGC data include patient identifiers, which enables us to find can-
cer variants that occur more than once. Hence, this dataset provides
a good independent test for models that might discriminate between
putative driver mutations (those found in multiple patients) and
rare, prospectively neutral, mutations (those found just once).
Within the ICGC data, we found 52 825 examples in non-coding

Fig. 2. Scoring distributions for SNVs in the non-coding datasets show differences

between germline (1000 Genomes) and rare somatic (COSMIC, r¼ 1) examples.

The features that discriminate most clearly between germline and somatic variants

are those associated with conservation scores (top) and the somatic mutation fre-

quency within a local region (bottom). Conservation scores do not yield the kind of

discrimination we see typically when comparing pathogenic or oncogenic mutants

with presumed benign variants, however PhyloP scores suggest that putative somatic

passenger variants are more closely associated with highly conserved regions (lower

scores indicate greater conservation) than benign germline variants (top). This same

pattern holds for other conservation scores, but the distinction is less clear

(Supplementary Fig. S2). Somatic variants also appear to reside in regions with

higher mutation tolerance, as measured by the number of somatic variants found

within a region of 1000 positions (bottom). The individual probabilities that the

two distributions in each subplot come from the same underlying distribution are

upper bounded by 10�18, and hence the differences are certainly statistically

significant

Fig. 3. Two methods for estimating conservation in coding regions show that there

are differences in scoring distributions between germline (1000 Genomes) and rare

somatic (COSMIC, r¼ 1) variants. With PhastCons scores (top) germline neutral

variants tend to have low scores associated with more highly conserved regions,

whereas somatic neutral variants tend to have higher scores. PHYLOP scores (bot-

tom) exhibit a similar pattern where again, high scores are associated with con-

served regions, whereas low scores are associated with more variable regions. While

these differences are subtle, this suggests that developing a coding region classifier

strictly based on somatic variants may yield better specificity for cancer drivers than

the current CScape coding model. The individual probabilities that the two distribu-

tions in each subplot come from the same underlying distribution are upper

bounded by 10�18, and hence the differences are certainly statistically significant
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regions after we applied our strict filtering criteria. This procedure
yielded 37 802 variants associated with only one patient, and
15 023 examples associated with two or more patients. We selected
positive examples using three different recurrence levels: r � 2; r �
3 and r � 4 (we found no examples associated with more than four
patients). In each case, we restricted rare variants to be within 1000
nucleotide positions of highly recurrent putative driver, to mitigate
potential bias related to genomic locations. This yielded 37 802 rare
variants and 15 023 recurrent variants at r � 2, 3781 rare variants
and 1548 recurrent variants at r � 3 and 1207 rare variants and 481
recurrent variants at r � 4.

Generally, we found that CADD, which was trained solely on
germline or simulated variants, and models such as CScape,
FunSeq2, DANN, FATHMM-MKL and FATHMM-XF, trained on
combinations of germline and somatic variants, perform poorly on
this test set. CScape-somatic yields substantially higher balanced ac-
curacy and AUC scores than competing methods on these data.
Interestingly, this model performs better as the recurrence level
increases: from 60% at r � 2 up to 64% at r � 4 (Fig. 5). This ob-
servation implies there is a substantive difference between low-
recurrence and high-recurrence variants, supporting our previously
stated assumption that high-recurrence variants are more likely to
be driver mutations. The remaining models all perform worse in
terms of AUC scores as the ICGC driver threshold r increases, the
lone exception being the original CScape (Fig. 5, bottom).

3.5.3 Evaluation on TERT/SDHD/PLEKHS1 examples

from non-coding regions
Few oncogenic single-point mutations have been verified in non-
coding regions. The most prominent to date are three mutations in
the TERT promoter region (Horn et al., 2013; Huang et al., 2013;

Weinhold et al., 2014). These have been characterized as disruptions
to putative E26 transformation specific (ETS) family transcription
factor binding sites, that include five additional mutations in SDHD
and PLEKHS1 (Weinhold et al., 2014). This test set is tiny, and thus
inadequate to evaluate classifiers in any comprehensive fashion, but
represents the few documented examples of driver mutations in non-
coding regions. Hence, we expect a useable classifier to predict a
majority of these examples correctly. For both CScape methods, we
assign negative (-) labels to scores below 0.5 and positive (þ) labels
for the rest. For CADD scores, we associate negative and positive
predictions with negative and positive scores, respectively. For
FunSeq2, we label as negative scores below 0.56 and use positive
labels for the rest.

The CScape-somatic non-coding predictor yield positive predic-
tions for all of these examples, while the original CScape predict all
but one of the SDHD examples (Table 2). FunSeq2 and CADD per-
form worst in this test, missing both of the PLEKHS1 examples.
However, it is worth repeating that these validated examples repre-
sent but a small fraction of cancer drivers in non-coding regions. It
is also worth noting that none of these examples appear in the
CScape-somatic training set, whereas all three of the TERT muta-
tions were part of the original CScape training set.

3.6 X indicates coding

3.6.1 Classifying somatic variants in coding regions
For classifying driver mutations, coding regions have received con-
siderably more attention than non-coding regions. However, few
models have been developed expressly to differentiate between som-
atically acquired cancer drivers and passenger mutations. Hence, we
are interested in seeing whether a classifier trained on rare putative

Fig. 4. Comparison between CScape-somatic performance in LOCO-CV (non-cod-

ing regions, COSMIC data) with prediction results for CScape, CADD and FunSeq2

on the same examples (CSS¼ CScape-somatic and CS¼ CScape). Top: CScape-som-

atic dramatically outperforms other methods on the COSMIC training data with ac-

curacy over 69%. Of the other methods, only FunSeq2 appears to yield prediction

accuracy better than chance, at 52.7%. The remaining methods fare poorly, includ-

ing the original CScape. Bottom: We see the same trend with ROC scores, as

CScape-somatic yields satisfactory ranking performance of 0.75, whereas only

FunSeq2 yields rankings better than chance

Fig. 5. Performance of the best CScape-somatic model with the original CScape,

CADD and FunSeq2 on the ICGC test set for non-coding regions (CSS¼ CScape-

somatic and CS¼ CScape). Top: CScape-somatic yields accuracy from 60.0 up to

64.2% on the ICGC test sets, substantially higher than competitors. The closest

competitor changes at each ICGC recurrence level: FunSeq2 for ICGC r � 2, at

50.9%; CScape for ICGC r � 3, at 50.5% and CADD for ICGC r � 4, at 51.4%.

Bottom: CScape-somatic yields AUC scores from 0.64 to 0.73. None of the competi-

tors yield scores better than random chance (0.50), and with the exception of the

original CScape, perform worse as the driver threshold r increases
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passengers and highly recurrent putative drivers in coding regions
can discriminate between these two classes, better than existing
models. Results on our COSMIC training data, shown in Figure 6,
show that most methods struggle to make this distinction. Of the
methods tested, only the original CScape yields prediction accuracy
better than chance, at 56% with an AUC score of 0.62. By contrast,
CScape-somatic achieves an average balanced accuracy of 74% in
LOCO-CV, with an average AUC of 0.82.

3.6.2 ICGC test data
We see similar performance characteristics on our ICGC test set: the
CScape-somatic coding classifier yields 64% accuracy and an AUC
score of 0.69, whereas the best of the remaining methods, CScape,
manages 59% accuracy and an AUC of 0.61 (Fig. 7). Taken with
the performance on our COSMIC dataset, these results suggest that
models trained to discriminate between presumed cancer drivers and
generic neutral germline variants may be poor with distinguishing
between true drivers and passengers.

We note that the performance of the CScape-somatic coding
classifier drops considerably between the COSMIC training set and
the ICGC test set. By contrast, the original CScape performs slightly
better on the ICGC test set at 59% accuracy compared with 56%
accuracy on the COSMIC dataset. There are two possible reasons
for this: either the ICGC test set does not represent cancer drivers

and putative passengers as well as the COSMIC dataset, or the
CScape-somatic coding model may over-fit the COSMIC dataset.
After filtering out examples found in our training set, the ICGC test
sets are relatively small, with just 1695 drivers and 2921 putative
passenger mutations in the set. As a result, we did not have sufficient
test data to stratify by recurrence levels with putative drivers defined
by recurrence levels as low as two. When we test our coding model
on unseen COSMIC data where drivers are identified using recur-
rence levels of just two or higher, performance indeed drops consid-
erably, to a balanced accuracy of 62.3%, slightly lower than its
performance on the ICGC test data using the same recurrence levels.
Thus, while we cannot rule out some degree of over-fitting, these
results suggest that relatively low recurrence levels in the ICGC data
account for some of the observed performance difference.

We have used the COSMIC dataset for model training and the
ICGC dataset for test evaluation. Of course, it is also possible to
train on ICGC data and test on COSMIC. Though this leads to a
slightly lower test performance, we consider and evaluate this alter-
native in Supplementary Section S5.

Aside from evaluations on test data, we can also test the model
for biologically meaningful prediction. There are a number of well-
characterized cancer driver mutations stemming from variants in
coding regions. For example, the His1047Arg substitution derives
from A! G at location 3:178952085 (GRCh37/hg19) in the driver

Table 2. Tests on verified cancer drivers from non-coding regions

show that CScape-somatic predicts all variants correctly, while the

original CScape correctly predicts all but one SDHD variant

Mutation CSS CS FSa CADD

TERT

5:g1295228G>A þ (0.56) þ (0.52) þ (1.33) þ (0.34)

5:g1295229G>A þ (0.51) þ (0.62) þ (1.69) þ (0.66)

5:g1295250G>A þ (0.51) þ (0.58) þ (0.56) þ (0.31)

SDHD

11:g111957523C>T þ (0.52) þ (0.81) þ (1.00) þ (1.64)

11:g111957541C>T þ (0.68) þ (0.67) þ (1.62) þ (0.82)

11:g111957544C>T þ (0.87) � (0.40) þ (1.00) þ (0.64)

PLEKHS1

10:g115511590G>A þ (0.71) þ (0.65) � (0.17) � (-0.10)

10:g115511593C>T þ (0.57) þ (0.71) � (0.17) � (-0.06)

Note: FunSeq2 and CADD predict the TERT and SDHD examples correct-

ly, but both misclassify the PLEKHS1 examples. For each method, we present

the predicted label (þ ¼ driver, – ¼ passenger) with the associated score in

parentheses. (Classifiers: CSS ¼ CScape-somatic, CS ¼ CScape, FS ¼
FunSeq2.)

aFor FunSeq2, we use a threshold of 0.56 (Rogers et al., 2017a).

Fig. 6. Comparison between CScape-somatic performance using LOCO-CV (coding

regions, COSMIC data) with prediction results for CScape, CADD and TransFIC

(Gonzalez-Perez et al., 2012) models on the same examples. Top: CScape-somatic

balanced accuracy in LOCO-CV outperforms other methods on the COSMIC train-

ing data, with accuracy over 74%. Of the other methods, only CScape yields predic-

tion accuracy better than chance, at 59.2%. The remaining methods fare less well,

even the TransFIC methods that were optimized for somatic variants. Bottom: We

see the same trend with ROC scores, as CScape-somatic yields satisfactory ranking

performance of 0.82, whereas only the original CScape yields rankings better than

chance, at 0.62. (CSS¼ CScape-somatic; CS¼ CScape; TF-MAS¼ TransFIC-

MutationAssessor, TF-PPH2¼ Transfic-Polyphen2 and TF-SIFT¼ TransFIC-SIFT)

Table 1. Statistics for CSS-noncoding and CSS-coding applied to

LOCO-CV test data provide estimates of how the models are likely

to perform on new examples

Classifier Bal. Acc. Sens. Spec. MCC PPV

CSS-noncoding 0.69 0.64 0.74 0.38 0.73

Cautious (s ¼ 0:84) 0.84 0.87 0.81 0.67 0.91

CSS-coding 0.74 0.72 0.77 0.48 0.76

Cautious (s ¼ 0:91) 0.92 0.96 0.88 0.85 0.93

Note: Shown are the performance statistics for each model: sensitivity

(Sens., the proportion of positive examples correctly classified), specificity

(Spec., the proportion of negative examples correctly classified), balanced ac-

curacy (Bal. Acc.), the Matthews correlation coefficient (MCC) and the posi-

tive predictive value (PPV, the proportion of positive predictions that are true

positives). s is the cutoff on the confidence for cautious classification.
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gene PIK3CA and has been implicated in various cancers (Janku
et al., 2011). Using CScape-somatic (http://CScape-somatic.biocom
pute.org.uk/) this is a high confidence predicted driver (at 0.927). In
Supplementary Section S6, we further tested Cscape-somatic on a
range of other recurring single point driver mutations in coding
regions, residing in well-known cancer genes, and characterized as
SNV drivers as shown in the Extended Data Figure 1 in the study by
Rheinbay et al. (2017). Their study uses data from the Pan-Cancer
Analysis of Whole Genomes Consortium and uses in excess of 2700
cancer genomes from more than 2500 patients. Subject to the pro-
viso given in Supplementary Section S6, the presented classifier cor-
rectly predicts all of these well-characterized drivers from the driver-
genes KRAS, PIK3CA, TP53, NRAS and IDH1.

4 Discussion

In this study, we have investigated the feasibility of developing mod-
els that can accurately predict the likely influence of different classes
of somatic mutations on tumorigenesis. Our hypothesis was two-
fold. First, there are characteristic differences in many of the features
distinguishing rare somatic variants, which are prospectively
enriched for neutral passenger variants, and benign germline var-
iants. The latter category is frequently used to train methods for
SNV driver status annotation. Second, these features can play an

important role in discriminating between rare somatic variants, puta-
tively passengers and highly recurrent somatic variants, restricted to
cancer patients, and which are likely to be enriched for drivers. We
found evidence to support the first hypothesis within features that
measure degree of conservation across the genome, mutation fre-
quency or GC content in the region surrounding each variant. We
also present the CScape-somatic model to distinguish these two
classes of somatic variant in coding and non-coding regions of the
genome. Both the coding and non-coding sub-classifiers, optimized
separately within their respective domains, rely to some degree on the
same features: conservation, mutation frequency and GC content.

To our knowledge, the CScape-somatic model is the first to dis-
criminate solely between somatic cancer variants. We compared our
new model to our original CScape model which was trained to dis-
criminate between somatic driver variants and benign germline var-
iants, and found that while the original model provides weak
discrimination between highly recurrent and rare somatic variants,
the new model provides substantially higher test accuracy across
the entire genome. We also compared this new model to CADD,
FunSeq2 and the three TransFIC models: TransFIC-
MutationAssessor, TransFIC-SIFT and TransFIC-Polyphen2. Of
these latter models, only FunSeq2 has been optimized to predict
oncogenic variants. The remaining five methods were all developed
to discriminate pathogenic germline variants from benign germline
variants. In nearly all cases, we found that models trained on germ-
line variants as the neutral control, were unable to distinguish be-
tween highly recurrent putative oncogenic drivers and rare somatic
variants, likely to be putative passenger variants. Only models
trained on cancer variants, CScape and FunSeq2, provided weak dis-
crimination on some test data for this type of distinction.
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