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Reconstructing Networks from 
Profit Sequences in Evolutionary 
Games via a Multiobjective 
Optimization Approach with Lasso 
Initialization
Kai Wu, Jing Liu & Shuai Wang

Evolutionary games (EG) model a common type of interactions in various complex, networked, natural 
and social systems. Given such a system with only profit sequences being available, reconstructing 
the interacting structure of EG networks is fundamental to understand and control its collective 
dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization 
method, need a user-defined constant to control the tradeoff between the natural sparsity of networks 
and measurement error (the difference between observed data and simulated data). However, a 
shortcoming of these approaches is that it is not easy to determine these key parameters which 
can maximize the performance. In contrast to these approaches, we first model the EG network 
reconstruction problem as a multiobjective optimization problem (MOP), and then develop a 
framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution 
selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective 
initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct 
various types of synthetic and real-world networks, and the results show that our approach is effective 
to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

One of the outstanding problems in interdisciplinary science is to identify, predict, and control nonlinear and 
complex systems. Much evidence has shown that interaction patterns among dynamics elements captured by 
complex networks play an important role in controlling the collective dynamics1. However, a great challenge 
is that the network structure and the nodal dynamics are often unknown, instead, only the limited observed 
time series are available. Reconstructing complex network structure and dynamics from measureable data has 
become a central issue in contemporary network science and engineering2–17. Typical examples include evolu-
tionary games networks2,3,18, propagation networks4, gene regulatory networks6,13–16, multiphase flow system19–25, 
and so on.

An important class of collective dynamics is evolutionary games (EG)26–30 in the human society. Through 
game theory, economists can analyze how people make choices about money; biologists can explain the origin of 
altruism; anthropologist can disclose the diversity of human nature; neuroscientists can reveal how individuals’ 
strategies influence others’ emotions and behaviors. Understanding the collective dynamics of EG is important 
for scientists. For the criminal gang, the police need to master the relationships between the members, namely, 
agent-to-agent networks. However, in the real life, it is difficult to directly access to this network, and maybe only 
the payoff and strategy of its members are available. Therefore, our goal is to reconstruct the agent-to-agent net-
works from these available information, namely, profit sequences.

Recent efforts have focused on the inverse problem of EG networks where the network reconstruction prob-
lem (NRP) is converted into a sparse signal reconstruction problem that can be solved by exploiting sparse learn-
ing algorithms, such as the lasso and compressed sensing2,3,18. In particular, reconstructing the whole network 
structure can be achieved by inferring local connections of each node individually. The problem of local structure 
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reconstruction incorporates both the natural sparsity of complex networks and measurement error (the difference 
between observed data and simulated data). This problem is typically solved by using sparse learning algorithms 
which transform two objectives into one objective by multiplying each objective with a weighting factor and then 
summing up all contributions. The choice of the weighting factor has a great impact on the performance of sparse 
learning methods. However, a shortcoming of these penalty approaches is that it is not easy to determine this key 
parameter which can maximize the performance. Moreover, it is impossible to conduct the cross-validation to 
obtain the optimal values of this key parameter, especially when given limited data disturbed by noise and unex-
pected factors are not enough to split test data from them. Sometimes, there is also no gold standard to implement 
the cross-validation. Last but not least, playing cross-validation for the lasso is time-consuming for large-scale 
problems. Thus, a robust and completely data-driven approach for solving this problem remains lacking.

In this paper, we develop a multiobjective network reconstruction (MNR) framework to cope with the net-
work reconstruction problem from profit sequences based on multiobjective evolutionary algorithm (MOEA), 
termed as MOEANet. To overcome the shortcoming of penalty approaches, the problem of local structure recon-
struction is first modelled as a multiobjective optimization problem (MOP). One objective is to minimize the 
difference between the input data and the simulated data; the other is to search for sparse structure. Evolutionary 
algorithms (EAs)31–33 are the most popular methods for solving MOPs. Therefore, we design an improved mul-
tiobjective evolutionary algorithm, and then apply it to this MOP. All solutions in the Pareto set are optima of 
MOPs and represent different levels of compromise between the competing objectives. Thus, we can provide these 
solutions with different properties for decision makers. However, sometimes, it is necessary to determine which 
solution in a Pareto set (PS) is the best. Knee regions34–36, where further improvement in one objective causes 
a rapid degradation in other objectives, have attracted considerable interest in the study of MOPs and decision 
makers have been shown to prefer solutions that lie in knee regions. Therefore, an angle-based method31,36 is 
employed to select the eclectic Pareto solution from the Pareto front (PF) produced by EAs. Finally, the whole 
network can then be assembled by simply matching neighboring sets of all nodes.

To validate the performance of MOEANet, in the simulations, EG model37,38 taking place on different types 
of networks are used. We also present data to show that knee regions exist on the PF for this problem and that 
optimal solutions can be found in these knee regions. The experimental results show that MOEANet is able to 
effectively reconstruct EG networks and eliminate the effect of the weighting factor.

Results
Evolutionary Games. In an evolutionary game26–30, at any time, one agent has to choose one of strategies (S): 
cooperation (C) or defection (D), which can be expressed as S(C) =  (1, 0)Τ and S(D) =  (0, 1)Τ, where Τ  stands for 
“transpose”. The payoffs of the two agents in a game are determined by their strategies and the rewards dependent 
on their choices are expressed by 2 ×  2 payoff matrices in agreement with the four possibilities. For example, for 
the prisoner’s-dilemma game (PDG)37, the payoff matrices are

= ( )P R Su
Te Pu (1)PDG

where the agents get rewards R(Pu) if both choose to cooperate (defect). In the remaining two cases, the defec-
tor’s and cooperator’s payoff are Te (temptation to defect) and Su (sucker’s payoff), respectively. The ranking of 
Te >  R >  Pu >  Su and 2 R >  Te +  Su still holds. A spatial evolutionary PDG is introduced in ref. 37, with R =  1, 
Pu =  Su =  0 and Te =  b, where b ∈  (1, 2) is parameters characterizing the temptation to defect. In this paper, b 
is set to 1.2. At each round, all agents play game with their neighbors and gain payoffs. For agent i, the payoff is
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where Si and Sj denote the strategies of agents i and j at the time and the sum is over the neighbor-connection 
set Γ i of i. After obtaining its payoff, an agent updates its strategy according to its own and its neighbors’ payoffs, 
attempting to maximize its payoff at the next round.

The Fermi rule39 is used to simulate evolutionary-game dynamics and generate time series accordingly, which 
is defined as follows:
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where κ =  0.1 characterizes the stochastic uncertainties introduced to permit irrational choices.

Network Reconstruction from Profit Sequences in Evolutionary Games. During the evolution 
of EG, we assume that only the profit sequences of all agents and their strategies at each round are available. In 
the EG network-reconstruction problem (EGNRP), agent-to-agent interactions are learnt from profit sequences. 
The key to solve the EGNRP lies in the relationship between the agents’ payoffs and strategies. The interactions 
among agents in the network can be characterized by an N ×  N adjacency matrix X with elements xij =  1 if agents 
i and j are connected, and xij =  0 otherwise. Also, the interactions can be generalized straightforwardly to the 
weighted networks. Using the weights to characterize various interaction strengths, we define the weighted adja-
cency matrix X as: if i connects to j, xij ≥  1; otherwise, xij =  0. The payoff of agent i can be expressed by
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where xil (l =  1, 2, … , N) represents a possible connection between agent i and its neighbor l; xilST
i(t)PSl(t) (l =  1, 

2, … , N) stands for the possible payoff of agent i from the game with agent i; and t =  1, 2, … , m is the number of 
rounds that all agents play the game with their neighbors. The relationship among the vector Yi, the matrix Ai, and 
the neighbor-connection vector Xi of agent i is described as follows,
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where Dx,y(t) =  SΤx(t)PSy(t). Yi can be obtained directly from the payoff data and Ai can be calculated from the 
strategy data. In a similar fashion, the neighbor-connection vectors of all other agents can be predicted, yielding 
the network adjacency matrix X =  (X1, X2, … , XN).

Our goal is to reconstruct Xi from Yi and Ai. Thus, the measurement error need to be minimized. Note that 
the number of nonzero elements in Xi, i.e., on average the number of real connections of node i, is much less than 
the number of all possible connections. This indicates that Xi is sparse, which is ensured by the natural sparsity of 
complex networks. There are many methods to solve this EGNRP by handling the following problem2,3,18.

λ
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where λ is a constant that controls the tradeoff between the measurement error and the sparsity of networks. The L1 
norm ensures the sparsity of structure, simultaneously, error control term ensures the robustness of NR against noise.

MNR Model in Evolutionary Games. To balance the importance of measurement error with respect to 
the sparsity of networks, a tradeoff parameter has to be determined. A shortcoming of this method is that it 
introduces a parameter λ, and with different values of λ, different optimal results can be achieved. The constant is 
usually determined by trial and error. It is time-consuming to use the method of trial and error owing to the sizes 
of both the network and the data set are huge. Moreover, because of the absence of gold standards of real-world 
network structure, the lasso cannot use the cross-validation to obtain the optimal value of λ. Furthermore, when 
there are no enough data, we cannot split test data from raw data, especially when the performance of the method 
is seriously affected by the amount of data. One way of avoiding the choice of λ is to convert the problem into 
MOPs40–42. By analyzing the relationship between the Pareto optimal vectors distributed on the PF, an appropriate 
solution is selected from the Pareto optimal set. Considering the measurement error and the sparsity of network 
as two objectives, we establish the MNR model as follows,
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Then, we try to design a multiobjective optimization method (see Methods) to solve this model.

Effect of the Proposed Initialization Operator. Here, we show the effect of the proposed initialization 
operator on MOEANet. Figure 1(a,c) show that MOEANet +  IPL can get better PF curves than MOEANet +  IPR 
and the PS obtained by MOEANet +  IPL focus on the area with small value of two objectives. Figure 1(b,d) show 
that MOEANet +  IPL can achieve smaller value of reconstruction error (RE) (see Supplementary Note 1) than 
IPR. We can claim that MOEANet +  IPL can effectively improve the performance of StEMO31. This method 
incorporates two additional benefits: one with greater chance to increase speed of convergence toward the PF, and 
another with higher probability to improve the spread of solutions along the PF.

Existence of the Best Compromise on Knee Regions. This section demonstrates that the existence 
of knee regions on the PF obtained from MOEA with different length of profit sequences, strength of noise, and 
degree of networks. For simplicity, we only consider the situation of inferring local connections of one agent 
and EG dynamics are simulated on weighted Erdős-Rényi random networks (ER)43, but the trends are similar 
on other types of networks. Numerical simulation of EG is shown in Supplementary Note 2. Detailed results are 
shown in Fig. 2, Supplementary Figs S1 and S2. As seen, although knee regions found on the PF do not give the 
best solution in terms of RE, the relatively optimal solution can be found.
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In Fig. 2, we can observe some import properties: (1) there is an obvious knee region on the PF; (2) the found knee 
point provides an optimal solution, as the position of knee point is close to the point that has the smallest value of RE.

The graphs of Supplementary Fig. S1 reveal several useful trends: (1) with increasing 〈 k〉 , the position of the 
knee point is still close to the position that possesses the smallest RE; (2) it is evident that a knee region does 
exist for these problems; (3) these knee regions provide optimal solutions to these problems, because any further 
attempt to decrease RE will result in rapid deterioration in sparsity for only small increase in accuracy; (4) the 
found knee point is close to the best point having the smallest RE.

The graphs of Supplementary Fig. S2 reveal several useful trends: (1) it is evident that a knee region exists for 
these problems; (2) the knee point represents the best compromise between measure error and ||Xi||1 which does 
not substantially vary with changing noise levels.

Discussion on Parameters. In this section, we study the effect of the parameters, such as data length, the 
average degree 〈 k〉 , and noise, on MOEANet. We simulate EG dynamics on different model-based networks (see 
Supplementary Note 2), including weighted Erdős-Rényi random networks (ER)43, weighted Barabási-Albert 
scale-free networks (BA)44, weighted Newman-Watts small-world networks (NW)45, and weighted Watts-Strogatz 
small-world networks (WS)46. The results are shown in Fig. 3 and Supplementary Figs S3, S4, and S5.

The results demonstrate that the length of data sequences has an important effect on the performance of 
MOEANet, even for small value of NM, most links can be identified, as reflected by the high values of the area 
under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPR) 
(see Supplementary Note 1). Still, we observe that RE decreases fast as NM is increased. When NM exceeds a cer-
tain value, RE is approximately 0, indicating that all link weights have been successfully predicted without failure 

Figure 1. The relationship between measurement error and the sparsity of the solutions on the PF, 
variation of RE with change in sparsity ||Xi||1. (a) (b) ER network and (c) (d) BA network. Different variance 
σ 2 of Gaussian white noise N(0, σ 2) are embedded in time series for obtaining vector Yi. The simulations 
are conducted on weighted Erdős-Rényi random networks (ER)43 and weighted Barabási-Albert scale-free 
networks (BA)44 with N =  100, σ  =  0.1, the average degree 〈 k〉  =  12, and NM =  1.0, where NM is the total data 
length M divided by network size N. Numerical simulation of EG is shown in Supplementary Note 2. In each 
case, the left-hand graph is a 2-D plot, graphing the relationship between the measurement error and ||Xi||1. The 
right-hand graph shows one 2-D views of the data; variation of RE with change in sparsity ||Xi||1. Each graph 
of Fig. 1 shows results for one sub-problem. MOEANet +  IPR stands for the solutions obtained from the PF by 
initializing the population randomly (IPR), and MOEANet +  IPL represents the solutions obtained from the 
PF by initializing the population with the lasso (IPL). Although space does not permit showing more examples, 
the graphs shown are typical of the data and usefully illustrate important observed trends. The parameters of 
MOEANet are showed in Supplementary Table S2.
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and redundancy, despite that the link weights are random. We also examine ER networks and WS networks and 
observe that, to achieve the same level of accuracy, the requirement for data can be somewhat relaxed as com-
pared with BA networks and NW networks. In the absence of noise or for small noise variance, say, σ  =  0 or 0.05, 
high reconstruction rate can be assured by small amounts of data relative to the network size N. For large noise 
variance, say, σ  =  0.3, high reconstruction rate can still be achieved based on relatively large amounts of data for 
different networks, manifesting the strong robustness of our method against noise in time series. We also discuss 
the effect of the average node degree 〈 k〉  on MOEANet. The results demonstrate that for large value of 〈 k〉 , our 

Figure 2. The relationships between the measurement error, RE, and the sparsity of the solutions on 
the PF and the position of knee point for three different values of NM. The simulations are conducted on 
ER networks with N =  100, σ  =  0.05, and 〈 k〉  =  12. Different variance σ 2 of Gaussian white noise N(0, σ 2) are 
embedded in time series for obtaining vector Yi. Figure 2 graphs results for three test cases where NM is set to 
(a) (b) NM =  0.4, (c) (d) NM =  0.8, and (e) (f) NM =  1.2. In each case, the left-hand graph is a 2-D plot, graphing 
the relationship between measurement error and ||Xi||1. The right-hand graph shows one 2-D views of the 
data; variation of RE with change in sparsity ||Xi||1. Each graph of Fig. 2 shows results for one example trial. 
Although space does not permit showing more examples of each graph for all nodes, the graphs shown are 
typical of the data and usefully illustrate important observed trends. The parameters of MOEANet are showed 
in Supplementary Table S2.
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method can guarantee complete identification of all links and weights. With increasing 〈 k〉 , high reconstruction 
rate can still be achieved needing greater NM than that of sparse networks.

Comparison of MOEANet Against the Lasso. The simulations are conducted on EG dynamic with weighted 
ER networks, BA networks, WS networks, and NW networks (see Fig. 4, Supplementary Figs S6, S7, and S8).  
As seen, AUPR and AUROC increase and RE decreases for all methods as NM gets greater. Lasso works well on 
these cases and it obtained even less average RE and higher average AUPR and AUROC than MOEANet +  KR. 
However, MOEANet +  RE outperforms the lasso, demonstrating MOEANet can achieve better solution than the 
lasso, but just the angle-based method cannot find it. Furthermore, the experimental results show that although 
MOEANet +  KR cannot find the best solution from the PF, it can obtain the relatively optimal solution. Thus, 
compared with the lasso, our MNR model can effectively eliminate the effect of λ  in the lasso.

Simulations on Real Networks. In this section, we test our method on eight real networks (see Table 1 
and Supplementary Table S1). As seen, in terms of AUPR and AUROC, MOEANet can reconstruct EG network 
played on real networks with high accuracy. Precision of MOEANet can achieve approximately 1 with different 
real networks and the false positive rate (FPR) of MOEANet can achieve approximately 0 with different real 
networks which demonstrate MOEANet can fully identify null-interactions. In terms of RE, MOEANet can accu-
rately learn the weight between agents. However, in terms of true positive rate (TPR), our approach cannot iden-
tify all agent-to-agent interactions. For large-scale real networks, namely, netscience network, MOEANet still can 
identify most of the interactions. For dense networks, MOEANet also can achieve high accuracy.

Discussion
In this paper, we have developed a MNR framework to reconstruct EG networks from profit sequences. It is note-
worthy that the proposed approach is quite flexible and not limited to the networked systems discussed here, such 
as gene regulatory networks, transportation networks, and communications networks. The contributions of this 
paper are summarized as follows,

Figure 3. The performance of reconstructing weighted ER networks. The simulations are conducted 
on network size N =  100, 〈 k〉  =  6 and 12, and σ  =  0, 0.05, and 0.3. (a) RE, (b) AUPR, and (c) AUROC as 
functions of data amount NM of time series for ER networks, respectively. Here, NM is increased from 0.1 to 
1.6 in steps of 0.1. Each data point is obtained by averaging over 30 independent realizations. Each solution 
of sub-problem is selected from the PF based on knee regions. The parameters of MOEANet are showed in 
Supplementary Table S2.
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1. We first model network reconstruction problems in EG network as an MOP. This way eliminates the 
tradeoff parameter that determines the tradeoff between reconstruction error and the sparsity of network. 
Our simulations also demonstrate the MNR model is efficient in EG reconstruction problem.

2. Based on the proposed MNR framework, an improved MOEA algorithm referred to as MOEANet is pro-
posed to solve MOP. A new initial operator based on the lasso is proposed to improve the performance of 
MOEA, guiding the search in initialization process, and the results show the effectiveness of our improve-
ment in initializing the population.

3. The simulations on EG dynamics simulated on weighted ER networks, BA networks, NW networks, and 
WS networks with various average degree and scales demonstrate that MOEANet can effectively eliminate 
the effect of weight factor.

Figure 4. The comparison of MOEANet against the lasso. (a) RE, (c) AUPR, and (e) AUROC as functions of 
the relative data length NM of time series for weighted ER networks with 〈 k〉  =  6. (b) RE, (d) AUPR, and (f) 
AUROC as functions of the relative data length NM of time series for weighted ER networks with 〈 k〉  =  12. Here, 
we set N =  100, σ  =  0.05. NM is increased from 0.1 to 0.8 in steps of 0.1. For MOEANet +  RE, each solution 
of sub-problem selected from the PF has the best generalization ability, namely, the smallest value of RE. For 
MOEANet +  KR, each solution of sub-problem is selected from the PF based on knee regions. For the lasso, we 
set λ  =  0.001, which is best value for EG network reconstruction. Each data point is obtained by averaging over 
30 independent realizations. The parameters of MOEANet are showed in Supplementary Table S2.
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In the simulations, we find that the lasso outperforms MOEANet +  KR in some cases. Two factors lead to this 
phenomenon. On one hand, this is due to the lasso benefits from being given optimal parameter values in this 
simulation. However, in many situations, for example, enough data are not available, it is usually not possible to 
know the optimal choices of the parameter of λ  in the lasso. On the other hand, it is not easy to find the exact 
PF and this can sometimes have an impact on how accurately we can find the knee regions. The reason that 
MOEANet +  KR does not outperform the lasso on these cases may be that the method for detecting knee points 
was misled by the inclusion of a few suboptimal solutions on the estimated PF. There are many factors to affect 
the performance of finding knee regions. First, the problem is NP-hard, and it is hard to ensure whether the 
estimated PF produced by the algorithm converges to the true PF. Second, the ranges of measurement error and 
||Xi||1 usually have greatly different magnitudes. Finally, owing to the fixed population size, it is not easy to obtain 
a set of solutions that adequately sample the full range of the PF. Note that, in the worst case, even if a knee region 
solution in a particular problem does not turn out to provide the best solution, then the solution will still be a 
Pareto solution, which means that these solutions are still optimal in the sense of MOP.

To solve this problem, priori information can be employed to find optimal solution. For example, there are 
many Pareto solutions being in small value of the L1 norm term and big value of the error control term. In fact, 
full reconstruction appears when the error control term achieves approximately 0. To achieve accurate estimates 
of knee regions, first, we eliminate the PS with relatively big value of the error control term from the PF. A simply 
way is to remove top ten PS with big value of the error control term.

Eliminating indirect interactions is an important issue to solve. With a relatively small amount of data, namely, 
complex networks cannot be fully reconstructed, it is a genuine need to eliminate the effect of indirect interac-
tions. However, the final solution is far from being consummated even if many works have been proposed15,16,18. 
We expect to solve this problem in future work.

In summary, we establish a diagram to reconstruct complex networks which has effectively avoided the diffi-
culties of conventional numerical optimization methods and achieved good performance of our diagram provides 
an avenue on a wide range of applications in real life.

Methods
Multiobjective Optimization Problems. An MOP can be formulated as

= … ΤF w f w f w f wmin ( ) ( ( ), ( ), , ( )) (11)w m1 2

which subjects to w =  (w1, w2, … , wn) ∈  Γ , where w is called the decision vector, and Γ  is the feasible region in the 
decision space. In general, the objective in an MOP conflict with one another, which means a single solution does 
not exist in feasible space when minimize all the objectives simultaneously. Thus, for an MOP, its aim is to find 
Pareto optimal solutions.

Without loss of generality, we consider a minimization problem. Given two points wa, wb ∈  Γ , wa dominates wb 
(witten as w wa b), iff fi(wa) ≤  fi(wb) for all i =  1, 2, … , m, and fj(wa) <  fj(wb) for at least one j =  1, 2, … , m. The set 
of all Pareto optimal solutions is called Pareto optimal set which defined as follows:

= ∈ Γ ¬ ∃ ∈ Γ PS w w w w{ , * } (12)

where w* is a Pareto optimal solution to equation (11) if there does not exist another solution w in Γ  that domi-
nates w*. The PS in the objective space is called the PF which is defined as

= ∈PF F w w PS{ ( ) } (13)

Multiobjective Evolutionary Algorithm for Network Reconstruction. Since EAs31–33 are the most 
popular optimization method for handling MOPs, here, we design a multiobjective EA to solve the above MNRP, 
termed as MOEANet. Although we do not specify the MOEA and any state-of-the-art MOEA can be used, such 
as multiobjective evolutionary algorithm based on decomposition (MOEA/D)33 or non-dominated sorting 

Name TPR FPR Precision RE AUROC AUPR

football 0.928 ±  0.010 0.000 ±  0.001 0.997 ±  0.004 0.067 ±  0.008 0.987 ±  0.001 0.980 ±  0.002

netscience 0.986 ±  0.003 0.000 ±  0.000 1.000 ±  0.000 0.000 ±  0.001 0.993 ±  0.002 0.986 ±  0.002

polbooks 0.978 ±  0.005 0.000 ±  0.000 1.000 ±  0.000 0.009 ±  0.001 0.989 ±  0.002 0.983 ±  0.004

dolphin 0.972 ±  0.004 0.000 ±  0.000 1.000 ±  0.000 0.013 ±  0.002 0.986 ±  0.002 0.979 ±  0.003

ZK 0.974 ±  0.002 0.000 ±  0.000 1.000 ±  0.000 0.013 ±  0.001 0.964 ±  0.005 0.948 ±  0.007

lesmis 0.981 ±  0.002 0.000 ±  0.000 1.000 ±  0.000 0.013 ±  0.002 0.990 ±  0.001 0.985 ±  0.002

adjnoun 0.975 ±  0.007 0.000 ±  0.000 1.000 ±  0.000 0.011 ±  0.002 0.987 ±  0.004 0.980 ±  0.006

neuralnet 0.955 ±  0.003 0.000 ±  0.000 0.988 ±  0.003 0.008 ±  0.000 0.977 ±  0.001 0.948 ±  0.000

Table 1.  Performance of MOEANet on eight real networks. NM is set to 1.6 for all of real networks. The 
performance of MOEANet is measured in terms of TPR, FPR, Precision, RE, AUROC, and AUPR (see 
Supplementary Note 1). Each solution of sub-problem is selected from the PF based on knee regions. Each 
result is obtained by averaging over 30 independent realizations. More details of the real networks can be found 
in Supplementary Table S1. The parameters of MOEANet are showed in Supplementary Table S2.
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genetic algorithm (NSGA-II)32, we use soft-thresholding evolutionary multiobjective algorithm (StEMO)31 in 
our framework. Particularly, we develop a new initialization scheme.

Each candidate solution in EAs is named as a chromosome. For node i, the chromosome is a one dimensional 
vector with N elements, namely, (x1i, x2i, … , xNi). t is the current generation number and Pt is the population at 
the tth generation. EAs can return a set of solutions on the PF. Each point on the PF represents a certain local 
network structure. To find the best solution to decision makers, we employ an angle-based method31,36 to locate 
knee regions on the PF. Knee regions are solutions that have the maximum marginal rates of return, i.e., for which 
an improvement in one objective causes a severe degradation in another. Because MOPs always involve contra-
dictory objective functions, decision makers often prefer their solutions to lie in these knee areas. The procedure 
of MOEANet is shown in Algorithm 1.

Algorithm 1 MOEANet

Input: The payoff data Y, the strategy data A, Maximum generation: maxgen, population size: pop, crossover probability: pc, mutation 
probability: pm, and the number of agents: N.

Output: Agent-to-agent network X.

step 1 i ←  1;

step 2 Obtain Yi from the payoff data and calculate Ai from the strategy data; 

step 3 Optimizing equation (10) using improved StEMO;

 step 3.1 Set t ←  0, generate the initial population P0 using lasso initialization, and set the termination criterion;

 step 3.2 Apply the non-uniform mutation operator31,47 to current population Pt and obtain population Pt
mutation.;

 step 3.3 Apply the BLX-α  crossover operator48 on Pt
mutation and obtain a sub-population Pt

crossover;

  step 3.4 Calculate the fitness of Pt
crossover. Combine Pt

crossover and Pt, namely, Pt
combine ←  Pt

crossover ∪  Pt. Obtain the non-dominated set of Pt
combine 

which is denoted as Pt
non-dominated and the dominated set Pt

dominated.

 step 3.5 Apply the soft-thresholding local search operator31 on Pt
non-dominated and Pt

dominated, and obtain a sub-population Pt
local;

  step 3.6 Pt
total ←  Pt

local ∪  Pt
crossover ∪  Pt. Apply the k-nearest neighbor list (kNNL) selection operator49 on Pt

total, and obtain next population 
Pt+1;

  step 3.7 If termination criterion is satisfied, stop the algorithm and output Pareto solutions (PS); otherwise, set t ←  t +  1 then turn to  
Step 3.2.

step 4 An angle-based method31,36 is used to obtain the knee solution Ωi from the PF yielded by MOEA;

step 5 If (i> N), stops and composes Xi (i =  1, 2, … , N) into the whole network; otherwise, i ← i +  1 and go to Step 2.

Initialization Operator for MOEA. In this paper, we design a new initialization operator to initialize  
population. Consider the L1-minimization algorithm lasso2,50, which solves equation (9). Clearly, different choices 
for λ  in equation (9) will yield different optimal solutions, so, we can obtain a set of solutions by using the lasso 
with different values of λ . For example, to generate pop individuals, we need to set pop different value of λ i ∈  [0, 
1], i =  1, 2, 3, … , pop, and equation (9) is then solved by the lasso. This procedure is described in Algorithm 2.

Algorithm 2 Initialization Operator

Input: Ai, Yi, λi∈[0, 1], i = 1, 2, 3, …, pop;

Output: The initial population P0;

step 1 i ←  1; 

step 2 Pi
0 ←  lasso (Ai, Yi, λ i), solve this problem using the lasso with λ i and Pi

0 represents ith individual in the initial population P0;

 step3 If (i >  pop), stops; otherwise, i ←  i +  1 and go to Step 2.

Solution Selection. EAs can return a set of solutions on the PF. Each point on the PF represents a certain 
local network structure. To find the best solution to decision makers, we employ a selection strategy based on 
knee regions. Knee regions are solutions that have the maximum marginal rates of return, i.e., for which an 

Figure 5. Four angles in the angle-based method. 
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improvement in one objective causes a severe degradation in another. An angle-based method31,36, for locating 
the knee regions on the PF, is considered in this paper. The procedure of this method is summarized as follows.

First, we normalize the PF by its maximum measurement error and ||Xi||1 value. Then, we perform smoothing 
by interpolating the PF using B-splines and then evenly resampling from the smooth spline31. Finally, the knee 
regions can be found from this interpolated curve PF*. After finding knee regions on the PF*, we can estimate 
the knee areas on the original PF by finding the point on the PF that is the closest to the knee point of the PF*.

The angle of a solution is determined by its four neighborhood solutions, as shown in Fig. 5. First four angles, 
α , β , γ , and η  are computed, and then the largest angle among the four angles is assigned to the solution36. The 
knee point is selected by comparing the angles of solutions along the Pareto front to find the solution with the 
largest angle.
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