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Abstract: Nowadays, Mn-doping is considered as a promising dissolution for the heavy usage of
toxic lead in CsPbX3 perovskite material. Interestingly, Mn-doping also introduces an additional
photoluminescence band, which is favorable to enrich the emission gamut of this cesium lead halide.
Here, a solution spraying strategy was employed for the direct preparation of CsPbxMn1−x(Br,Cl)3

film through MnCl2 doping in host CsPbBr3 material. The possible fabrication mechanism of the
provided approach and the dependences of material properties on Mn-doping were investigated
in detail. As the results shown, Pb was partially substituted by Mn as expected. With the ratio of
PbBr2:MnCl2 increasing from 3:0 to 1:1, the obtained film separately featured green, cyan, orange-
red and pink-red emission, which was caused by the energy transferring process. Moreover, the
combining energy of Cs, Pb, and Mn gradually red-shifted resulted from the formation of Cs-Cl,
Pb-Cl and Mn-Br coordination bonding as MnCl2 doping increased. In addition, the weight of short
decay lifetime of prepared samples increased with the doping rising, which indicated a better exciton
emission and less defect-related transition. The aiming of current work is to provide a new possibility
for the facile preparation of Mn-doping CsPbX3 film material.

Keywords: MnCl2 doping; CsPbxMn1−x(Br,Cl)3; thin films; solution spraying

1. Introduction

All-inorganic CsPbX3 (X=Cl, Br, or I) perovskite material has become a promising
candidate for light emitting diodes (LEDs) [1], solar cells [2], lasers [3,4] and so forth [5,6]
due to their superior optical properties [7], such as high color purity [8], high photo-
luminescence quantum yield (PLQY) [5], excellent carrier characteristics [9] and tunable
band gap [10]. Unfortunately, the toxicity of lead is a great challenge for the development
of lead halide perovskite [11,12]. How to reduce or replace lead by less-toxic or non-toxic
metals is one of the key issues for its commercial application. Currently, great efforts
have been made to partially or completely replace Pb by doping divalent cations (such as
Sn2+, Ge2+, Zn2+) as the core elements of CsPbX3 material [13]. However, the susceptible
oxidation of Sn and Ge from bivalent state to tetravalent state exposed under ambient
environment is risky for the material stability. Regarding Zn2+, the doping concentration in
the host material is limited, which is unfavorable to further eliminate the toxic Pb use [14].

Interestingly, Mn-doped CsPbX3 material has new pleasant chemical and physical
properties. It has become a promising candidate for lead-less perovskite material [15].
As suggested by previous reports [16], Mn2+ doping can improve the material stability,
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which derives from Mn-X bond having higher binding energy than Pb-X bond. The
most interesting result after partial substitutions of Mn for Pb element is that there is
an additional photoluminescence (PL) band in the orange region compared with the
pure CsPbX3 material [17,18]. Commonly, Mn-doped CsPbX3 can be fabricated by halide
exchange driven cation exchange strategy [19,20]. Sheldon and co-workers reported the
first attempt at Mn-doping based on host material of CsPbCl3 by hot injection method [17].
Later, Zhu et al. found that Mn also can doped into CsPbBr3 structure via MnCl2 to form
mixed halide perovskites in 2017 [21]. These mixed halide perovskites can support a
much higher Mn doping ratio while retaining the original perovskite emission [15,16,22].
Furthermore, Cl-to-Br anion exchange was adopted to modify the compositions of Mn-
doped perovskite material, leading to multi-color luminescence [22]. It is known that the
methods of hot injection [23], thermal solvent [24], and anti-solvent [20] are prevalent for
the fabrication of Mn-doping CsPbX3 material. However, these approaches are limited
by the shortcomings of low yields, complex procedures, and toxic chemicals. In addition,
the obtained product prepared by the above methods is in a powder-state rather than
in film-state. It is well known that the solution spraying method is widely used for the
multi-element material fabrication, such as ZnS [25], Cu2SnS3 [26], Cu2ZnSnS4 [27], etc.,
due to its prominent merits of low cost, simple operation, low time-consuming and scalable
production. Yang et al. reported their work about the fabrication of CsPbBr3 thin film
through a spraying method combined with raw CsPbBr3 nanocrystals (NCs) [28]. However,
the direct deposition for this perovskite film by spraying strategy is rare to date, especially
in CsPbxMn1−x(Br,Cl)3 film material.

Herein, the solution spraying strategy was employed for the direct preparation of
CsPbxMn1−x(Br,Cl)3 film through MnCl2 doping in host CsPbBr3 material for the first time.
The soft polyethylene terephthalate (PET) material was used as the substrate. It is well
known that the flexible substrate features distinguished plasticity and tailorability, which
is favorable to widen the application of prepared CsPbxMn1−x(Br,Cl)3 material such as
curved displaying or wearable devices [29]. In the current work, the influences of MnCl2
doping on the material properties including photoluminescence, structure, morphology,
chemical composition, carrier decay lifetime, etc., were investigated in detail. Moreover,
the fabrication mechanism of the proposed spraying approach was also analyzed. This
work aims to provide a new possibility for the facile preparation of Mn-doping CsPbX3
film material.

2. Experimental Details
2.1. Preparation of CsPbBr3 and CsPbxMn1−x(Br,Cl)3 Thin Films

Typically, the precursors were prepared by 0.2 mmol CsBr (cesium bromide, 99%, AR),
0.2 mmol PbBr2 (lead bromide, 99%, AR), 40 ul EAC (ethyl acetate, 90%, AR), 40 ul OLA
(oleylamine, 70%, AR) and 10 mL DMSO (Dimethyl sulfoxide, 90%) were successively
added into the beaker with stirring until reactants were dissolved sufficiently. Then, the
transparent solution was poured into spraying devices, and sprayed onto flexible PET
substrate at 110 °C within 60 s to obtain the expected sample. Concerning to the fabrication
of CsPbxMn1−x(Br,Cl)3 films, MnCl2 was introduced to partially substitute PbBr2. For
MnCl2 (manganese chloride, 99%, AR) doping, the ratio of PbBr2 and MnCl2 was set as
3:1, 3:2 and 1:1, and other experimental conditions were the same as the preparation of
CsPbBr3 film. All operations are carried out in the atmosphere. In addition, CsBr and
DMSO were provided by Shanghai Titan Scientific Co., Ltd. (Shanghai, China). PbBr2,
EAC, OLA and MnCl2 were purchased from Shanghai Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China).

2.2. Characterizations for the As-Obtained Samples

The film’s surface morphology was measured by scanning electron microscopy (SEM,
Quanta 200, FEI, Eindhoven, The Netherlands). The crystalline structure was characterized
by X-ray diffraction (XRD, Ultima IV, Rigaku, Tokyo, Japan). An Ultraviolet-Visible-Infrared



Nanomaterials 2021, 11, 3242 3 of 10

spectrophotometer (UV-vis-IR, UH 4150, Hitachi, Tokyo, Japan) was used to record the
absorption spectra of the prepared films. The PL properties were measured by fluorescence
spectrophotometer (FS5, Edinburgh Instruments, Edinburgh, UK). Energy dispersive X-
ray spectroscopy (EDS, Genesis Apollo X, Pittsburgh, PA, USA) and X-ray photoelectron
spectroscopy (XPS, Axis Ultra DLD, Kratos, Manchester, UK) were employed for the study
of chemical constitution.

3. Results and Discussion

In this work, the preparation diagram was described in Figure 1a. For CsPbBr3 fabri-
cation, all reactants were sufficiently dissolved in DMSO solvent to prepare the precursor
solution. In this solution, the mental ions Cs+, Pb2+ dispersed homogeneously and freely.
Halide ions Br− were released from mental halides of CsBr and PbBr2, then acted with
OLA to form Br-OLA complexes. During the spraying process, the DMSO solvent was
evaporated by the heating treatment. Br− anions were separated from Br-OLA complexes
and combined with Cs+, Pb2+ cations to form the expected CsPbBr3 products. Meanwhile,
these CsPbBr3 products may be encapsulated and passivated by OLA molecules as sug-
gested by previous works [30]. For CsPbxMn1−xX3 film fabrication, Mn2+ replaced part
of Pb2+ (as shown in Figure 1b) and Cl− exchanged with part Br− after MnCl2 adding in
the precursor solution. Here, the partial substitution of Pb2+ by Mn2+ was driven by the
halide exchange process of Br-to-Cl. During the Br-to-Cl exchange, the rigid octahedron
structure of PbBr6

4− would be opened up, and then the Mn2+ would be incorporated into
this structure to replace Pb2+. The above halide exchange driven cation exchange process
has also been demonstrated by early studies [31].
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Figure 1. (a) The schematic diagram of solution spraying process; (b) Mn2+ replaced part of Pb2+.

The PL spectra of CsPbBr3 and CsPbxMn1−x(Br,Cl)3 films were shown in Figure 2a.
For CsPbBr3 film, an emission band centered at 515 nm is observed, while the peaks at
450/470 nm could be attributed to EAC. When doped with MnCl2, two peaks at around
509/616 nm were observed. It was found that the main peak of 515 nm in pure CsPbBr3
film gradually blue-shifted to 505 nm with the ratio of PbBr2:MnCl2 increasing from 3:1
to 1:1. This may be caused by the band gap varying, which resulted from the increasing
Br-to-Cl exchanging after MnCl2 incorporation [22,32]. The peak locating at 616 nm was
derived from the energy transferring of 4T1→6A1 caused by Mn substitution for Pb in
CsPbxMn1−x(Br,Cl)3 material. In CsPbxMn1−x(Br,Cl)3, after band to band optical excitation,
the energy is transferred from the main material to the Mn2+ excited state [33]. In addition,
the Mn2+ emission slightly red-shifted from 616 nm to 619 nm as the Mn ratio increased.
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This may be caused by the lattice contraction induced modification of Mn2+ ligand-field
and the Mn2+ reabsorption/emission effect as suggested [22]. As observed, the PLQY
values of the samples, prepared with different PbBr2: MnCl2 ratios of 3:0, 3:1, 3:2, 1:1,
were 15.68%, 1.26%, 3.85% and 3.09%, respectively. It was found that the PLQY of MnCl2
doped samples displayed a downward trend when the PbBr2: MnCl2 ratio was over 3:2.
This may be caused by a quenching effect due to excessive Mn. Figure 2b depicted the
Commission Internationale de I’Eclairage (CIE) color space coordinates of CsPbBr3 and
CsPbxMn1−x(Br,Cl)3 films. For the CsPbBr3 sample, the CIE was (0.2329, 0.5913) and
showed green light under 365 nm UV excitation. For the CsPbxMn1−x(Br,Cl)3 sample, the
corresponding CIE of different Pb/Mn ratios (3:1, 3:2, 1:1) were (0.2891, 0.3657), (0.3853,
0.3625), and (0.4294, 0.3757), respectively, and the as-prepared samples featured cyan,
orange-red, pink-red separately. The cyan color for the sample fabricated under 3:1 Pb/Mn
ratio may occur because the emission of main material was dominant while the energy
transferring was in a low degree. With the increasing Mn content, the energy transferring
was accelerated. This was well suggested by the color changing and the variation of
normalized Mn2+ emission intensity. Additionally, the color purity was 53.8%, 20.1%, 24.4%
and 41.6%, while the color temperature was 7344, 7839, 3749 and 2889 K, for 3:0, 3:1, 3:2
and 1:1 Pb/Mn ratio, respectively.
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Furthermore, the absorbance spectra of as-obtained samples were determined by UV-
vis spectrophotometer and displayed in Figure 2c. As observed, all samples had absorption
edges around 510 nm, which was attributed to main materials CsPb(Br/Cl)3. Additionally,
this edge bule-shifted gradually, with the increasing Cl−. The bandgap energy Eg of these
samples were calculated by extrapolating the straight line of (Ahv)2 vs. (hv) plots displayed
in the inset of Figure 2c. Here, A is absorbance, h is Planck’s constant, v is frequency.
As observed, the Eg values for Mn-doped CsPbBr3 films (with the ratio of PbBr2:MnCl2
3:0, 3:1, 3:2, 1:1) were 2.25, 2.33, 2.34 and 2.35 eV, separately. The crystal structure of
prepared films was determined by XRD treatment as shown in Figure 2d. Regarding to
the undoped sample, there were three peaks, locating around at 15.02◦, 26.39◦, and 30.56◦,
could be attributed to the (100), (111), and (200) planes of cubic CsPbBr3 (JCPDS 54-0752).
This indicated the undoped sample was in pure perovskite phase. It was found that the
diffraction peak of (202) plane gradually appeared at around 42.80◦ with MnCl2 doping
increasing. Interestingly, the diffraction peak of (200) plane gradually shifted toward to
higher angles as MnCl2 doping increased. As suggested by early studies [22], this was
caused by the lattice contraction after the smaller Mn2+ (0.97 Å) and Cl− incorporation
into the lattice to separately replace Pb2+ (1.33 Å) and Br−. This is also confirmed by the
changing of crystal size of prepared films. As calculated based on (200) plane by Scherrer
formula, the crystal sizes corresponding to the different ratios of PbBr2:MnCl2 (3:0, 3:1,
3:2, 1:1) were 22.03, 21.31, 20.86, and 19.96 nm, respectively, which presented a downward
trend.

The surface morphologies of the samples prepared in 3:0, 3:1, 3:2 and 1:1 PbBr2:MnCl2
ratios were shown in Figure 3a–d, respectively. It was found that the undoped sample
was in bulk-shape, and was dense and compact. This was benefitted from the Br-rich
state as suggested by previous studies [34]. A few particles also appeared on the surface.
As suggested by previous studies [30], the bulk-shaped or particle-shaped products were
composed of agglomerated NCs by soft agglomeration of electrostatic force or Van der
Waals force, especially in the presence of OLA. Interestingly, the dense and compact state of
as-fabricated samples deteriorated as the MnCl2 ratio increased. More and more particles
appeared as well as the pins. This was because Br was partially replaced by Cl to change the
Br-rich state after MnCl2 doping. Thus, the morphology featured a deterioration trend with
more Cl incorporating into the prepared film samples. Furthermore, the EDS mappings
were also described in Figure 3a–d to determine the chemical composition of as-obtained
samples prepared with different PbBr2:MnCl2 ratios. As observed, all elements including
Cs, Pb/Mn, Br/Cl dispersed homogeneously on the sample surfaces. Concerning the Mn
atom percent in prepared samples, the value increased from 0 to 10.73% with the Pb/Mn
ratio varying from 3:0 to 1:1. The actual Pb/Mn ratios were 3:0, 2.8:1, 3.1:2 and 0.93:1, which
were close to the expected values of 3:0, 3:1, 3:2 and 1:1. This indicated Pb was successfully
substituted by Mn in host material as expected. In addition, the Cs:(Pb+Mn):(Cl+Br) ratio
of fabricated samples was close to the stoichiometric value 1:1:3.

XPS survey was employed to further investigate the composition of as-prepared
samples. As observed in Figure 4a, the orbital peaks of Mn 2p and Cl 2p appeared as
expected in MnCl2 dopped sample comparing to the pure CsPbBr3 film. Cs, Pb and Br all
had two split peaks locating at around 737.78 and 723.81 eV, 142.34 and 137.45 eV, and 68.45
and 67.56 eV, which were assigned to Cs 3d3/2 and Cs 3d5/2, Pb 4f5/2 and Pb 4f7/2, and Br
3d3/2 and Br 3d5/2 electronic levels, respectively, as displayed in Figure 4b–d [35]. Note
that these peaks all slightly shifted to high binding energy as MnCl2 increased, especially
for Pb 4f. This may be caused by the coordination bonding of Cs-Cl, Pb-Cl and Mn-Br on
the surface of host material. This was favorable for the stability improvement of Cs 3d, Pb
4f and Br 3d. In addition, the obvious red-shifting of Pb 4f may also be a result from the
changing of chemical environment and electron density after Mn doping as suggested by
previous work [32,36]. Figure 4e showed two characteristic peaks located at 641.63 eV and
650.31 eV corresponding to Mn 2p3/2 and Mn 2p1/2, respectively. This indicated Mn was in
divalent state, and also suggested Pb was successfully substituted by Mn as expected [35].
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Similar to Cs and Pb, the binding energy of Mn 2p1/2 also slightly varied to a higher value
as MnCl2 doping increased. For Cl, there were two peaks that appeared at 197.25 and
198.95 eV, as observed in Figure 4f.
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Figure 5 displayed the normalized time-resolved PL decay curves of as-prepared films.
The curves were fitted by a bi-exponential function as shown in Equation (1):

y = A0 + A1 exp
(
− t

τ1

)
+ A2 exp

(
− t

τ2

)
(1)

τave =
(

A1τ2
1 + A2τ2

2

)
/(A1τ1 + A2τ2) (2)

where, τ1, τ2 are short-lived and long-lived lifetime originating from exciton radiative
recombination and the trap-assisted nonradiative recombination, respectively. A1 and A2
are the corresponding occupied percent of τ1 and τ2, respectively. A0 is a constant, the
average lifetime τave is calculated by Equation (2). As observed, the values of τ1, τ2 and
τave all featured a downward trend as MnCl2 doping increased. It is worth mentioning that
the value of τ1 decreased from 1.94 ns to 1.14 ns, which may be derived from the bandgap
increasing caused by Br-to-Cl anion exchange [22]. Moreover, the occupied percent of τ1
was increased from 35.70% to 49.00% which meant a higher ratio of radiative to nonradiative
recombination. Above indicated a better exciton emission and less defect-related transition,
as suggested by previous studies [30].
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Figure 5. Time-resolved PL decay curves of the samples prepared by different PbBr2/MnCl2 ratios.

4. Conclusions

In conclusion, a CsPbxMn1−x(Br,Cl)3 film was successfully prepared by facile solution
spraying approach with flexible PET substrate through MnCl2 doping in host CsPbBr3
material. As the results showed, the green emission in CsPbBr3 film gradually transferred
to be cyan, orange-red, and pink-red as MnCl2 increased, which was derived from the
energy transferring between host material and Mn2+ excited state. It was found that the
dense and compact film was varied to be a coexisting state of bulk and nanoparticles
products with the MnCl2 increasing in doped material. The EDS mapping displayed that
all chemical dispersed uniformly on the film surface, and Pb was successfully substituted
by Mn as expected, which was further confirmed by XPS investigation. Moreover, with
MnCl2 doping rising, the combining energy of Cs, Pb, and Mn featured a red-shifting
variation which may be caused by the formation of Cs-Cl, Pb-Cl and Mn-Br coordination
bonding. Time-resolved PL decay study indicated the weight of short-lifetime presented
an upward trend as doping increased, which suggested a better exciton emission and less
defect-related transition.
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