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In recent years, with the development of artificial intelligence, deep learning model has
achieved initial success in ECG data analysis, especially the detection of atrial fibrillation.
In order to solve the problems of ignoring the correlation between contexts and gradient
dispersion in traditional deep convolution neural network model, the hybrid attention-
based deep learning network (HADLN) method is proposed to implement arrhythmia
classification. The HADLN can make full use of the advantages of residual network
(ResNet) and bidirectional long–short-term memory (Bi-LSTM) architecture to obtain
fusion features containing local and global information and improve the interpretability
of the model through the attention mechanism. The method is trained and verified
by using the PhysioNet 2017 challenge dataset. Without loss of generality, the ECG
signal is classified into four categories, including atrial fibrillation, noise, other, and
normal signals. By combining the fusion features and the attention mechanism, the
learned model has a great improvement in classification performance and certain
interpretability. The experimental results show that the proposed HADLN method can
achieve precision of 0.866, recall of 0.859, accuracy of 0.867, and F1-score of 0.880
on 10-fold cross-validation.

Keywords: arrhythmia classification, deep learning, bidirectional LSTM, ResNet, attention mechanism

INTRODUCTION

Atrial fibrillation is one of the most common persistent arrhythmias. It is characterized by irregular
atrial activity, increasing incidence rate, and associated complications, such as stroke and systemic
thromboembolism, which pose a great threat to human health and life (Mathew et al., 2009).
In addition, due to the lack of comprehensive understanding of the pathological mechanism of
atrial fibrillation, the timely diagnosis of atrial fibrillation becomes a problem (Wyndham, 2000).
People often miss the optimal treatment time because the early stages of atrial fibrillation are
usually paroxysmal and asymptomatic (Mehall et al., 2007). Therefore, the development of a new
type of automatic atrial fibrillation detection system to provide accurate and reliable diagnostic
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information as early as possible is of great significance for
improving the quality of treatment and reducing the further
deterioration of the patient’s health.

Electrocardiography (ECG) is often used for routine
monitoring of physiological signals in clinical application.
The effective analysis of ECG signals is helpful to detect many
heart diseases such as atrial fibrillation (AF), myocardial
infarction (MI), and heart failure (HF) (Turakhia, 2018). In
an AF waveform, the P wave is replaced by many inconsistent
fibrillatory waves, and the RR interval is irregular, which is easily
mixed with other diseases (Wei et al., 2017). In the early stage, the
research work of ECG classification was generally implemented
by using manual feature extraction method. However, the
method of manual feature extraction was not only affected by
noises but also lost a lot of important information, which cause
the in accuracy and low efficiency of AF classification. Moreover,
its poor generalization ability cannot be used to deal with the
practical application. Some signal processing methods, such as
independent component analysis (Prasad et al., 2013), discrete
wavelet transform (Lee et al., 2013), and entropy (Liu et al.,
2018a), has been used to improve the performances of manual
feature extraction. Recently, feature extraction methods based
on machine learning, such as support vector machine (Liu et al.,
2018b) and random forest (Kennedy et al., 2016), are proposed
to classify the ECG signals.

Recently, deep neural networks (DNNs) achieved initial
success in ECG data processing (Parvaneh et al., 2019), which
can provide another opportunity to improve the accuracy and
scalability of automatic ECG classification obviously (Hong et al.,
2019). According to different network structure, DNNs can
integrate different level features and classifiers to form an end-to-
end multilayer model (Dang et al., 2019) without preprocessing
a large amount of data by manual rules, which can overcome
the limitation of traditional machine learning algorithm model
with independent input and output (Schmidhuber, 2015). In
addition, there have been some new attempts on DNNs, such
as residual blocks (He et al., 2016), deep convolutional neural
network (Wu et al., 2020), deep residual convolutional neural
network (Li et al., 2020), recurrent neural network (RNN) with
long–short-term memory (LSTM) (Faust et al., 2018), and deep
bidirectional LSTM (Bi-LSTM) network (Yildirim, 2018). In
order to effectively select feature information and enhance the
interpretability of the model, the attention mechanisms had
been valued in the classification of arrhythmia (Yao et al., 2020;
Zhang et al., 2020). In the PhysioNet/Computing in Cardiology
Challenge 2020, several classification models related to attention
mechanisms have been proposed to get promising classification
results. Duan et al. (2020) proposed a multiscale attention
deep neural network (MADNN) method to boost capability
of extracting the ECG features on different scales, combining
kernel- and branch-wise attention modules, which can achieve an
overall score of 0.446 on the hidden testing-set. Liu et al. (2020)
proposed a novel multilabel classifier of 12-lead ECG recordings
by using residual CNN and class-wise attention mechanism,
which can get resulting scores of 0.5501 ± 0.0223 according to
the challenge metric, demonstrating a promising method for the
classification of ECGs. He et al. (2020) used the mechanism of

attention to learn an attention distribution on the list of extracted
features, and then, the attention weightings were integrated into
a single feature vector and used for the final classification. The
overall score with five cross-validation of training set is 0.543
by using the Deep Heart model, demonstrating that it may have
potential practical applications. However, there still a long way to
improve classification accuracy in clinical application.

This paper proposed a hybrid attention-based deep learning
network (HADLN) method to automatically implement ECG
classification. The PhysioNet 2017 challenge data were used
to validate the performance of HADLN method. The main
contributions of this paper can be concluded as follows: (1)
the ResNet part uses the superposition of 16 residual blocks
to extract local features, and the bidirectional long-short-term
memory network was used to extract the global features in
parallel. Moreover, the global feature from Bi-LSTM and the local
feature from ResNet were the fused features, which can extract
multiple features of the original ECG data; (2) in this paper, a
modification of the standard attention mechanism was proposed
to strengthen local feature information from ResNet according to
the weight parameters calculated from fused features; and (3) the
features of these weighting parameters based on fused features
can proved a interpretability for ECG classification results.

BASIC THEORY

In this paper, three deep-learning approaches are utilized to
form the classification model. Residual network (ResNet) and Bi-
LSTM network are applied in the classification model. Besides,
attention mechanism is introduced to improve the performance
of classification.

Bi-LSTM
LSTM is a typical RNN proposed by Hochreiter and
Schmidhuber (1997). Due to the advantages of its gate
mechanism, it is easier to learn the long-term dependencies
between sequences (Tan et al., 2018). The bidirectional layer is
actually composed of two LSTM layers in opposite directions:
the forward LSTM layer and the backward LSTM layer. The
Bi-LSTM architecture is shown in Figure 1, which will be able
to fully consider the global features in the input data. Graves
and Schmidhuber showed that such bidirectional networks

FIGURE 1 | The architecture of bidirectional LSTM.
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can be significantly more effective than unidirectional LSTM
architectures (Graves and Schmidhuber, 2005).

ResNet
The deep CNN network with residual blocks can solve the
problem of the convergence difficulty of the deep network and
overcome the problem of network degradation caused by the
increase in network layers (Zagoruyko and Komodakis, 2016).
As shown in Figure 2, the learning process is to let multiple
nonlinear computing layers of continuous stack fit the residual
F(x) = H(x) − X between the input data and the output data.
Residual learning adds a shortcut on the basis of the traditional
linear network structure, which is integrating a shortcut with the
main path by the method of additive fusion.

Attention Mechanism
The core concept of attention mechanism is to simulate human
attention mechanism to improve the performance of deep
learning (Mnih et al., 2014). By using the probability distribution
of attention, we can control the weighting parameters of the
elements in the input sequence to generate the output sequence.
As shown in Figure 3, the essence of the attention function
can be described as a mapping from a query to a series of key-
value pairs. The common similarity functions are implemented
by multiplication in Equation 1, concatenation in Equation 2, and
perceptron in Equation 3.

f (Q, Ki) = QTWaKi (1)

f (Q, Ki) =Wa[Q : Ki] (2)

f (Q, Ki) = vT
a tanh (WaQ+ UaKi) (3)

where Wa, Ua, and va are all learnable parameters. Q means
Query, and Ki means keys.

FIGURE 2 | Principle of the residual module.

FIGURE 3 | Attention principle architecture.

MATERIALS AND METHODS

Dataset
To demonstrate the generalizability of the proposed HADLN
architecture, the open dataset of the PhysioNet 2017 challenge
was applied in the model (Clifford et al., 2017), which contained
four rhythm categories: normal (N), atrial fibrillation (A), other
(O), and noise (∼). The dataset consisted of 8,528 single lead
ECG data recordings, and each of them is sampled at 300 Hz
with a length of 9–61 s. The dataset was divided into a training
set (90%) and a testing set (10%) for training and evaluation in all
tasks. Data profile of PhysioNet Challenge 2017 dataset is shown
in Table 1.

Proposed HADLN Architecture
As shown in Figure 4, the HADLN architecture was proposed
to automatically detect atrial fibrillation based on the fusion
of attention mechanism and deep learning model, which
combines ResNet, Bi-LSTM, and attention mechanism module.
The ResNet part uses the superposition of 16 residual blocks
to extract local features, which can effectively solve the
problem of gradient dispersion while increasing the number
of network layers. At the same time, the bidirectional long–
short-term memory network was used to extract the global
features in parallel, and the number of units in the layer is
set to 128. The global feature from Bi-LSTM and the local
feature from ResNet are used to fuse the hybrid feature.
Then, the weighting parameter in attention mechanism is
calculated according to hybrid features by using Softmax.
Finally, the weighted features are proposed to implement
ECG classification.

The original ECG signal is input into several initial layers, and
the output feature map is subsequently processed by 16 residual
blocks sequentially including 33 convolution layers and 16

TABLE 1 | Data profile of PhysioNet challenge 2017 dataset.

Type # recording Time length (s)

Mean StDev Max Median Min

Normal 5,154 31.9 10.0 61.0 30 9.0

AF 771 31.6 12.5 60 30 10.0

Other rhythm 2,557 34.1 11.8 60.9 30 9.1

Noisy 46 27.1 9.0 60 30 10.2

Total 8,528 32.5 10.9 61.0 30 9.0
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FIGURE 4 | HADLN architecture.

maximum pool layers. There are two types of residual modules,
including two 1D convolutional layers, batch normalization layer,
ReLU activation layer, dropout layer, and a maxpooling layer.
As shown in Table 2, each convolutional layer has 32 × 2k

convolution kernels (where k starts out as 0 and is incremented
every fourth). The difference is that the 2nd to 16th residual
blocks have more batch normalization layers, ReLU activation
layer, and dropout layers than the first residual block. The residual
module combines the output of the quick connection and the
output of the second convolutional layer by summation. When
the feature map passes through the maxpooling layer with a pool

TABLE 2 | The length/number of convolution kernels and pool size of max-pooling
layers in each residual module.

ResNet module Kernel length Kernel number Pool size

1 16 32 1

2 16 32 2

3 16 32 1

4 16 32 2

5 16 64 1

6 16 64 2

7 16 64 1

8 16 64 2

9 16 128 1

10 16 128 2

11 16 128 1

12 16 128 2

13 16 256 1

14 16 256 2

15 16 256 1

16 16 256 2

size of 2, the length of that will be halved. When the pool size is
1, there is no effect on the feature map, so only eight layers play a
role in this part of ResNet. Therefore, the original input is finally
subsampled by a factor of 28, and after the local feature extraction
part, the output length is 1/256 of the input length.

For long sequences, Bi-LSTM can be used to process input
along the time sequence in a parameters-sharing manner and
utilizes their internal state to memorize the context. The original
signal is input to Bi-LSTM to extract global features, where the
number of LSTM units in each of the forward and backward
layers was set to 128. The global feature hi from Bi-LSTM and the
local feature vi from ResNet are used to fuse the hybrid feature ei,
as shown in Equation 4. The weighting parameter αi in attention
mechanism is calculated by using Equation 5, and the weighted
features SHADLN are proposed to implement ECG classification;
specific implementation is shown in Equation 6.

ei =WT
a ∗ tanh (WQ ∗ vi +Wk ∗ hi) (4)

αi = softmax(ei) =
exp (ei)∑T
i=1 exp (ei)

(5)

SHADLN =

T∑
i=1

αi ∗ vi (6)

where ei the is merged feature from hi and vi, with fully
connected layer parameters WQ, Wk, WT

a , and αi referring to
weight parameters from Softmax function, and SHADLN refers to
weighted features.

The classification part consists of batch normalization layer,
timeDistributed layer, and two activation layers. The ReLU layer
enables the classification part to accelerate the back propagation
of gradients. The timeDistributed layer is fully connected in
the time dimension. The second activation layer is a Softmax
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layer, which outputs the predicted probability distribution of four
classes, including atrial fibrillation, noise, other, and normal.

As a comparison, the ResNet model with attention
mechanism, termed as ResNet_A method, is proposed for
ECG classification. The output of ResNet vi is directly used
to calculate the weighting parameters αi

′

by Softmax function
in Equation 7, and then the weighting parameters are used to
calculate the weighted features in Equation 8.

α′i = softmax(vi) =
exp (vi)∑T
i=1 exp (vi)

(7)

SResNet_A =

T∑
i=1

α′i ∗ vi (8)

Model Training
Batch normalization is used to ensure the smooth convergence
of the network before each convolution layer. Meanwhile, using
the ReLU activation function can effectively improve the learning
efficiency of the network and significantly reduce the number of
iterations required for convergence in the deep learning network.
The initial learning rate of the Adam optimizer was set to 10−2

and the probability of dropout is set as 0.3. The cross-entropy
function was used to evaluate the difference between the output
and reference labels, as in Equation 9. The smaller the value
of cross-entropy is, the closer the distribution of actual output
and expected output is. According to the cross entropy, the stop
mechanism in the model training can be made. When the cross-
entropy value does not change in eight epochs, then the model
training will stop automatically.

loss (X, r) = − log
exp (P(X, r))∑N
i=0 exp (P(X, i))

(9)

where r refers to label, and P (X, i) is the probability the model
assigns the label i to the input X.

Moreover, the HADLN and several comparative experiments
were trained and tested in a server with Tesla v100-sxm2 GPU.
The deep learning model was programmed by using Python 3.6
and Keras 2.1.6 framework. Matplotlib tools are used for data
visualization, and numpy1.18.1 is used for a large number of
dimensional arrays and matrix operations. In addition, we used
scikit-learn 0.22.1 for data mining and data analysis tools.

RESULTS

Performance Metric
In order to evaluate the performance of the proposed model,
the precision, recall, and accuracy are listed as the following
equations, respectively. The counting rules for the numbers
of the variables are listed as shown in Table 3. In addition,
the performance metric F1-score proposed by 2017 Physionet
challenge was used to evaluate the performance of the proposed

TABLE 3 | Counting rules for the numbers of the variables.

Normal AF Other Noisy Total

Normal Nn Na No Np 6N

AF An Aa Ao Ap 6A

Other On Oa Oo Op 6O

Noisy Pn Pa Po Pp 6P

Total 6n 6a 6o 6p

HADLN network architecture, as shown in the Equation 17.

precision =
TP

TP + FP
(10)

recall =
TP

TP + FN
(11)

accuracy =
TP + TN

TP + TN + FP + FN
(12)

F1n =
2Nn

(6n+6N)
(13)

F1a =
2Aa

(6a+6A)
(14)

F1o =
2Oo

(6o+6O)
(15)

F1p =
2Pp

(6p+6P)
(16)

F1-score =
(F1n + F1a + F1o + F1p)

4
(17)

where TP means true positive, the number of AF signals classified
correctly; FP means false positive, the number of AF signals
classified wrongly; TN means true negative, the number of signals
without AF classified correctly; and FN means false negative, the
number of signals without AF classified wrongly.

Experimental Results
As shown in Figure 5, the performance of the training set is
slightly better than that of the validation set, and the model
converges to a stable value, indicating that the parameters are
not excessive when training the model. In the validation model,
the proposed method works well, which can achieve the stable
classification results with good accuracy.

In order to validate the performances of the proposed
HADLN method, several state-of-the-art methods, such as
ResNet (Hannun et al., 2019), CL3 (Warrick and Homsi, 2017),
QRS-LSTM (Maknickas, 2017), and Dense-net (Rubin et al.,
2017), are also provided as a comparison. In addition, self-
attention based ResNet method, ResNet_A, is also investigated
for arrhythmia classification. As shown in Table 4, the precision,
recall, F1-score, and accuracy of different DNNs architecture
are presented for classifying normal (N), atrial fibrillation (A),
other (O), and noise (∼). It can be found that the proposed
HADLN method can achieve the best classification performances
with the highest metric indexes among these methods. In
addition, in order to validate the robustness of the proposed
HADLN method, the classification performances (F1 score,
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FIGURE 5 | Training and validation of (A) loss function and (B) accuracy over the epochs.

precision, recall, accuracy) have been reported in the Table 5,
which indicates that the proposed HADLN method has stable
classification in different cross cases.

As shown in Figure 6, the confusion matrices were used to
illustrate the discordance between the predicted labels and the
real labels by using different DNNs models. The results show that
compared with the baseline model ResNet, the classification effect
of normal (N) and atrial fibrillation (A) in HADLN is significantly
improved by 5% and 6%. The classification effect of HADLN
in atrial fibrillation (A) is generally higher than that of other
contrast models.

TABLE 4 | Classification results of weight average.

F1-score Precision Recall Accuracy

CL3 0.856 0.856 0.850 0.867

QRS-LSTM 0.666 0.770 0.714 0.770

Dense-net 0.843 0.867 0.860 0.860

ResNet 0.837 0.865 0.853 0.857

ResNet_A 0.844 0.854 0.853 0.853

HADLN 0.880 0.866 0.859 0.867

TABLE 5 | The classification performances of the proposed HADLN method
using 10-fold cross.

No. F1-score Precision Recall Accuracy

1 0.857 0.862 0.857 0.865

2 0.850 0.865 0.856 0.860

3 0.880 0.873 0.872 0.872

4 0.887 0.890 0.879 0.890

5 0.905 0.884 0.885 0.891

6 0.887 0.877 0.876 0.888

7 0.879 0.840 0.827 0.836

8 0.911 0.839 0.833 0.837

9 0.900 0.870 0.859 0.861

10 0.848 0.858 0.850 0.867

Average 0.880 0.866 0.859 0.867

Standard deviation 0.021 0.016 0.018 0.019

DISCUSSION

Due to the limited size, each convolution operation can only
cover a small neighborhood around the sequence, so that it
cannot be easily captured the global features. Although after
multilayer convolution stacking, compared with the single-layer
CNN, more comprehensive features can be obtained. However,
it still cannot make full use of the context information, resulting
in a degradation in generalization ability. The advantage of the
Bi-LSTM architecture is that it can learn long-term dependencies
between sequences. Therefore, the Bi-LSTM network can be used
to select the global feature from the original ECG signal. As
shown in Table 4, the performance of HADLN is much higher
than that of the model using only LSTM to classify QRS data,
higher than the model of using only deep residual network.
The above experimental results prove that the proposed HADLN
method can adaptively discover hidden structures of different
ECG signals and automatically learn relevant information,
improving the accuracy of ECG data classification.

In this paper, attention mechanism is proposed to enhance
the important information in the local feature information
through different weightings and to weaken the interference
information that may affect the classification performance.
Therefore, the proposed HADLN method can improve the
generalization ability, so as to extract comprehensive information
and improve the classification accuracy obviously. The HADLN
model proposed in this paper can adaptively discover hidden
structures of different ECG signals and automatically learn
relevant information, thereby improving the accuracy of ECG
data classification. Through the attention mechanism, this deep
learning model has better interpretability.

As shown in the output mapping of the HADLN model
represented by the blue line in Figure 7 (the weight of HADLN’s
attention mechanism is similar to the output mapping), the
normal category ECG signal reaches peak in the PR interval, and
there is consistency between adjacent beats. The characteristic
components of the ECG signal of atrial fibrillation category are
concentrated on the abnormal P wave, and the RR interval is
irregular. The ECG signal features of other category and noise
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(a) CL3                       (b) QRS-LSTM

(c)Dense  (d) ResNet

(e) ResNet_A (f) HADLN

A B

C D

E F

FIGURE 6 | Confusion matrices by using different classification methods. (A) CL3 method, (B) QRS-LSTM method, (C) Dense method, (D) ResNet method,
(E) ResNet_A method, and (F) HADLN method. The percentage of all records in each category is displayed on a color gradient scale.
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FIGURE 7 | The output of feature mapping by using the different types for four kinds ECG signals: (A) normal, (B) atrial fibrillation, (C) noise, and (D) other. The
yellow line is the ECG signal, the green line is mapping of the ResNet model, the black line is the mapping of ResNet_A model, and the blue line is the mapping of
HADLN model.
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category peaks are concentrated in multiple locations, which is
far from the feature performance of normal category, and in the
noise category, there are many dense and small peaks. Due to
the normalization of the data, it is not very obvious in the visual
display. At the same time, since some of the bands in the other
category are approximately the same as the normal category, this
is why the other category in the confusion matrix in Figure 7 have
poor discriminating performance.

The black line in Figure 7 represents the output mapping
of ResNet_A model whose weight is obtained from the ResNet
output and weighted by itself. It can be found that the waveforms
of various ECG signals are more complicated and fuzzier than
the output mapping of ResNet, and the peaks are not prominent.
This is very unfavorable for the final classification of the model.
As shown in the experimental results of the above table, the
accuracy of the ResNet_A model is far lower than that of
ResNet and HADLN.

At the same time, by comparing the output mapping of
ResNet represented by the green line in Figure 7 and the output
mapping of attention mechanism of HADLN represented by
the blue line, it can be found that the model proposed in this
paper is finally achieved with different weights by adding the
attention mechanism module. Enhancing important information
in local feature information weakens the purpose of interference
information that may affect classification performance. At the
same time, through the attention mechanism, this deep learning
model has a better explanation. It can be seen from the
correct output mapping of the attention mechanism that the
features extracted by this model are consistent with clinical
judgments, indicating that HADLN has potential effectiveness in
the recognition of most atrial fibrillation.

In recent years, many researchers were studying the
problem of automatic ECG arrhythmia classification. He et al.
(2019) proposed a new method for automatic classification of
arrhythmias based on deep residual convolutional module and
bidirectional LSTM module. Chu et al. (2019) used multilead
CNN, LSTM network, and hand-crafted method to extract
features. Yildirim et al. (2019) used convolutional auto-encoder
LSTM to obtain 99.23%. Yao et al. (2020) combined CNN
and LSTM to detect arrhythmia using varying lengths of ECG
signals. Oh et al. (2018) combined CNN and LSTM to detect
arrhythmia using varying lengths of ECG signals. The proposed
HADLN method in this paper can classify ECGs signals with
good performance. Although the optimized model provides an
effective method for the automatic classification of ECG signals,
it has not been tested by actual clinical diagnosis and application
of actual patients. In addition, the model proposed in this paper
are limited to the four major categories of cardiovascular disease,

namely, atrial fibrillation (A), noise (∼), normal (N), and other
(O), which make the model’s generalization in other fields have
certain limitations.

CONCLUSION

This paper proposed an HADLN method to classify four rhythm
categories: normal (N), atrial fibrillation (A), other (O), and
noise (∼). The proposed HADLN method makes full use of the
advantages of ResNet and Bi-LSTM architecture to obtain fusion
features containing local and global information and improve the
interpretability of the model through the attention mechanism.
Compared with the most advanced classification methods, it
has great advantages. This method provides a promising way to
improve the accuracy and interpretability of clinical applications.
In future works, the proposed HADLN method will be used for
arrhythmia classification to assist in clinical diagnosis.
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