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Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species
represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this
review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine,
and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins
are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA,
which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are
used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of
note, the production of the AA-derived metabolites greatly depends on the amount of undigested
polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic
epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa,
isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate,
hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in
colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig
colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will
contribute to a better understanding of the potential causal links between diet-induced changes in the
luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial
barrier function and water/electrolyte absorption.

© 2022 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One major role of the large intestine is the absorption of water
and electrolytes by the absorptive colonocytes (Brown and O'Grady,
1997). These differentiated cells present in the colonic epithelium
are derived from a small number of stem cells located at the bottom
of the colonic crypts (Van der Flier and Clevers, 2009). The fully-
mature colonocytes are finally exfoliated in the large intestine
(F. Blachier).
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luminal content by a process referred to as apoptosis (Yen and
Wright, 2006). The colonic epithelium thus represents a dynamic
structure that constitutes the border between the luminal content
and the “milieu int�erieur” (inner medium, as defined by the French
physiologist Claude Bernard in 1855). When compared to the sit-
uation in the small intestine, the large intestine luminal fluid is
characterized by a much longer transit time, and accordingly by a
bacterial population much more abundant than the one found in
the small intestine content, especially when considering the
proximal part of the small intestine (Schippa and Conte, 2014;
Dining, 2016). The transit time in a 65-kg pig colon is rather variable
among individuals, ranging from 23 to 56 h (Le Gall et al., 2009).
The rapidly growing bacterial population utilizes both endogenous
and dietary compounds that have not been (or not fully) digested in
the small intestine (Beaumont and Blachier, 2020) for its own
metabolism.

A large part of bacteria present in the intestine are excreted in
the fecal material, while a minor part of these bacteria (the so-
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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called adherent bacteria) remains in close proximity with the in-
testinal epithelial cells (Yin et al., 2011). The colonic epithelium is
thus facing a complex mixture of bacteria and numerous com-
pounds of both endogenous and dietary origin, together with
bacterial metabolites resulting from the microbiota metabolic ac-
tivity (Blachier et al., 2007). However, the colonic epithelium and
the luminal content are not directly in contact since a specialized
population of differentiated epithelial cells, namely the mucous-
secreting goblet cells, allows the formation of 2 layers of mucus
that exert a protective role for the colonic epithelium from dele-
terious compounds (Johansson et al., 2013). Interestingly, the
composition of colonic mucins in pigs is dependent on age and
dietary characteristics (Turck et al., 1993).

In that overall context, the aim of the present manuscript is to
give an overview on what is known in the pig model regarding the
fate of undigested proteins in the pig large intestine, and the pro-
duction of metabolites derived from amino acids (AA) by the bac-
teria of the large intestine microbiota. Finally the effects of AA-
derived metabolites on the colonic epithelial cell metabolism and
physiology, notably regarding mitochondrial ATP production, will
be presented.

2. The pig model for the study of the colonic ecosystem and
intestinal physiology

Apart from its obvious agronomic interest in feed, billions of
people worldwide, the pig represents an irreplaceable experi-
mental model for intestinal physiologists and nutritionists, as well
as gastroenterologists (Yin et al., 2017). The pig model is generally a
more relevant model for extrapolation to humans than rodents
(Chalvon-Demersay et al., 2017). Pigs are truly omnivorous, make
spontaneous individual meals, and display similarities with
humans regarding nutritional requirements (Patterson et al., 2008;
Mudd and Dilger, 2008). Interestingly, regarding the large intestine,
in newborn pigs fed with colostrum, the mucosal weight is mark-
edly increased within few days (Wang and Xu, 1996), indicating
rapid intestinal development after birth in the porcine species.

The pig model is advantageous since it allows the recovery of a
much larger number of colonic epithelial cells than rodent models,
notably in neonates and suckling animals, thus allowing for testing
of the effects of dietary intervention on cell metabolism and
physiology at different stages of development (Blachier et al., 1993).
In addition, the size of newborn and suckling piglets allows tissue
samplings, and it is also feasible to practice in pig multi-
catheterization and blood sampling without marked anemia,
even in kinetics experiments with several time-points (Blachier
et al., 1999). However, the use of the pig model for research pur-
poses requires extensive areas for breeding, and is a source of
abundant polluting substances in biological fluids, a situation that
makes the use of the pig model in urban areas difficult to consider.
However, the use of the mini pig model represents an important
alternative for research use, when considering these latter
drawbacks.

Despite the numerous advantages in the utilization of the pig
model, when comparing pigs and humans, differences are
measured in the gut anatomy (Kararli, 1995) and microbiota
composition. Xiao and collaborators have determined the gut
microbiota characteristics in pig fecal samples (Xiao et al., 2016)
and found in pigs a total of 7.7 million non-redundant genes rep-
resenting 719 metagenomic species. When comparing the func-
tional pathways identified in pig and humans, 96% of the functional
pathways in humans are present in the catalogue of the pig
microbiota community, suggesting that the pig represents a good
model for extrapolation of pig fecal microbiota data to humans.
However, it is noticeable that conversely only 78% of the pathways
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found in the pig gut metagenome are present in humans, raising
the view that the specific functionality of gut microbiota may be
greater in pigs than in humans (Wang et al., 2020b).
3. Large intestine microbiota: composition, diversity and
metabolic activity

The large intestine microbiota include bacteria, archaea, viruses,
fungi and protozoa (Aluthge et al., 2019). Considering the whole
ecosystem in the large intestine, and in order to better understand
how the microbiota can influence the host physiology and meta-
bolism, it is important to consider both the composition of the
microbiota and the microbial diversity. At birth, a piglet is suddenly
plunged into a complex bacterial environment including the bac-
teria of the maternal vagina and sow's feces and rearing environ-
ment. The knowledge of the changes in bacterial composition in the
intestinal content according to different parameters, including
gestational stages in sows (Kong et al., 2016; Ji et al., 2019), intra-
uterine growth status (Xiong et al., 2020), mode of piglet delivery
(Wang et al., 2013), early dietary conditions (Poulsen et al., 2017),
age of animals and weaning time (Konstantinov et al., 2003; Inoue
et al., 2005), has represented important milestones. However, one
of the challenges for future research is to better understand how
different bacterial compounds and products of bacterial metabolic
activity represent important components for the crosstalk between
the host and its microbiota.

Regarding the bacterial compounds that are recognized as
signaling by the host, including for instance the much studied
bacterial lipopolysaccharide (LPS) as a compound of the Gram-
negative bacteria, readers are referred to recent excellent reviews
on that topic (Saad et al., 2016; Gomes et al., 2018; Fuke et al., 2019),
since this aspect will not be developed in the present paper.

Regarding the products of bacterial activity in the large intestine
luminal fluid, studies in mammals have focused on the short-chain
fatty acid production, and notably on butyrate production from
undigestible carbohydrates (Tiwari et al., 2019). More recent
studies have studied the impact of AA-derived bacterial metabo-
lites on the intestinal epithelial cell metabolism and physiology as
presented in the present review.
4. Transfer of proteins from the small intestine to the large
intestine in pigs, bacterial metabolite production, and
consequences

4.1. Transfer of luminal proteins through the ileo-caecal junction

Although the process of protein and peptide digestion from both
dietary and endogenous origin is an efficient process in mammals
in general, and in pigs in particular, a significant portion of undi-
gested (or not fully digested) protein and other N-containing sub-
stances enter the caecum through the ileo-caecal junction. The
amount of N-containing substances entering the large intestine is
dependent on several parameters including the amount and source
of dietary proteins, as well as the pig developmental stage (Gilbert
et al., 2018; Le Gall et al., 2007). For instance, in piglets, a decreased
feed intake that is associated with changes in the small intestine
epithelium morphology is often observed at weaning. These
changes include a notably decreased villus height and increased
crypt depth (Nabuurs et al., 1993; Pi�e et al., 2004). Accordingly,
brush-border enzymatic activities and macronutrient final diges-
tion by enterocytes are reduced (Pi�e et al., 2004). Then, an increased
amount of proteins may reach the piglet large intestine after
weaning (Gilbert et al., 2018). Such an increased transfer of protein
may also happen in low birth weight newborn pigs which are
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routinely fed a high-protein diet to speed up their growth rate
(Boudry et al., 2014).

This increased transfer can be further amplified when the
amount of protein in the diet is increased and/or when less
digestible proteins are used in the pig's diet. This is reflected by
increased concentrations in the large intestine of several AA-
derived bacterial metabolites in the large intestine (Blachier et al.,
2019b). Proteins and peptides are degraded in the large intestine
by the bacterial proteases and peptidases which release peptides
and AA. As a matter of fact, the large digestive capacity of the pig
caecum-colon towards proteins has been demonstrated (Just et al.,
1981). Recently, supplementation with Bacillus subtilis in piglets
was found to increase the digestibility of proteins, and this effect
was associated with increased growth performance (Lewton et al.,
2021). The action of the bacterial proteases presumably plays a
major role in the increased protein digestibility observed after
B. subtilis supplementation (Tang et al., 2019).

Absorption of AA, either from the AA released from undigested
proteins or from anabolic activity of intestinal microbiota, is
considered to be very low in the mammalian large intestine when
compared to the absorptive capacity of the small intestine (Van der
Wielen et al., 2017). In pigs, absorption of AA in the colon has been
demonstrated only in newborn piglets (Smith and James, 1976), but
this capacity diminishes rapidly within few days after birth (James
and Smith, 1976; Sepulveda and Smith, 1979), and has been shown
to be at most very limited in growing pigs (Just et al., 1981).

4.2. Production of bacterial metabolites from the amino acids
depending on the diet

The AA can be used by the microbial population for their own
protein synthesis and for catabolism giving rise to numerous
metabolic end-products, the so-called bacterial metabolites that
include biogenic amines, phenols, indoles, hydrogen sulfide,
ammonia, short-chain fatty acids, and branched-chain fatty acids
Fig. 1. Production of bacterial metabolites from amino acids in the large intestine. This sche
from the small intestine to the large intestine, and the production of bacterial metabolite
epithelial colonic cell metabolism and physiology, before being released in the portal vein. SC
NHþ

4 ¼ ammonium.
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(Portune et al., 2016) (Fig. 1). Among these metabolites, some are
not exclusively produced through protein fermentation. For
instance, the short-chain fatty acids acetate, propionate, and
butyrate that can be produced by the large intestine microbiota
from the AA alanine, aspartate, glutamate, glycine, lysine, and
threonine (Blachier et al., 2007), can generally be produced inmuch
greater amounts from the undigestible carbohydrates present in
standard diets (Tiwari et al., 2019). In addition, organic acids, like
succinate, lactate, oxaloacetate and formate can all be formed from
protein-derived AA (Blachier et al., 2007). In contrast, some AA,
namely valine, leucine, and isoleucine, are specific precursors for
branched-chain fatty acids (namely isobutyrate, isovalerate and 2-
methyl-butyrate), and thus are considered as indicators of protein
fermentation in the large intestine (Yao et al., 2016).

Branched-chain fatty acid production can be modified by some
specific dietary compounds in pigs. Supplementation with fer-
mented soybean meal, characterized notably by higher oligosac-
charide content in unfermented form, reduces isovalerate in the
piglet large intestine (Zhang et al., 2018). In addition, by feeding
piglets with a low protein diet supplemented with essential AA,
branched-chain fatty acids are also decreased when compared with
a normal protein diet (Luo et al., 2015). Dietary supplementation
with chitooligosaccharide or soybean oligosaccharide in mini-
piglets reduces the isobutyrate, and isovalerate concentrations in
the colon (Kong et al., 2014; Zhou et al., 2014). These results
demonstrate the important role played by undigestible carbohy-
drates in the protein fermentation process in the pig large intestine.

It is feasible to examine the global effects of modifications of the
amount and/or of the source of dietary protein on the large intes-
tine epithelium in terms of parameters like water absorption and
electrolyte absorption/secretion, epithelial barrier function, and
colonic epithelium renewal. For instance, Richter and collaborators
have shown that a higher amount of highly fermentable crude
protein in the pig colon reduces the expression of the tight junction
protein claudin-1, -2, and -3, an effect associated with a
matic presentation shows the transfer of undigested dietary and endogenous proteins
s from amino acids. Several among these metabolites have been shown to act on the
FA ¼ short-chain fatty acids; BCFA ¼ branched-chain fatty acids; H2S: hydrogen sulfide;



F. Blachier, M. Andriamihaja and X.-F. Kong Animal Nutrition 9 (2022) 110e118
modification of the transcytotic movement across the colonic
epithelium (Richter et al., 2014). In order to illuminate the “black
box” between changes in the characteristics of the pig diet and
biochemical/functional consequences at the colonic level, it is
necessary to document firstly the impact of dietary changes on the
bacterial metabolite concentrations on the colonic epithelial cells
(Blachier et al., 2017).

Regarding ammonia (considered as the sum of NHþ
4 and NH3)

concentration, it has been found that this compound is increased by
a higher amount of dietary proteins in the weaned pig distal colon
(Pieper et al., 2014). Ammonia is produced by the intestinal
microbiota from AA deamination (Smith and Macfarlane, 1997) and
by the hydrolysis of urea by the bacterial ureases (Moran and
Jackson, 1990) (Fig. 1). Ammonia concentration measured in the
distal colon of pigs fed with a high-protein diet is in the 12.1 to
21.0 mmol/L range (Pieper et al., 2014; Bikker et al., 2006). By
reducing crude protein in the pig diet or replacing a part of the
dietary crude protein by essential AA in pig food, ammonia is
decreased in the colon and caecum (Peng et al., 2017; Luo et al.,
2015; Htoo et al., 2007; Zhang et al., 2016). In addition, a high-
protein/low fiber diet increases caecal ammonia concentration in
piglets (Stumpff et al., 2013). By supplementing mini-piglets with
chitooligosaccharide or soybean oligosaccharide, it is possible to
decrease the ammonia concentration in the colon (Kong et al.,
2014; Zhou et al., 2014). Supplementation of pigs fed a western-
type diet with wheat arabinoxylan, used as soluble fiber,
decreased ammonia concentration in the large intestine (Williams
et al., 2016). Interestingly, zinc oxide, used at pharmacological
doses to prevent diarrhea in pigs, decreases notably ammonium
fecal concentration (Janczyk et al., 2015). These latter results are of
interest notably when considering that 1) a high-protein diet that
increases ammonia concentration in the colon decreases fecal
consistence due to higher water content (Pieper et al., 2012;
Wellock et al., 2006), 2) ammonium chloride at 20 mmol/L con-
centration decreased the monocarboxylate transporter 1 (MCT1)
gene expression in pig colon (Villodre Tudela et al., 2015), this
transporter allowing butyrate uptake in colonocytes, and 3) sup-
plementation with sodium butyrate in weaned piglets decreased
the incidence of diarrhea (Huang et al., 2015). It is thus tempting to
propose from these latter data that an increased ammonia con-
centration in the large intestine, following high-protein diet con-
sumption, would favor the diarrheal process by interfering with the
process of butyrate uptake by the colonic absorptive cells and thus
with the action of butyrate on sodium/water absorption by the
colonic epithelium (Bedford and Gong, 2018).

Concerning the concentration of indole and indolic compound
(that is produced by the intestinal microbiota from tryptophan),
and concentrations of phenolic compounds, that include phenol, p-
cresol, and phenyl-containing compounds (that are produced by
the fermentation of L-tyrosine), they are increased in the colon of
weaned pigs fed a high-protein diet (Pieper et al., 2014). In piglets,
88% of the excreted p-cresol is recovered in the urine, while 12% is
recovered in feces (Yokoyama et al., 1982), thus indicating that a
large proportion of p-cresol, continuously produced by the intes-
tinal microbiota, is absorbed from the luminal content to the
bloodstream before excretion in urine, the remaining being kept in
the large intestine content before periodic fecal excretion. Lower
crude dietary protein intake reduces phenol and indole concen-
trations in the pig caecum and colon (Zhang et al., 2016; Zhang
et al., 2017). Supplementation with lignocellulose decreases phe-
nols and indoles in the piglet large intestine (Pieper et al., 2014).
Supplementation of pigs fed a westernized diet containing cooked
redmeat with arabinoxylan-rich fraction fromwheat diminishes p-
cresol concentration in the caecum, and phenol concentration in
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the colon (Belobrajdic et al., 2012). These latter studies confirm that
undigestible carbohydrate consumption decreases protein
fermentation in the pig large intestine.

Regarding the biogenic amine production, the concentrations of
the polyamines putrescine and spermidine are higher in the colon
of piglets fed a high-protein diet (Pieper et al., 2012), as well as the
concentration of histamine (Pieper et al., 2012) that is produced
from histidine fermentation. Conversely, reducing crude protein
content in the pig diet results in a decrease of the caecal putrescine
concentration (Htoo et al., 2007). Other biogenic amines including
tyramine and cadaverine are decreased by feeding pigs with diets
containing lower crude protein content (Zhang et al., 2016). In
addition, moderate protein restriction in finishing pigs decreases
putrescine, histamine, and spermidine in the colonic content (Fan
et al., 2017). By feeding piglets with a low protein diet supple-
mented with essential AA, cadaverine concentration in the caecum
was found to be decreased when compared to normal protein diet
(Luo et al., 2015). Dietary proline supplementation in pregnant
mini-pigs increases the concentrations of the bioamine 1,7-heptyl
diamine and phenylethylamine in the proximal colon content (Ji
et al., 2018), suggesting increased AA catabolism by the intestinal
microbiota after such supplementation. L-proline supplementation
in sows during pregnancy markedly increases the concentration of
putrescine and spermidine in the whole large intestine (containing
the luminal fluid) in fetuses when compared to the isonitrogenous
control group of sows (Wang et al., 2020a).

Thus, overall, feeding pigs with high-protein diet is associated,
as expected, with increased concentration of AA-derived bacterial
metabolites in the large intestine, while undigestible carbohydrates
generally decrease protein fermentation in the pig large intestine.
Dietary starch types are apparently an important parameter in
determining their effect on protein fermentation in the pig large
intestine since for instance, pea starch decreases the concentrations
of putrescine, cadaverine, skatole, indole and phenol in the colon
when comparedwith tapioca starch (Yu et al., 2019). Interestingly, a
recent study performed with suckling and weaned piglets, has
shown that the relative fecal concentrations of the bacterial me-
tabolites methylamine, dimethylamine, cadaverine, succinate, and
3-(4-hydroxyphenylpropionate) are higher during the suckling
period than after weaning. In contrast, the relative concentrations
of acetate and propionate are higher after weaning than during the
suckling period (Beaumont et al., 2021), thus indicating modifica-
tion of the luminal environment in the distal part of the pig
digestive tract during the suckling to weaning transition.

4.3. Effects of amino acid-derived bacterial metabolites on colonic
metabolism and physiology in pigs

4.3.1. Colonic epithelial cell energy metabolism
Colonic epithelial cells are characterized by a high energy de-

mand since the colonic epithelium is entirely renewed within a few
days, thus requiring intense anabolic metabolism and high rate of
ATP synthesis. In addition, absorbing colonocytes, because of high
sodium (and water) absorption, require energy for the functioning
of the Na/K ATPase (Blachier et al., 2009). Pig colonocytes can use
several substrates for energy production including mainly short-
chain fatty acids, glutamine, and to a lesser extent glucose used
both in the oxidative and in the glycolytic pathways (Darcy-Vrillon
et al., 1993) (Fig. 2). Regarding the availability of these different
energy substrates, it is important to consider that absorptive
colonocytes, as polarized cells, can obtain their fuels from both the
luminal and the basolateral sides. Ammonium chloride at a
10 mmol/L concentration, thus in the range of ammonium con-
centrations found in the colonic content of piglets receiving a high-



Fig. 2. Energy production in colonocytes from the utilization of fuels originating from blood and luminal fluid. This schematic presentation shows the substrates used by the
colonocytes for ATP production, as well as the inhibitory effect of ammonium, hydrogen sulfide (H2S), and p-cresol on mitochondrial ATP production when present in excess.
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protein diet, markedly reduces butyrate but not acetate oxidation in
pig colonocytes (Darcy-Vrillon et al., 1996), suggesting that
ammonia affects butyrate metabolism at the steps of activation
and/or beta-oxidation (Fig. 2). In this study, ammonia was found to
increase glucose utilization in the glycolysis, indicating that
ammonia modifies substrate utilization in colonocytes. However,
when considering the varied ATP production rates for substrate
utilization in the mitochondrial oxidative pathways in comparison
to glycolysis, it can be predicted that increased glycolysis will not be
able to compensate for decreased butyrate oxidation in terms of
ATP production. However, ammonium, when tested at 50 mmol/L
concentration does not affect pig colonic crypt cell viability after 4 h
incubation (Leschelle et al., 2002), maybe because of an inhibitory
effect of ammonium on colonic epithelial cell proliferation (Mouill�e
et al., 2003), and consequently with a decreased requirement of ATP
for anabolic processes. Such an inhibition of the ATP requirement
would avoid a sharp decrease of the ATP intracellular concentration
in colonocytes that may affect their viability.

Of note, from experiments in conscious pigs receiving increasing
doses of ammonium chloride in the colonic lumen, and by
measuring ammonia in the portal and arterial blood, it has been
determined that the colonic epithelium of 50 kg pigs has the ca-
pacity to absorb up to 4 g of ammonia after intra-colic acute in-
jection, and this, without saturation of the hepatic ureagenesis
capacity (Eklou-Lawson et al., 2009). Further works are required to
test if an increase of ammonia concentration in the large intestine
following high-protein consumption may induce an energy-
deficient state in the colonic epithelium that would affect the pig
colonic epithelium renewal and/or functions.

Hydrogen sulfide (H2S) is produced by the intestinal microbiota
from different dietary and endogenous S-containing substrates
including cysteine and sulfomucins (Blachier et al., 2010). At low
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micromolar concentrations, H2S is a mineral energy substrate for
colonic absorptive cells, while at low millimolar concentrations,
H2S is a metabolic trouble maker as it inhibits the cytochrome
oxidase activity in the mitochondrial respiratory chain (Blachier
et al., 2019a), and thus reduces mitochondrial ATP production
(Fig. 2). In the pig large intestine, the net production of H2S by the
intestinal microbiota increased from the caecum towards the distal
colon (Poulsen et al., 2012). However, at a concentration of 1 mmol/
L, the hydrogen sulfide donor NaHS does not affect pig colonic crypt
cell viability after 4 h incubation (Leschelle et al., 2002) maybe
because of compensating processes in colonic epithelial cells as
observed in in vitro experiments (Leschelle et al., 2005).

Excessive p-cresol has been shown to decrease mitochondrial
oxygen consumption (Andriamihaja et al., 2015), and the ATP
intracellular content in a colonic epithelial cell line (Wong et al.,
2016), indicating that p-cresol affects energy metabolism in colo-
nocytes (Fig. 2). In vivo experiments in animal model are required
to examine to what extent such alteration may affect the colonic
epithelium physiology.

4.3.2. Colonic epithelium renewal and barrier function
Few data are available regarding the effects of AA-derived bac-

terial metabolites on colonic epithelial renewal and barrier
function.

Polyamines that include putrescine, spermidine and spermine
are well known to be involved in intestinal epithelium renewal in
mammals (Timmons et al., 2012). In colonic epithelial cells, intra-
cellular polyamines may originate from the luminal side, presum-
ably mainly from the metabolic activity of the microbiota (Blachier
et al., 2011), and to a lesser extent from polyamine release in the
luminal content after exfoliation of mature colonocytes. Poly-
amines from dietary supply that have not been absorbed by the
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small intestine (Bardocz, 1993) represent an additional source for
colonic epithelial cells, together with the intracellular synthesis
from L-ornithine (Blachier et al., 2011). Spermidine and spermine
are measurable in the colostrum and milk recovered from sows
(Motyl et al., 1995), and spermidine increases progressively from
week 1 to 7 of lactation (Kelly et al., 1991). However, the possible
effect of polyamines on the rapid growth of the colonic mucosa in
piglets after birth remains to be examined.

Indolic compounds derived from tryptophan have been re-
ported to increase intestinal epithelial cell tight junction resistance
(Bansal et al., 2010; Venkatesh et al., 2014; Shimada et al., 2013),
while regulating intestinal homeostasis during aging (Powell et al.,
2020). However, indole-derived indoxyl sulfate is well known to act
as a uremic toxin, and an excessive amount of this latter compound
is deleterious for the tubular kidney cells (Liu et al., 2018; Cheng
et al., 2020), raising the view that indolic compounds represent a
double-edged sword. To the best of our knowledge, there are no
available data regarding the ratio of the beneficial over deleterious
effects of an increased concentration of indole in the piglet large
intestine (notably after the consumption of a high-protein diet),
notably on the colon and kidney physiology.

p-cresol decreases the transepithelial resistance and increases
the paracellular transport in colonocyte monolayers (Wong et al.,
2016). These results suggest that p-cresol may alter the colonic
epithelial barrier function, but the in vivo consequences of an
increased p-cresol concentration in the colonic luminal concen-
tration remains here again to be determined.

4.3.3. Water and electrolyte absorption/secretion by the colonic
epithelium

There is still little information on the effects of AA-derived
bacterial metabolites on water and electrolyte movement through
the colonic epithelium.

Histidine-derived histamine induces luminal chloride secretion
as measured in Ussing chamber experiments using pig colonic
mucosa (Ahrens et al., 2006). Interestingly, colonic tissues recov-
ered from piglets fed a high-protein diet display increased activity
of histamine-degrading enzymes like diamine oxidase and hista-
mine N-methyltransferase, thus suggesting metabolic adaptive
processes towards increased luminal histamine production (Kr€oger
et al., 2013; Aschenbach et al., 2009). Putrescine supplementation
in the diet of weaning piglets decreased the diarrhea index, and
thus the water content in the intestinal luminal fluid, in association
with an increased butyrate concentration in the colon (Liu et al.,
2019).

5. Conclusions and perspectives

From the available data obtained in pigs, there is no doubt that
the composition of the food given to the animals, notably in terms
of quantity and source of dietary protein, plays a major role on the
concentration of numerous amino acid-derived bacterial metabo-
lites recovered in the large intestinal fluid. Importantly, the amount
and nature of the undigestible carbohydrates (that include fibers)
in the diet are also important parameters in modulating the con-
centration of these metabolites. Since these metabolites are pro-
duced from specific amino acids (Fig. 1), the amino acid
composition of dietary proteins, in addition to protein digestibility
in the small intestine will fix, for a given microbiota composition,
the luminal concentrations of these metabolites, and thus the
luminal environment of the colonic epithelium.

However, it is worth noting at this step of discussion that the
luminal environment is not only depending on the bacterial
metabolite concentrations, but on other parameters including the
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pH and osmolarity, which may also impact the colonic epithelium
physiology. It is worth noting regarding this latter point that bac-
terial metabolite concentration and pH/osmolarity are not discon-
nected. For instance, when the pH in the large intestine is more
acidic, the concentration of the diffusible active compound H2S
increases, while the concentration of hydrosulfide anion decreases
(Blachier et al., 2017). In the same line of thinking, a more acidic
luminal pH will decrease the proportion of the anionic form of
butyrate, resulting in a lower uptake of this compound through the
monocarboxylate transporter isoform 1 by colonocytes. Lastly, for
ammonia, a lower pH in the colon will displace the equilibrium
between NH3 and NHþ

4 , favoring the proportion of NHþ
4 , which, in

contrast with NH3 (which easily penetrates cell membranes), needs
a specific transporter to enter colonocytes (Handlogten et al., 2005).
Regarding osmolarity, the production of bacterial metabolites vs.
their absorption rate through the colonic epithelium may lead to
their accumulation in the luminal fluid with a resultant increased
osmolarity.

Changes in the osmolarity of the extracellular medium are
known to affect in vitro colonocyte metabolism and functions
(Grauso et al., 2019). Also, changes in the luminal pH may affect per
se the colonic epithelial cell physiology (Blachier et al., 2017). In
order to document the consequences of changes of the luminal
environment of the pig colonic epithelium, in terms of beneficial or
deleterious effects, further experimental works are obviously
required focusing on the effects of bacterial metabolites, tested
either individually or in combination at different concentrations, on
the colonic epithelial cells. For that aim, it is possible to implant a
canula in the pig colon in order to inject endoluminally bacterial
metabolites of interest (Eklou-Lawson et al., 2009) and then to
recover colonic mucosal biopsies for analysis. It is also feasible to
test the cytotoxic effect of a mixture of luminal compounds, by
performing the so-called “fecal water cytotoxicity test”. In that test,
after nutritional intervention, mixtures of water-soluble com-
pounds are recovered from the fecal material, and are then tested
for their global cytotoxic effect on colonic epithelial cells
(Beaumont et al., 2017). Regarding the effects of individual amino
acid-derived bacterial metabolites on colonic epithelial cells, except
for ammonia which has been the subject of several studies in the
pig model, few works has been devoted to the effects of these
compounds on parameters like sodium and water absorption,
epithelial renewal, mucus secretion and associated barrier function
in association with the effects on the energy metabolism in colonic
epithelial cells. This is indeed an important research objective as
loss of the colonic epithelial homeostasis may contribute to colonic
mucosa inflammation (Garcia-Hernandez et al., 2017) and diarrhea
(Thiagarajah et al., 2018).

Most of the results obtained in this area are derived from ex-
periments using either colonic biopsies, colonic crypts or isolated
colonic absorptive cells that can survive only for a limited time.
New experimental models have been developed more recently,
notably the use of organoids isolated from pig colon which rep-
resents a model closer to the in vivo situation (Sharbati et al.,
2015; Callesen et al., 2017). This model offers the possibility to
replicate the metabolism and functions of the different epithelial
cell phenotypes in the course of colonic epithelial cell prolifera-
tion, differentiation and apoptosis. Also, the use of organoids
maintained in culture (or kept at very low temperature for further
culture) allows us to diminish the number of animals used for
experiments. Such a model will be much useful for further tests of
bacterial metabolites for their effects, either beneficial or delete-
rious, on colonic epithelium renewal and function. In the future,
from such experimental works, we can hope to define optimal
dietary conditions, notably in terms of the amount and sources of
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protein and undigestible carbohydrates, for an optimal luminal
environment, that will help maintain a healthy state in the colonic
epithelium.
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