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Abstract: Network management strategies depend on a timely and accurate knowledge of the
network performance measures. Among these, one of the most relevant is the delay of the links,
which unfortunately is not easy to measure with accuracy, especially when considering multi-hop
paths. This is a classical networking problem, for which several solutions have been proposed.
Nonetheless, we argue in this manuscript that there is still some room for improving accuracy and
effectiveness in the measurement. This paper proposes a new solution based on the exploitation of the
P4 data plane programming language. The basic idea is to handle lightweight probe packets that are
forged ad-hoc at the edge of a link and processed at the other edge. Hosts generate the probe packets
that are then exploited by the P4 programs in the switches to implement the measure. This approach
provides an accurate and reliable measure of the link transit time, also effective in multi-hop links. In
this latter case, we show that the measurement is not influenced much by the packet loss when the
network is overloaded, thus providing more reliable results with respect to more conventional tools
such as the classical ping utility. The manuscript explains the proposed P4 solution; then, it provides
a comparison with several other approaches found in the literature, showing that outperform most of
them, and finally show the behavior of the proposed methodology when facing a multi hop network
path on a congested network to prove its robustness.

Keywords: SDN; P4; Link Delay Measurement

1. Introduction

Measuring the delay of a link is challenging and its definition depends on network
configuration, hindering the development of a uniform solution that may be applied to
heterogeneous network layouts.

Many network management scenarios rely on an efficient and precise measurement
of the delay on a link, called Link Delay Measurement (LDM) in the following. Some
examples are managing quality-of-service, detecting security attacks, and supporting many
other time-sensitive applications, as described, among others, by Cordeiro et al. [1] which
uses LDM to provide quality-of-service for Mesh Networks, or by Al Sadi et al. [2], in
which LDMs are used together with asymmetric flow measurement in order to detect a
possible Denial-of-Service attack, or by Giridhar et al. [3], in which LDM is used to perform
search efficiently in a clustered network. In newer terms, 5G aims at providing network
slices tailored to specific vertical applications, among which the Ultra Reliable Low Latency
for time sensitive services [4]. At the same time, the most advanced network architectures
assumes the possibility to deploy specific service functions as close as possible to the final
users in terms of network delay (the so called “edge computing” paradigm exemplified
also in the Multi-access Edge Computing standard promoted by ETSI [5]). In all these cases
a detailed knowledge of the delay on the links is part of what required to design the correct
service solutions.

Understandably, then, the scientific community produced a considerable effort on
LDM. Indeed the most precise and reliable the LDM the more effective the implementation

Sensors 2022, 22, 4411. https://doi.org/10.3390/522124411

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s22124411
https://doi.org/10.3390/s22124411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5560-9871
https://orcid.org/0000-0002-6669-8072
https://orcid.org/0000-0002-0101-2551
https://orcid.org/0000-0002-3962-5513
https://doi.org/10.3390/s22124411
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124411?type=check_update&version=1

Sensors 2022, 22,4411

20f18

of these functions. Unfortunately, achieving high-quality LDM is not trivial. In particular [2]
illustrates that relying on a network level protocol utility is not an effective approach since
links run between switches, that do not necessarily implement or interact with the IP
protocol. Therefore, a general approach requires an algorithm that is able to directly work
at the data plane level, in the layer 2.

One Way Delay [6] (from now on: OWD) is the LDM between two switches calculated
considering one traffic direction only. An effective algorithm for the calculation of OWD
can also be used for LDM by combining the results obtained for the forward and backward
paths using the OWD measurement [7]. In this paper, we will focus on OWD delay
calculation, which has been implemented in the past with techniques that can be divided
into two main categories:

*  Active: algorithms that rely on sending timestamped probes from sender to receiver,
avoiding a possible bias by generating probes in a random way.

¢  Passive: algorithms that rely on measurement of traffic properties of the network. In
this case the delay is calculated between a sender and a receiver that are not necessarily
the source and destination of a traffic flow.

This work proposes P4DM (P4 link Delay Measurement), an original probe-based ap-
proach for OWD measurement, based on state-of-the-art Software Defined Network [8].
P4DM exploits Data Plane Programmability implemented with the P4 switch programming
languages. For the reader not fully familiar with P4, Kfoury et al. [9] recently published a
survey on this topic providing a classification and taxonomy of a large number of articles,
while also identifying future challenges and future perspectives. We will explain in the
remainder of this manuscript which are the advantages of this approach and compare the
performance of P4ADM with other algorithms that already appeared in the literature.

P4DM is inspired by In-Network Telemetry (INT) [10], a telemetry framework de-
signed to perform network-wide monitoring. By providing a large number of different
telemetry parameters, INT is able to conduct monitoring tasks by enriching the packet with
bytes of information. Following this paradigm, P4DM uses the level 3 IP options to store
the information needed to perform the calculation.

The remainder of this paper is organized as follows. In Section 2, we review the
relevant literature to present the background concepts we based our work upon, and to
highlight the limitations of current solutions. In Section 3, we introduce the P4 program-
ming paradigm and its integration with SDN architectures. In Section 4, we describe our
P4-based solution to OWD measurement, defining the necessary data structures and the
algorithms to manipulate them on the switches; Section 5 documents the results of testing
their implementation. We draw conclusions in Section 6.

2. State of the Art

The scientific community has been interested to the OWD problem for a while.
Nonetheless, the distributed control plane approach of the Internet does not provide
good tools to this. The SDN paradigm, thanks to the introduction of the concept of a
centralized control plane, fueled a new wave of interest into the topic, with particular
reference to active strategies.

The literature that treats OWD calculation exploiting SDN is very scattered and
diversified, but OpenFlow [11] is by far the most used protocol [12]. A complete overview
of the most valuable solutions elaborated by the scientific community is given in [13],
followed by a performance comparison of them.

A known OpenFlow-based approach to delay calculation [14,15] is to use a PacketOut
message to let a switch inject a probe in the data plane, to measure the time needed for
the reply to come back as a PacketIn. However, the time difference between sending the
PacketOut and receiving the PacketIn is affected by many sources of unpredictable delays,
such as the overhead of forwarding processing, and the OpenFlow messages transmission.
For this reason, the OWD between the switches can be extracted only with a limited
precision [15].
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Generally speaking, OpenFlow introduces overhead when it parses messages to the
data plane level, and this puts a strain on time-sensitive applications and compromises
their efficiency.

Phoemius and Bouet propose Controller in the loop [16], an algorithm that exploits
OpenFlow in an SDN-based environment by injecting OpenFlow probe packets in the
data plane which gathers the timestamps of the sending and receiving time. The main
drawback of this solution is that the OpenFlow messages cause more overhead then simple
packet probes.

Altukhov and Chemeritsky propose Many Data Loops(MDL) [17], a variation of the
Controller in the loop algorithm that eliminates the bias of the control channel latency by
looping the probe many times between the switches. The main drawback of this solution is
the overhead introduced by looping the probe a very high number of times, in the order of
the thousands loops for one single RTT measurement.

OpenNetMon [15] is another solution that monitors flow metrics such as throughput,
delay and packet loss, in OpenFlow networks. Using probes, OpenNetMon polls switches
in an adaptive rate to establish the metrics.

Sinha et al. proposed TTL based looping [18] an improvement of the MDL algorithm
by exploiting the TTL IP field. The controller injects the probe with a fixed TTL and every
switch decrements it until it is 0. When the TTL is 0 the probe is sent back to the controller.
This method suffers the same problems of the MDL solution.

Liao et al. proposed TTL based LLDP looping [19], similar to the Controller in the
LLDP looping solution, which loops the probe between two switches in a hard-coded
fashion using a custom LLDP format to calculate the OWD. This solution suffers from the
overhead introduced by the LLDP flooding.

SLAM [20] is a latency monitoring framework that sends packet probes to switches and
estimates the latency distribution based on the arrival timestamps of the control messages
at the controller.

The works mentioned above are examples of approaches to calculate the OWD that
with different flavor share the same drawback, i.e., relying on OpenFlow the probe infor-
mation must travel back and forth to the control plane (the SDN controller) which adds
overhead to the network and limit the accuracy of the measures.

For this reason in this work, we tackled the problem of active OWD measurement
by exploiting Data Plane Programmability, in particular using the functionalities given by
the P4 language [21]. P4 has some native features (such as registers, counters, etc.) that
suit perfectly for the task. P4 has already been used to solve network management prob-
lems, also related to cybersecurity. An interesting P4 proof-of-concept has been proposed
in [22] where authors demonstrated the feasibility of a detection and mitigation Explicit
Congestion Notification (ECN) protocol abuse without any TCP protocol modification.

In a previous work [23], we investigated the opportunity to integrate an SDN Open-
Flow based control plane with P4, to enhance the network monitoring capabilities. Some of
the ideas presented in [23] regarding the exploitation of P4 for network management are
here expanded and tailored to the specifics of the OWD problem.

3. Background about P4 and Its Integration with SDN

The idea of programmable switches has been around for a long time; in the past it was
hindered by the performance degradation of programmable switches, due to the fact that
the vendor chips had to adapt to different specifications instead of focusing on a subset of
features and making them perform at their best. P4 is a programming language which lets
the end users describe how the switch should process the packets. P4 exploits the concept
of data plane programmability. By data plane programmability we intend to describe the
ability of adding functionalities to the network and expose the packet processing logic to
the control level in order to enable a systematic, fast and complete reconfiguration. Another
important feature to effectively grant data plane programmability is flexibility. Flexibility
is the capacity of changing network’s topology, resources, functions or services at will [24].
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Given these information, we claim that P4 language is the best choice to describe and
deploy network rules [25], to gather information (such as timestamps) from the devices
and to perform a LDM [26]. A P4 switch differs from a traditional one since [27]:

Data plane functionalities are unknown to the P4 switch. It is programmed to follow
rules written in the P4 program.

Control plane communicates with the data plane in a traditional fashion but tables and
other data plane objects do not have fixed roles. The P4 compiler generates control
plane APIs used to communicate with the data plane.

P4 introduces different abstractions that allow it to be a target-independent program-

ming language. In particular:

Header types: describe packet header formats.

Parsers: describe header sequences of received packets, how to identify sequences for
error checking and which headers and fields must be extracted from packets.

Tables: which associate actions with user-defined keys. P4 tables generalize traditional
switches ones and are able to exploit them for a large number of useful purposes.
Match-action units: which execute the following operations:

(1) Create lookup keys from packets fields or from metadata.
(2) Execute table lookup using the obtained key, choosing an action to execute.
(3) Execute the chosen action.

Control flow: express an imperative program to process packets on a target.

Extern objects: architecture-specific constructs that can be manipulated from P4 pro-
grams thanks to APIs, vendor-specific and not P4 programmable.

User-defined metadata: user-defined metadata associated to packets.

Intrinsic metadata: metadata associated to every packet available from the architecture.
For example, the packet input port.

P4 enhances data plane programmability by adding desirable features to the data plane:

Flexibility: packet forwarding policies are defined using code instead of using tra-
ditional fixed policies. Furthermore, it is possible to change network resources and
functions by P4 code.

Expressiveness: P4 is able to express complex hardware-independent packet processing
algorithms only using general-purpose operations and table look-ups. Programs are
portable into different targets that implement the same architecture.

Resource assignment and management: P4 describes storage resources in an abstract way,
compilers associate user defined fields to hardware resources and manages low level
details such as allocation.

Software engineering: P4 provides type checking, information hiding and software reuse.
Decoupling hardware and software evolution: producers can use abstract architectures to
decouple the evolution of low-level details from high level processing.

Debugging: producers offer architectural software models to help developing and
debugging P4 programs.

P4’s flexibility and efficiency are characteristics desired to design an high performance

LDM calculation.

4. The Proposed Methodology and Solution

As already outlined the main contribution of this work is an algorithm that calculates

the OWD of a network link, P4DM, implemented by means of suitable P4 programs
installed in the network switches.

Two different scenarios will be considered in the following.
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*  Point to point. There is only a single link between the SOURCE and the SINK node. In
this scenario we can suppose the values of the OWD calculation are rather stable, since
the propagation delay should be the dominant contribution to the absolute value.

*  Multi-hop. The SOURCE and the SINK are linked by a number of nodes not known
a-priori. In this configuration, we expect the values of the OWD calculation quite
variable and P4DM behaves in a similar way to ping [28]. The advantage of the
proposed solution is that it avoids the delay introduced by the processing in the end
hosts, since it exploits P4 directly on the data plane.

4.1. Implementation

The goal of the implementation is to perform an OWD calculation by sending a
dataplane probe between two connected switches. The measurement is performed between
a node named SOURCE, the issuer of the OWD calculation and a SINK node which is
the receiver of the probe. P4DM is a lightweight solution to calculate the LDM between
two nodes without the need of synchronization. Not needing switches to be synchronized
allows this solution to be used in any network that has two switches that speak P4.

Figure 1 describes the workflow of P4DM.

CONTROLLER

(1)¢E Ml

v

=

SWITCH1 SWITCH2

&~
s152)

I

Ts1i_m1 [Ts1e_m1

Ts2i_m2 [ Ts2e_m2

Ts1i_m1 |Ts1e_m1

Ts2i_m2 | Ts2e_m2

Ts1i_m3 | Ts1e_m3

Figure 1. P4DM steps.

The state-of-the-art OWD measurements techniques are detailed in Section 5.2. They
use a controller to send probes to the data plane. In our solution, there is no need for an
SDN controller since P4 can fully function without it. However, for the sake of homogeneity,
we included the SDN Controller in Figure 1. In this proposed measurement workflow,
the probes are generated by an application (Controller like in Figure 1, or a host), which
simulates the role of the controller in the other solutions. The switches add a timestamp to
the probing packet every time it enters a queue.
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4.2. Algorithm Design

The list of collected timestamps is summarized in Table 1.

Table 1. Timestamps meaning.

Name Timestamp Meaning
Ts1i m1 Packet from controller enters ingress queue on switch 1
T Packet from controller enters egress queue
sle_ml after forwarding decision of sending it towards switch 2
Tsoi mo2 Packet from switch 1 enters ingress queue on switch 2
T Packet enters egress queue on switch 2
52e_m2 after being recognized as a probe to be sent back to switch 1
Ts1i m3 Packet from switch 2 enters ingress queue on switch 1
T Packet from switch 2 enters egress queue
sle_m3 on switch 1 to be sent back to the controller
Tdifffslfml Tsle_ml - Tsli?ml
Taiff so_m2 Ts2e m2 — Tsoi_m2
Tdi ff_s1_m3 Tsle_m3 - Tsli_mB

—_

w

The steps of P4DM are outlined in Figure 1. The algorithm proceeds as follows:

The controller sends the packet probe to Switch 1.

Switch 1 adds timestamps T1; 1 and Ty, 51 to the packet while forwarding it to-
wards Switch 2.

Switch 2 adds timestamps Tsp; 2 and Tsp, 2 and forwards the packet to Switch 1.
Switch 1 adds the packet timestamps Ts1; 3 and Ts1, 3 and forwards the packet to
the Controller, which calculates the OWD between the Switch 1 and Switch 2 using
the following equation:

owp — Tstems = Taiim) Taifrsim Taigpom2 Taiffs1ms
- 2 2 2 2

The design of PADM leverages the features of P4, namely three native capabilities that

are not available in standard SDN switches:

Custom packet headers: P4 is able to describe a completely customized packet header.
Timestamping: P4 offers the possibility of retrieving the time of packet entry in switches’
ingress and egress queues at data level.

Custom forwarding rules and packet inspection: P4 is able to inspect header fields, and to
program forwarding rules based on the contents of custom headers.

Figure 2 illustrates the custom header we defined to implement P4DM.
The header is represented as a 24 bytes-wide frame. It is the concatenation of the

Ethernet header (Source address, Destination address, EtherType) and:

Protocol ID - proto_id: The ID of the protocol (e.g., the ID for IP is 0 x 0800) has been
kept as it is in a standard Ethernet packet, even if it is not used by P4DM, to leave the
frame alignment intact.

Destination ID - dst_id: The port the packet will cross in the next hop.

Number of hop - nhop: Number of hop crossed from the sender.

Timestamps: Packet timestamps used to calculate the OWD, as listed in Table 1.



Sensors 2022, 22,4411

7 of 18

proto_id dst_id nhop

Tdiff s1_m1

Tdiff_s2_m2

Tdiff s1_m3

Figure 2. Custom header for P4DM.

4.3. P4 Data Plane Features Exploited by PADM

As previously mentioned, P4 is able to inspect and modify packet fields. The probe
packets are identified by an EtherType set to a custom myTunnel value. When a probe
packet is detected, the following actions are applied.

Hop counting. Every time a myTunnel packet crosses an ingress queue, the hop number
nhop is incremented:

apply {

if (hdr.ipv4.isValid ()) f{

// Process only non-tunneled IPv4 packets
ipv4_lpm.apply ();

if (hdr.myTunnel.isValid ()) {
hdr.myTunnel.nhop = hdr.myTunnel.nhop + 1;
myTunnel_exact.apply ();

}

)

}

Forwarding. The forwarding table applied to probe packets uses the dst_id field as
a selection key. It forwards the packet through the port giving access to the link under
analysis, and updates the dst_id field with the port which will be used on the receiving
switch to send the packet back. The latter port identifier is obtained from a flow rule
installed by the controller in advance of sending probes.

action myTunnel forward(egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.myTunnel. dst_id = (bit<16>)port;

}

Timestamping. Timestamps are inserted in the packet when it is added to an egress
queue, based on the hop counter. Since the first message from the controller is generated
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with nhop=1, the first encountered switch actually sees the packet as performing the second
hop in the network. Consequently:

*  (nhop=2) - Tyifs s1_m1 is set.
. (nhop=3) - Tdiff_sZ_mZ is set.
d (nh0p=4) - Tdiff_sl_m3 is set.

if (hdr.myTunnel.isValid ()) {

if (hdr.myTunnel.nhop >= 2) {

if (hdr.myTunnel.nhop == 2) ({

hdr.myTunnel. Tdiff_s1_ml =
standard_metadata.egress_global_timestamp -
standard_metadata.ingress_global_timestamp;
}

if (hdr.myTunnel.nhop == 3) {

hdr.myTunnel. Tdiff s2_m2 =
standard_metadata.egress_global_timestamp -
standard_metadata.ingress_global_timestamp ;
}

if (hdr.myTunnel.nhop == 4) ({

hdr.myTunnel. Tdiff_s1_m3 =
standard_metadata.egress_global_timestamp -
standard_metadata.ingress_global_timestamp;
}

}

}

At the application level, an SDN controller was implemented using ONOS. ONOS is
one of the few network operating systems that integrates P4 with the application level, by
implementing the P4 control plane level logic with the module developed by the P4Brigade
project [29].

Figure 3 shows the three-tier architecture, in which P4 is used to program the behavior
of components in the control and data planes, and by means of the native ONOS controller
features at the application plane. The ONOS controller allows to:

*  Extract semantics of information coming from the data plane.
*  Show the calculated OWD in a dedicated web GUI.

This architecture showcases an application of the combined use of P4 and ONOS
for network monitoring. This architecture was solely developed to simulate the use of
P4DM in an environment similar to the other solutions and ONOS was not used in the tests.
We argue that P4 can give a groundbreaking new perspective on network management
and security, by enhancing data level information retrieval and description. Furthermore,
assuming the availability of P4-enabled devices grants portability of solutions devised
according to this architectural model to many physical or virtual targets, giving them a
broad deployment scope.
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Figure 3. Three-tier SDN architecture.

5. Experimental Results
Three groups of tests were implemented, as outlined in Figure 4, to:
*  compare P4DM with other solutions suggested in the literature (Sections 5.2 and 5.3);
*  compare P4DM with ping in different traffic scenarios (Section 5.4);
e  assess the impact of the proposed solution on the packet time transmission of SDN
switches (Section 5.5).

~
INTRODUCTION TO SECTION 5 AND EVALUATION SETUP - SECTION 5.1
In this chapter, we show a number of tests that are
designed to test performance o-f P4DM v-vith and Wit'hk:Jut DATA PLANE
background traffic. The testbed just consists on a Mininet
topology and Python-Scapy scripts to generate the probes.
TESTS WITHOUT TRAFFIC TESTS WITH TRAFFIC
Vs

other solutions in the literature.

Section 5.2 m R Section 5.4
f )
We show a test in a single-link I.g This test compares PADM
and PING in different traffic | | PADM vs PING

path comparing PADM with e‘gie‘g scenarios with a fixed
s1 2 Yy, nominal delay.

é N\ [ Metrics considered: RTT, loss, standard deviation. ]
Section 5.3 Results: P4DM outperforms PING in RTT calculation in a|
scenario of saturated network, PADM and PING have
very similar loss, PADM has more stable measurement.
We use two

» Section 5.5
topologies to This test provides a

measure the LDM in comparison of the switching

P4ADM switching

a3and a 4-links performaces between an

performances

paths. The results arej Openflow switch, a P4 switch

and a P4 switch running
P4DM.

compared with

Section 5.2.
- J

[ Metrics considered: Time complexity, relative error. ] [

Metrics idered: Packet ission time, RTT. ]

the Openflow switch. PADM does not affect the RTT.

Results: in both cases, P4 switches behave better then
’Results: Constant complexity, competitive relative error.

Figure 4. Graphical abstract of Section 5.



Sensors 2022, 22,4411

10 0of 18

The tests conducted showed the potentials and performances of P4DM.

5.1. Experimental Setup

The following tests were performed using Mininet [30] in a Ubuntu 20.04 with 8 GB of
RAM and an Intel i5 8th generation processor host. Figure 5 describes the infrastructure.

OWD docker

e ONOS

P4Runtime

>

owDm OWD Request
= \/
P4Runtime
P
Mininet
& o
docker

Figure 5. Docker containers infrastructure simulating ONOS-Mininet interaction.

To simulate the traffic, Python and the Scapy network library were used to forge the
probe packets with related custom IPv4 packets and to generate and receive probe packets.
The collected probes timestamps were stored in the filesystem and the relevant statistics are
then calculated by using a Python script. To improve proper confidence to the measures,
batches of 50 probes are sent every 0.5s to avoid network congestion. We empirically
noticed that with 50 packet probes a reliable calculation of the OWD can be obtained.
Hence, we decided 50 probes as the fair amount to perform a P4DM measurement. In
the following we will address with AV the average LDM obtained with P4DM . Finally,
the measurements of the first two set of tests are performed in ideal conditions, with no
background traffic and therefore with the network not congested apart from the test which
compares P4DM with ping.

In order to recreate a test-bed similar to the algorithms considered in the comparison of
the Section 5.2, the ONOS SDN controller [31] is included in the infrastructure. The infras-
tracture is based on two Docker [32] containers, the former hosting the Mininet topology
and the latter hosting the ONOS operating system. However, for the tests related to P4DM,
which does not need an SDN controller to work, we used the Mininet Linux command
and the Scapy library to obtain a more lightweight implementation. The repository which
contains the code used for the test section can be found in [33].

5.2. Tests for OWD Algorithm Comparison in a Link

P4DM was tested by setting a fixed delay in a network link and measuring it by
sending a batch of packet probes. From now on, we will refer the above mentioned fixed
delay as nominal delay (ND). Collected the batch, the average LDM (AV) is calculated.
Since the path is a single link, we can assume that the delay is equal if calculated from
SOURCE to SINK or vice versa. These tests were done using simple_switch [34], a P4
switch not meant for production which has the timestamp precision on the range of the
microsecond. The tests evaluate the algorithm performances by considering two indicators.
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*  Relative Error (%) : given ND, relative error is obtained as follows:

AV — ND
Error = —ND x 100

*  Time Complexity This describes the time that it takes to run an algorithm. We have
adopted the same methodology to estimate the time complexity as in [13].

The algorithms and the indicators used for this comparison are taken from works
mentioned in the “State of the Art” section and from the review paper of D. Chefrour [13].
As already explained, given the nature of P4DM, the focus is on active measurement OWD
solutions. These type of solutions, when based on SDN, use the SDN controllers to send
packet probes on the network to retrieve the delay. The comparison described in this section
only considers algorithms that use packet probes.

Table 2 reports the performance measures, with algorithms ordered by increasing time
complexity. The solutions can be roughly grouped into 3 sets:

*  Constant complexity: algorithms that have a O(1) complexity, like Controller in the loop,
Controller in the LLDP loop, Many data loops for one path, OpenNetMon, TTL based looping,
TTL based LLDP looping for one link; these algorithms report an error that spans in the
range of 1-4% with a tested ND that is under 20 ms;

*  Linear complexity: algorithms that have a O(n) complexity, like Many data loops for all
links, TTL based LLDP looping for all links, SLAM; these algorithms report an error that
spans in the range of 0.1-4% with a tested ND that is under 20 ms;

e Superlinear complexity: algorithms that have a O(n*) complexity, like SdProber; this
algorithm does not report either the tested delay or the error.

Table 2. Algorithm comparison.

Technique Nominal Delay Error Time Complexity
Controller in the loop 0-20 ms 1% o)
Controller in the LLDP loop 5ms 3% o)
Many data loops 540 pus 3.7% O(1) one path,
O((n+e)(c+1)) all links
OpenNetMon 7 ms 2.3% o)
TTL based looping 0-350 ms n/r o)
TTL based LLDP looping 1, 3, O(1) one link,
5, 0.4, O(Kn) all links
10 ms RTT 0.1%
SLAM 0-20 ms n/r O(n)
SdProber n/r n/r O(n3)
P4DM 10, 1.7, o)
50, 0.31,
100, 0.53,
200 ms 0.31%

P4DM has a constant complexity since it only needs a packet to perform the mea-
surement, putting it in the best time complexity group and the measurement accuracy is
generally better than the compared solution. In particular, 4 fixed delays were tested:

¢ 10 ms: which reports 1.7% compared to an average error of 3% for similar fixed delays.
The only slightly better result is in TTL based looping which however has a worse
complexity for more then a link.
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. 50 ms, 100 ms, 200 ms: which report errors that are less than 0.6%. This result is decid-
edly better given that the majority of solutions do not report errors for similar delays.

Given this information, we can now give a punctual comparison between the various
algorithm and P4DM:

e Controller in the loop: this algorithm was tested in a 20 switches Mininet network and
needs 2 packets per second sending probe rate to correctly calculate the OWD, to
smooth the overhead introduced by the controller. Our algorithm achieves a very
stable OWD calculation by only sending 5 successive probes. This gives the algorithm
a notable advantage on the performance side. The authors of Controller in the loop do
not show results on multi-links paths.

*  Controller in the LLDP loop: this algorithm is very similar to Controller in the Loop but
achieves a lightly worse performance. This algorithm only reports error on a single
tested delay (5 ms) and for this reason it is not possible to compare the performances
on higher OWDs. The algorithm was tested only on single link paths. Not many
comparison other than the error value, that stands at 3% compared to the 1.7% of our
solution, can be done between P4DM and this.

*  Many Data Loops: this algorithm performs similarly to the other algorithms on a 540 pus
RTT. This algorithm is also tested on a multi-link path. P4DM , as shown in the
Section 5.3, maintains a constant complexity also in a multi-link scenario, while Many
Data Loop has a linear time complexity.

*  OpenNetMon: this algorithm performs similarly to the others. It was tested on
a 4-switches Mininet network on multi-link paths. The probes rate is adaptive
(F(throughput)) concerning the possibility of having a very expensive overhead to
perform the OWD calculation, depending on the throughput of the network. P4DM, as
shown in Table 2, maintains a reliable OWD calculation with 5 consecutive sent packets.

®  TTL based Looping: Sinha et al. did not report many performance measurements of
this solution.

e TTL based LLDP looping: this algorithm performs slightly better on the 5 ms and 10 ms
RTT, achieving a sub 1% relative error. It was tested on a single-link path and reports
a constant complexity, that degrades into a linear complexity in multi-link paths. The
main drawback of this solution is the probes frequency rate, that spans from 1 to
100 packets per second. This characteristics can degrade the efficiency of the network
in monitored paths. As previously underlined, our proposed algorithm achieves a
stable OWD calculation by sending 5 consecutive packet probes.

*  SLAM, SDProber: these 2 solutions do not report any accuracy estimation and have a
worse time complexity then our solution, respectively linear and superlinear. Given
the information reported, we claim that our algorithm performs better on every aspect.

The analysis generally reported a positive feedback on every considered performance
aspect. Furthermore, it must be pointed out that P4DM needs a constant amount of 3 rules
per switch, a lighter configuration cost compared to other solutions. Moreover it does
not need a constant rate of probes per time unit, unlike most of the algorithm considered.
This can be advocated to the ability of P4 to completely isolate the data plane and for this
reason there is no need to tune the probes frequency to smooth the overhead introduced by
interacting with the SDN controller.

5.3. P4DM in a Multiple Links Path

Tests were designed to verify the performances of PADM in multi-links paths. Two
network topologies were designed to test the algorithm on a 3-links path and a 4-links path.

Figure 6 shows the topology of the network in which a 3-links path was tested.

P4DM is applied to a linear path which starts from switch s1 and ends at switch s4.
The controller is responsible to send and receive the packets.

Figure 7 shows the topology of the network in which a 3-links path was tested.
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Figure 6. Network for the 3-links path OWD calculation.
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Figure 7. Network for the 4-links path OWD calculation.

This network allows to simulate a more challenging scenario for PADM: a path start-
ing from switch s1, going through switches s2, s5, s3 and ending at s4, was considered.
Tests similar to those conducted to the one link case were performed. Table 3 shows a
performance comparison between the 1-link case and these two additional cases.

Table 3. Multi-link path performance comparison.

Nominal Delay 1-Link 4-Links 5-Links
per Link Path Error Path Error Path Error
10 ms 1.7% 3.5% 3.51%
50 ms 0.31% 1.1% 1.37%
100 ms 0.53% 0.6% 0.52%
200 ms 0.31% 0.26% 0.28%

Every link was set with the same nominal delay of the previous test and for this reason
the nominal delay of the path is equals to:

delay x number_of_links

The performance analysis registers a very small performance degradation. This can be
advocated to 2 major factors:

(1) The algorithm is designed to monitor the network link-by-link. To perform multiple-
link paths OWD calculations both the packet header and the P4 application were
modified, introducing a minimal overhead. Nonetheless, the performances are not
sensibly worsened.
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(2) The virtualized environment introduces more noise if the path is composed by multi-
ple links.

In conclusion, the tests underlined how P4DM can be effective on paths with more
links as well as on a single link.

5.4. Comparison between Ping and P4ADM in a Multi-Link Path Scenario

In this section, we compared P4DM and ping in a multi-link path scenario with
variable traffic. This test is useful to evaluate the performances of our solution in the
environment for which P4DM is designed for, comparing it with the most used utility to
calculate the RTT between two hosts. We used the utility hping3 [35] to simulate different
network congestion levels, by sending arbitrary 20 bytes-long headers with no data IP
packets. Every RTT measurement was taken by sending 50 P4DM probes.

Figure 8 shows the comparison between ping and P4DM on a nominal delay of 60 ms
RTT. In this case, we considered the RTT (as sum of the forward and backward delays)
measured by P4DM instead of the OWD, to make it comparable with ping. This test
compares the measured RTT by varying the packets per second injected in the network path.
The topology analyzed is the one presented in Figure 6, using the same path considered in
Section 5.3. However, to be able to perform the ping, a host was attached to s4. The chart
shows how, apart from small fluctuations induced by the virtual environment, P4DM and
ping perform similarly. However, after hitting the threshold of 1000 packets per second,
P4DM outperforms ping by at least half the RTT. The difference between the two can be
mainly advocated to the fact that P4DM is able to remove the queuing delay from the LDM
measurements, as opposed to ping.

300 - \
Nominal Delay
- P4DM

250 | | == ping
- 200 [
£
=
150 |

100 |-

50 | \t | | i

100 500 1000 5000 10000

Packets per second
Figure 8. PADM and ping RTT comparison.

Table 4 shows the corresponding standard deviations on the measurements performed
in Figure 8. The table shows that ping is more unstable in heavy traffic than P4DM, which
outperforms ping since it is able to remove the queuing experienced in the switches from
the RTT. In fact, the spike of both the standard deviation and RTT of ping is motivated by
the high queuing time in the switches.

Packet loss has almost the same trend for both as shown in Figure 9. This is correlated
with the ability of the network to forward IP packets: when saturated, more packets are
dropped and concomitantly the loss increases.
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This test demonstrates how P4DM behaves better in calculating the LDM then ping in
heavy traffic, while keeping a better stability in measurements overall. The loss is roughly
similar in all sorts of traffic, which is supported by the fact that P4DM is encapsulated in
raw IP packets and ping in ICMP ones.

Table 4. P4DM and ping standard deviation

Packets per Standard Deviation Standard Deviation
Second of P4ADM of Ping
100 0.14 0.63
200 0.02 0.1
500 0.01 0.07
800 0.02 0.08
1000 0.02 0.18
2000 0.4 21.56
5000 0.29 5.84
8000 0.06 9.90
10,000 0.18 234
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Figure 9. P4ADM and ping loss comparison.

5.5. Impact of P4DM on the Switching Performance

This set of tests was designed to compare the packet forwarding performance.
In particular, three different running switches set-ups were considered:

1.  packet forwarding is OpenFlow based, using ONOS as an SDN controller;

2. packet forwarding is P4 based, with no additional features;

3. packet forwarding is P4 based, adding P4DM to the normal operations.
OpenFlow-enabled switches are the most used in SDN environments and P4-enabled

switches require more computational resources to operate, giving a performance disadvan-

tage to the second one on paper.
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Figure 10 shows a packet transmission time comparison between switches using
the different set ups. A calculation of Total Transmission Time of bursts of packets of
length ranging between 5 and 200 was performed, for packet sizes of 512 Bytes and
8192 Bytes. The comparison clearly shows that providing P4 basic functionalities does not
significantly degrades switches” performances even in the scenario of switches running
both P4 and P4DM. Overall, P4 does not introduce a sensitive performance overhead
compared to OpenFlow.

200000 |- B 528 OpenFlow |
l 8192B OpenFlow
B soBp4
100000 | |E]  8192B P4 ._ i
512B P4 + P4DM
= [%]8192B P4 + P4DM
£ 50000 | ] i
]
&
[_1
E 20000 |~ _p N
ke
10000 + N
5000 |~ N
1 ‘ ‘
5 10 20 50 100

Number of packets
Figure 10. Protocol enabled switches transmission time tests.

Figure 11 shows a calculation of the average Round Trip Time (RTT) to transmit a
set of 512 Bytes and 8192 Bytes ICMP packets. The goal of these tests was to examine
the forwarding behaviour of the different switches (OpenFlow-enabled, P4-enabled and
P4DM-enabled). As expected, the histogram shows that OpenFlow performs slightly worse
than P4 due to the fact that P4 only implements the minimal forwarding behaviour while
OpenFlow comes with a set of default features that introduce a not negligible overhead.
An important conclusion to draw out of Figure 11 is that P4DM does not affect the switch
performance, since the P4 switch performs the same either with or without P4DM.

20 L 1 1
Il 512 Bytes LCMP packets
Dé’sw} Bytes ICMIF packets

10 - B

0 I

OpenFlow P4 P4 + PADM

Average RTT [ms]

(5 |

Figure 11. Protocol enabled switches RTT tests.



Sensors 2022, 22, 4411 17 of 18

6. Conclusions

In this work, we have proposed to exploit data plane programmability to measure
delays on network links for network management purposes. This is not a new problem,
since it was already addressed in the past by the scientific community. The advent of SDN
provided new tools that started a new wave of interest on the topic.

In this manuscript, we are along this line. We propose an algorithm based on cus-
tom probe packets that is implemented with the P4 language. This allows a very robust
implementation, thanks to the local processing of the probes in the switches.

We tested our algorithm along various lines. At first, we compared it with other
solutions documented in the related scientific literature. In the manuscript, we show that
our algorithm outperforms some of the algorithms already known or, at least has equivalent
performance. Then, we have considered the case of the application of the algorithm to multi
hop network segments, comparing our proposed solution with the well known ping utility.
In the manuscript, we show that PADM proves to be very robust to traffic congestion and
packet loss, providing accurate measurement results. Finally, we investigated the load
that the algorithm introduces in the switches, showing that it is negligible, therefore not
affecting the overall network performance.

Based on the aforementioned results, we believe this work proves the effectiveness of
data plane programmability when employed to collect network performance measures, as
well as the correctness of the proposed algorithm.
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