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Abstract
Large-scale online collaborative production activities in open-source communities must be

accompanied by large-scale communication activities. Nowadays, the production activities

of open-source communities, especially their communication activities, have been more

and more concerned. Take CodePlex C # community for example, this paper constructs the

complex network models of 12 periods of communication structures of the community

based on real data; then discusses the basic concepts of quantum mapping of complex net-

works, and points out that the purpose of the mapping is to study the structures of complex

networks according to the idea of quantum mechanism in studying the structures of large

molecules; finally, according to this idea, analyzes and compares the fractal features of the

spectra in different quantum mappings of the networks, and concludes that there are multi-

ple self-similarity and criticality in the communication structures of the community. In addi-

tion, this paper discusses the insights and application conditions of different quantum

mappings in revealing the characteristics of the structures. The proposed quantum mapping

method can also be applied to the structural studies of other large-scale organizations.

Introduction
With the development of internet, open-source communities (OSC) and their derivatives,
crowd-source communities, are becoming new forms to produce knowledge [1–6]. In past
years many things about OSC, including their production patterns, the motivation and behav-
ior of participants and so on, were well studied [7–9]. And the complex network models [10]
have become increasingly important for studying the production structure of OSC [11,12] and
structures of other online communities [13–16].

As collective activities of human society, the knowledge production activities must be ac-
companied by large-scale communication activities. Behaviors of communication activities will
be greatly helpful for us to understand the dynamical mechanisms of complex systems. The
structures of communication activities (communication structures for short) can also be
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described with complex networks, in which the nodes are the communicators and the edges
are the communication activities shared by the pairs of nodes. Now in the academic circle of
complex networks there are a few researches on the communication structures [17]. In the
present work, models of complex networks based on different quantum mappings are used to
find nontrivial behaviors from empirical records of communication activities.

Yang et al. proposed a mapping from complex networks to quantum systems [18–20]. Sup-
pose the adjacent matrix of a complex network with N identical nodes is A, whose elements Aij

= 1 or 0 if the nodes i and j are connected or disconnected, respectively. They first regard the
complex network as a large molecule and map the adjacent matrix A to Hamiltonian of the
large molecule; and then detect the structural symmetry of the complex network by analyzing
scale invariance in the eigenvalue sequence of matrix A.

In this paper we first construct the complex network models of 12 periods of communication
structures of CodePlex C # community based on large-scale data collections. Then we refine the
concept of quantum mapping of a complex network; give the classification of the mapping, re-
veal that the quantummapping in [18–20] is merely the simplest “structural mapping”; and de-
fine corresponding Hamiltonians and energy spectra of a complex network in different
mappings. Afterwards we discuss why the quantum mapping of complex networks is necessary
and point out the purpose of the mapping is to study the structural symmetry and symmetry
breaking of networks according to the idea in quantum mechanism. Finally, following this idea,
we analyze and compare the spectral fractal features and their changes over time in different
quantum mappings of the communication networks of the community, and from the perspec-
tive of symmetry reveal the specific characteristics of the communication structures.

Our research reveals that in different quantum mappings the energy spectra of any commu-
nication network of the community all have multifractality (i.e. multiple self-similarity), long-
range correlation and some other specific features. The features have nothing to do with the
mapping ways of the networks so they are the intrinsic attributes of the communication struc-
tures. Moreover, from the perspective of communication, these attributes show the community
is in the critical state that is the most efficient state of complex systems [21].

However, there are also large differences in the multifractal degree of the spectra among dif-
ferent mappings of any communication network of the community. The “structural mapping”
just roughly reflects the spectral fractal features and slowly reflects their changes over time.
Therefore it is not enough just using “structural mapping” to deeply understand the structure
of networks.

Materials and Methods

Data
CodePlex community (http://www.codeplex.com) built up by Microsoft in 2006 is an open-
souse community. Microsoft does not claim ownership of the materials (http://www.codeplex.
com/site/legal/terms) (S1 File). So the data collection was in compliance with the terms and
conditions of CodePlex website. In this paper, the C# sub-community (called community for
short), the most important sub-community in CodePlex, is taken as the study object.

To every project in the community there is a “discussions” webpage for publishing opinions
on. Every speech of communicators on the webpage of a project is kept as a communication re-
cord. To every project there also is a “change list” webpage to record the coding activities of
producers for the project. Every coding activity, i.e. production, is kept on the webpage of the
project as a production record.

LocoySpider (a data acquisition software) is taken as the tool to collect the records from
May 2006 to July 2012 of the community. The collected data contain a total of 144.342
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thousand communication records, and a total of 198.616 thousands production records, in-
cluding 2,136 projects (software modules) and 3,233 producers.

Further, from the communication records we get the data of communication intensity be-
tween each pair of communicators in 12 periods (half year as the period, see S1 Data). From
the production records we get the numbers of production times of communicators in 12 peri-
ods (S2 Data). The process to get a certain communicator’s number of production times in a
period is as follows. First from the production records find out his/her number of production
times for every project in this period, then sum up the numbers for all projects, and the sum is
to be his/her number of production times in this period.

The data are preprocessed via cleaning. For example, if some project has not its “discussion”
webpage or there is no content in the webpage, the data of this project will be deleted.

Communication Networks
We build 12 models of communication networks for Codeplex C# community based on the
data (S1 and S2 Data) from the second half of the year 2006 to the first half of the year 2012.
Each communication network corresponds to a period of half a year.

The steps to build the communication network to a period are as follows. Firstly every com-
municator is taken as a node and the weight of the node equals to the number of production
times of the communicator. If two communicators have speech records on the “discussions”
webpage of same project, connect them with an edge. Secondly, the numbers of speech times of
different communicators about one project are usually different. Suppose for project A commu-
nicator 1 hasm1 times of speech while communicator 2 m2, then we take the smaller number
betweenm1 andm2 as the communication intensity of communicator 1 and 2 for project A. In
a same period communicator 1 and 2may publish speeches about many projects of the commu-
nity, so we take the sum of their communication intensities for all these projects as the total
communication intensity of communicator 1 and 2, i.e. the weight of the edge between them.

For communication network of each period, the size (it refers to the number of nodes or
edges), the number of connected graphs (CGs), the size of the maximum connected graph
(MCG) and the percentage of the MCG size with respect to the total are shown in Table 1.
After calculation, it is shown that the sum of edge weights for a node (it is different from the
node weight defined in this paper) of every network follows power-law distributions. The expo-
nents of the accumulative distributions are from 1.01 to 2.00. The sum values for every network
also show differences in magnitude.

Furthermore the communication network in the first half of the year 2011 is taken as an ex-
ample to analyze CG. The network has a total of 4125 nodes, 14,690 edges and 833 CGs. The
node size of 833 CGs follows a power-law distribution, and the exponent of accumulative dis-
tribution is 1.94. Its MCG has 2,458 nodes, 13,261 edges; the proportion of nodes accounts for
59.6%, and the proportion of the edges accounts for 90.3%. (S1 Fig) This shows that the MCG
of a communication network contains the basic connection relations of the network and can
reflect its structural characteristics.

Quantummapping of complex networks
This paper extends the concept of quantum mapping of complex networks in references [18–
20]. Here the quantum mapping not only refers to mapping nodes of a network to atoms in a
large molecule and the edges to the chemical bonds between the atoms, but also refers to map-
ping an edge weight that reflects the connection intensity of a pair of nodes to the hopping en-
ergy required for an electron to jump between the atoms, and the node weight that reflects
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node attributes to the energy of the electron on the atom site to which it belongs, consequently
a complex network is mapped to a large molecule.

Furthermore, based on the idea of Hückel model for the molecular system [19,22], which
points out electrons in a molecule are mainly influenced by the potential of the atoms that binds
the electrons, other potentials of atoms can be taken as a small perturbation, and the interactions
between the electrons can be ignored. Thereby, the wave function of one molecule can be re-
garded approximately as the linear combination of the wave functions of isolated atoms.

The quantum mapping method of a complex network is very useful and promising to un-
derstand the network’s structure. Because after quantum mapping, a complex network can be
regarded as a large molecule; therefore through the Hamiltonian and energy spectrum (i.e. ei-
genvalue sequence of Hamiltonian) of the large molecule, we can define the Hamiltonian and
energy spectrum of the network. Here we call network’s Hamiltonian as the energy matrix of
the network. In this way the theory and method about the energy spectrum in quantum mecha-
nism can be used to reveal the structural characteristics of the network. For example, the fractal
behavior of the energy spectrum of a network suggests us the network has the quasi-periodic
structure and is in the critical state between the order state and disorder state [23,24].

Based on above-mentioned concept of quantum mapping, we classify the quantum mapping
of complex networks into three ways. In the first way referred to as "comprehensive mapping”
(CM), nodes and edges (i.e. structure), edge weights and node weights are all mapped in accor-
dance with above defined rules. In the second way referred to as "intermediate mapping” (IM),
without the node weights just the structure and edge weights are mapped because the node
weights are considered to be the same. In the third way referred to as "structural map-
ping”(SM), only the structure is mapped, node weights and edge weights are excluded for the
same reason denoted in "intermediate mapping”.

The complex network model for a real-world problem is often called the weighted network
in which there are different weights among nodes and different weights among edges. But ac-
cording to the research needs, its quantum mapping can be in three ways: “comprehensive

Table 1. Sizes of communication networks, Numbers of CG and Sizes of MCG.

Period Number of nodes (edges)of the
network

Number of
CG

Number of nodes (edges)
of MCG

the percentage of the MCG nodes(edges) with
respect to the total

second half of
06

653(2032) 71 278(1268) 0.4257(0.6240)

first half of 07 1206(6747) 157 454(3644) 0.3765(0.5401)

second half of
07

1562(5986) 271 567(3084) 0.3630(0.5152)

first half of 08 2064(7562) 370 910(5252) 0.4409(0.6945)

second half of
08

2323(7625) 400 1135(5793) 0.4886(0.7597)

first half of 09 3180(10477) 569 1621(7927) 0.5097(0.7566)

second half of
09

3667(11445) 714 1877(8309) 0.5119(0.7260)

first half of 10 3975(13039) 768 2109(10122) 0.5306(0.7763)

second half of
10

4019(14967) 791 2151(11914) 0.5352(0.7960)

first half of 11 4125(14690) 833 2458(13261) 0.5959(0.9027)

second half of
11

3667(10960) 789 1755(7506) 0.4786(0.6849)

first half of 12 3741(9619) 857 2028(8196) 0.5421(0.8521)

doi:10.1371/journal.pone.0128251.t001
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mapping”, “intermediate mapping” and “structural mapping”. In different ways the network
can be mapped to different large molecules and then corresponds to different Hamiltonians.

In the theory of Network Science there are other two kinds of complex network models:
edge-weighted network and Boolean network. In the light of their definitions, the edge-weight-
ed network has two mappings: “intermediate mapping” and “structural mapping”; and Boolean
network has only one mapping way: “structural mapping”.

Hamiltonians of a complex network in different mappings
The Hamiltonian of Hückel model of molecular systems in Dirac operator form [19,22] is
shown in Eq (1). Where εi stands for the energy of the electron on site i and if the molecule
contains more than one species of atom, the εi will be different for different species; tij refers to
the energy depending on the species of the atom i and j that the electron is hopping between;
<ij> serves to tell us that the sum is only over those pairs of atoms joined by a chemical bond.
Dirac operator|i><j| corresponds to the N-order matrix in which element of row i and column

j is 1 and all other elements are 0s; whereas
XN

i¼1
εijiihij is the N-order diagonal matrix with

diagonal elements as εi.

Ĥ ¼
XN

i¼1
εijiihij þ

X
hijitijjiihjj ð1Þ

Suppose that the adjacency matrix of a node-weighted and edge-weighted complex network
with N nodes is A = (Aij) N × N, where Aij describes the connection between nodes i and j of the
network. It is easy to see that Aij has the same effect as<ij> that describes the connection be-
tween atoms i and j in Eq (1). So, we use Aij to replace<ij> in (1) and obtain Hamiltonian of
the network based on Hückel model.

In the first quantum mapping way, because not only the structure but also node weights and
edge weights all are mapped, Hamiltonian of the network is:

Ĥ ¼
XN

i¼1
εijiihij þ

XN

i 6¼j
Aijtijjiihjj ð2Þ

Where εi is represented by the weight of node i, because the weight of node i denotes the energy
that depends on location i of the network; and Aijtij is represented by the weight of edge ij, be-
cause the weight of edge ij denotes the energy that depends on the interaction intensity between
node i and j.

In the second quantum mapping way, we consider structure and edge weights and don’t
consider node weights, so εi corresponding to the weight of node i in Eq (2) can be regarded as
0, and the Hamiltonian is

Ĥ ¼
XN

i6¼j
Aijtijjiihjj ð3Þ

In the third quantum mapping way, we only consider the connection relations of nodes, εi in
Eq (2) can be treated as 0 and tij related to the weight of edge ij can be treated as 1, and the
Hamiltonian is

Ĥ ¼ A ð4Þ
In summary, the Hamiltonians of a node-weighted and edge-weighted network in three quan-
tum mappings have three forms, see Eqs (2), (3) and (4); correspondingly, the network has
three energy spectra. In addition, it can also be known that the Hamiltonians of an edge-
weighted network have two forms, see Eqs (3) and (4); while the Hamiltonian of Boolean net-
work has only form (4).
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It should be pointed out that from the arithmetic rules on Dirac operator, the mathematical
form of Hamiltonian of a complex network is completely the same as that of related algebraic
matrix of the network. For example, in "structural mapping", the Hamiltonian of a node-
weighted and edge-weighted network is just the same as its adjacency matrix. However, the
Hamiltonian of a network is no longer abstract matrix, but the energy matrix, in which each
number has specific energy meaning. Furthermore, the eigenvalues of Hamiltonian of the net-
work show the magnitude of energy that the network may have.

Hamiltonians of communication networks
After the discussion on Hamiltonians of general complex networks, now we discuss Hamiltoni-
ans of the communication networks. The communication networks of 12 periods of the com-
munity are node-weighted and edge-weighted networks, therefore they all have three quantum
mappings. In the first way of “comprehensive mapping”, the Hamiltonian of a communication
network to a period has been shown in Eq (2).

Here the weight of node i, namely εi, is represented by the number of production times of
communicator i in this period, for the number reflects the communicator’s energy that relates
to his/her location in the network; The weight of edge ij, namely Aijtij, is represented by the
communication intensity between communicators i and j in this period, for the communica-
tion intensity shows the communication energy between communicators i and j.

In the second way of "intermediate mapping" and third way of "structural mapping", the
Hamiltonians of communication network to a period are represented by Eqs (3) and (4) re-
spectively. The meanings of Hamiltonian elements are the same as those of Hamiltonian ele-
ments in the "comprehensive mapping".

Further, we should point out that: First, in the present work, we construct the network
model from records in specified time duration, map it to a large molecule in a certain way and
get consequently its Hamiltonian. This procedure implies that the system in the time duration,
i.e., a snapshot of the total records, is described with a steady state, in which the Hamiltonian is
independent explicitly with time (the energy keeps constant) and the wave function oscillates
periodically. From records for successive time durations we can construct complex networks,
which form a series of state snapshots. The time-dependence of Hamiltonian is described by
the evolution of the nodes and links in the series.

Second, summation of all the interactions between the nodes is a measure of energy of the
system in macroscopic time scale, corresponds to the average level of communication. Howev-
er, the microscopic states of the system are changing rapidly. Measurement of energy is actually
an average procedure of the energies for microscopic states. Each egenvector of the Hamiltoni-
an is a possible microscopic state of the system, while the corresponding egenvalue is the ener-
gy (communication level) of the microscopic state. Perturbations from environment will
induce transitions between the microscopic states. The transition probability between each pair
of microscopic states is proportional to the strength of perturbation, while it is inversely pro-
portional to the spacing between the two corresponding energy levels. Hence, energy spacing is
an essential measure to quantify transition probabilities between two microscopic states. This
kind of transition means changes of contributions of nodes to the communication level.

Method for Analyzing Energy Spectra
Once the Hamiltonians of communication networks are obtained, the energy spectra of the
networks can be easily calculated. One of the core topics in quantum mechanics is about the be-
haviors of energy spectra. From the perspective of symmetry, the spectral multifractality needs
to be analyzed firstly. Because the MCG of a communication network contains the basic
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connection relations of the network, we focus on the spectral multifractality of the MCG. Re-
garding energy spectra as time series [25,26], the behaviors are analyzed by using Multifractal
detrended fluctuation approach (MF-DFA) [27].

In MF-DFA, if the series {x1,x1,. . .,xN} (i.e. the energy spectrum {E1 � E2 �� EN} of MCG
in this paper) is long-range power-law correlated, the q-order fluctuation function Fq(s) in-
creases, for large values of scale s, as a power-law

FqðsÞ ¼
1

2Ns

X2Ns

v¼1
½F2ðs; vÞ�q=2

� �1=q

� shðqÞ ð5Þ

where Ns � int(N/s), nonoverlapping segments of equal length s, s is the length of the segment,
i.e. the scale of measurement, F2(s,v) is the variance for segment v of the series with the segment
local trend by a least-square fit.

If the fluctuation of a series is measured with different scales, the measurement results of the
fluctuation would be different. The fractal series in this paper refers to that the series has self-
similarity. Therefore to judge a series is or isn't fractal we should observe whether or not the
measurement results of the fluctuation follow the same law under different scales. The practical
method of the judgment is to analyze whether or not there exists a power law relation between
Fq(s) and s, where Fq(s) is mean value of the q-order fluctuations of 2Ns segments under a cer-
tain scale s. The reason of using q-order fluctuation function is to respectively survey the self-
similarity features of the large fluctuation subsets and small fluctuation subsets of the series.

For monofractal series, h(q) is independent of q, for multifactal series, h(q) is correlated
with q. When q> 0, Fq(s) describes the scaling behavior of the segments with large fluctuations,
when q< 0, Fq(s) describes that of the segments with small fluctuations. The h(2) of the sta-
tionary series is the Hurst exponent, so h(q) is also regarded as the q-order Hurst exponent.

We know that the multifractality is often showed by singularity strength (multifractal scaling
index) a and singularity spectrum (multifractal spectrum function) f(a). Based on the standard
partition function Zq(s) q-order Mass exponent τ(q) [27,28] in Eq (6) and Legendre transform
in Eq (7), the relationship of h(q) with α and that of h(q) with f(α) could be derived as (8)

ZqðsÞ ¼
XN=s

v¼1
jYðvsÞ � Y ½ðv � 1Þs�jq � stðqÞ; tðqÞ ¼ qhðqÞ � 1 ð6Þ

a ¼ t
0 ðqÞ; f ðaÞ ¼ qa� tðqÞ ð7Þ

a ¼ hðqÞ þ qh
0 ðqÞ; f ðaÞ ¼ q½a� hðqÞ� þ 1 ð8Þ

It should be noted that f(a) actually is the exponent of power-law relationship between the
counts of subsets N(s) and scale s:N(s)* s-f(a) [28–31], so it is the fractal dimension of the sub-
set whose singularity strength is α. The maximum value of f(a) is the fractal dimension of the
subset having largest count (it is approximately seen as the fractal dimension of the set). It can
be known from f’(a) = q, f(a) reaches to its maximum when q = 0. In addition, the common gen-
eralized fractal dimension D(q) is defined by the partition function, and when q = 0 the value of
partition function is equal to “the result of count”, so D(0) also represents the fractal dimension
of the set [28]. MF-DFA requires that the series is of compact support and only determines the
positive h(q), when h(q) is close to zero, where amended method needs to be adopted [27].

Results
Firstly for the MCG of the communication network to each period, calculate the energy spec-
trum E = {E1�E2�� � ��EN} of Hamiltonian in each mapping way designed in 2.4. Then take
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the spectrum after removing repeated roots as the initial series {x1,x2,� � �xj � � �,xK}, and calculate
the fractal indicators of the series by using MF-DFA. The calculation results are shown in
Table 2 and Figs 1–3. Italics in Table 2 indicate that the symmetric value range of q of the net-
work to this period is between -1.5 and +1.5, so we cannot calculate energy spectral Hurst expo-
nents for corresponding networks. The similarities and differences of fractal features of energy
spectra in different mappings can be found from Table 2 and Figs 1–3.

The q-order fluctuation function Fq(s) and the q-order Hurst exponent h(q)
Seen from the values of Fq(s) and h(q) in Table 2 and Figs 1–3, the fractal features of energy
spectra in three mappings have the following similarities. Firstly, no matter what q is equal to
in its value range, the values of Fq(s) increase with the scale s; and when q is a fixed value, the
growth rate h(q) of Fq(s) versus scale s in log-log plot remains unchanged, which means that
energy spectra of networks have fractal property. Secondly, Fq(s) with different q corresponds
to different value of h(q), which means that the energy spectra have multifractal property. Fi-
nally, because the Fq(s) with large (positive) q describes the scaling behavior of subsets with
large fluctuations of a spectrum and the Fq(s) with small (negative) q describes the behavior of
subsets with small fluctuations; the fact that the value of h(q) decreases when q increases sug-
gests the growth rates for small fluctuation subsets are greater than those for large
fluctuation subsets.

The Hurst exponent
For stationary series, h(2) is identical to the Hurst exponent. Almost all Hurst exponents of en-
ergy spectra of the networks are greater than 0.5, which indicates that the energy spectra in
three mappings have features of long-range correlation. But the degree of long-range correla-
tion of energy spectra in “structural mapping” is the weakest and stable over time. For the
“structural mapping”, “comprehensive mapping” and “intermediate mapping”, the means of
the Hurst exponents in all periods are 0.58767, 0.6483 and 0.6372, respectively.

Singularity strength α and width of singular spectrum Δα

In MF- DFA, α represents the change rate of Mass exponent τ(q) versus q; and in standard par-
tition function-based multifractal formalism, it is the change rate of density p(s) versus scale s
in log-log plot [28]. The Δα is the difference between the maximum singularity strength and
the minimum one of a spectrum in the value range of q, which indicates the
multifractal degree.

The results show that energy spectra in three mappings all satisfy that singularity strengths
of large fluctuation subsets (q> 0) are weaker than those of small fluctuation subsets (q< 0).
And in three mappings of a network, on average for 12 periods, the singularity strength α when
q = 0 in “structural mapping” is the minimum and that in “intermediate mapping” is the maxi-
mum. Similarly, on average for 12 periods, the width of singular spectrum Δα in “structural
mapping” is also the minimum and the mean is 1.5328 (variance 0.1523), the Δα in “intermedi-
ate mapping” is also the maximum with the mean being 2.3704 (variance 0.2130), while the Δα
in “comprehensive mapping” is slightly smaller than that in “intermediate mapping” with the
mean being 2.0867 (variance 0.0968). Moreover, except slight decrease over time in “compre-
hensive mapping”, the widths in other two mappings are stable.
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Multifractal spectrum function f (α) and Δf (α)
In the symmetrical value range of q, the curves f(α) of energy spectra of networks in three map-
pings show right-hook shapes (see Figs 1d–3d), that is to say, the values of f(α) when α termi-
nates at the right end of the curves are larger than the values of f(α) when α terminates at the
left end. The α values at the right end correspond to q< 0 and the α values at the left end

Table 2. Fractal indicators of energy spectra in different mappings of the communication networks for 12 periods.

q = -2 (q = -1.5) q = 0 q = 2 (q = 1.5)

Period MW h(q) α f(α) h(q) α f(α) h(q) α f(α) Δα Δf(α)

SH of 2006 CM 2.1168 2.4405 0.3525 1.7176 1.7124 1 0.7418 0.2794 0.0752 2.1611 0.2773

IM 4.2230 4.5714 0.3031 3.6439 3.6246 1 2.4355 1.9624 0.0539 2.6090 0.2492

SM 1.7516 2.0016 0.5000 1.3466 1.3346 1 0.5741 0.0979 0.0477 1.9037 0.4523

FH of 2007 CM 1.9800 2.1356 0.7667 1.7750 1.7660 1 0.7414 0.1131 0.0576 1.8390 0.7091

IM 2.2246 2.5000 0.5870 1.7975 1.7865 1 0.7293 0.0885 0.0387 2.4115 0.5483

SM 1.6386 1.8066 0.7479 1.4017 1.3978 1 1.0772 0.7196 0.4635 1.0871 0.2844

SH of 2007 CM 3.0201 3.2779 0.4843 1.9467 1.9046 1 0.6433 0.1626 0.0386 1.8974 0.4457

IM 3.0337 3.3104 0.4467 1.9615 1.9268 1 0.8580 0.3922 0.0685 2.9182 0.3782

SM 1.5818 1.7524 0.6587 1.2529 1.2396 1 0.5938 0.2454 0.3032 1.5070 0.3555

FH of 2008 CM 1.7798 2.0531 0.4535 1.5376 1.5379 1 0.5633 0.1140 0.1014 1.9391 0.3521

IM 2.0140 2.3184 0.3911 1.5653 1.5627 1 0.5380 0.0927 0.1093 2.2257 0.2818

SM 1.4257 1.5822 0.6869 1.1821 1.1752 1 0.5237 0.0916 0.1357 1.4907 0.5512

SH of 2008 CM 2.6211 2.9537 0.5012 1.8584 1.8623 1 0.9933 0.3646 0.0570 2.5891 0.4442

IM 2.6716 3.0513 0.4303 1.8648 1.8662 1 0.6441 0.0011 0.0356 3.0502 0.3947

SM 1.2137 1.3539 0.7897 1.0644 1.0603 1 0.5978 0.1518 0.3311 1.2021 0.4586

FH of 2009 CM 2.7774 3.0668 0.5659 2.5424 2.5432 1 1.3077 0.6505 0.0143 2.4162 0.5516

IM 3.0410 3.3859 0.4828 2.6652 2.6603 1 1.7125 1.1418 0.1440 2.244 0.3388

SM 3.1980 3.4398 0.6373 2.8214 2.8090 1 1.7669 1.1095 0.01391 2.3303 0.62339

SH of 2009 CM 1.7858 1.9280 0.7867 1.6965 1.6993 1 0.7024 0.07840 0.0640 1.8496 0.7227

IM 2.7225 3.3030 0.5386 2.4339 2.4326 1 1.1884 0.5531 0.0470 2.4771 0.4916

SM 1.2430 1.4450 0.6969 1.0691 1.0656 1 0.6197 0.1484 0.2930 1.2967 0.4039

FH of 2010 CM 1.7314 2.0200 0.4229 1.4213 1.4207 1 0.5229 0.0835 0.1211 1.9365 0.3018

IM 1.8684 2.2240 0.2887 1.4412 1.4403 1 0.5311 0.0935 0.1249 2.1305 0.1638

SM 1.4372 1.6404 0.5936 1.1362 1.1307 1 0.4867 0.0499 0.1265 1.5905 0.4671

SH of 2010 CM 2.4925 2.7648 0.4554 1.7263 1.7112 1 0.6100 0.1402 0.0639 2.6246 0.3915

IM 1.6914 1.8829 0.6170 1.5873 1.5947 1 0.6900 0.2381 0.0962 1.6449 0.5208

SM 1.3182 1.4014 0.8336 1.2043 1.1987 1 0.5805 0.1798 0.1986 1.2216 0.635

FH of 2011 CM 1.5480 1.8006 0.4949 1.4066 1.4126 1 0.5863 0.1710 0.1694 1.6296 0.3255

IM 1.6276 1.9453 0.3639 1.4404 1.4479 1 0.6062 0.1816 0.1508 1.7636 0.2131

SM 1.3805 1.5654 0.6302 1.1183 1.1136 1 0.5334 0.1082 0.1496 1.4572 0.4806

SH of 2011 CM 1.8538 2.1595 0.3886 1.4704 1.4662 1 0.5383 0.1129 0.1492 2.0466 0.2394

IM 1.8693 2.1842 0.3703 1.4784 1.4757 1 0.6112 0.1971 0.1717 1.9871 0.1986

SM 1.3213 1.5312 0.5801 1.0891 1.0864 1 0.6951 0.3250 0.2599 1.2062 0.3202

FH of 2012 CM 1.8038 2.1123 0.3830 1.4703 1.4683 1 0.4884 0.0006 0.0244 2.1117 0.3586

IM 2.6545 3.0338 0.2414 1.4996 1.4963 1 0.5267 0.0510 0.0486 2.9828 0.1928

SM 2.1932 2.4136 0.5592 1.1091 1.1039 1 0.6709 0.3129 0.2840 2.1008 0.2752

MW: mapping way. FH: first half. SH: second half.

doi:10.1371/journal.pone.0128251.t002
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correspond to q> 0, so right- hook shape shows that the decay rate of f(α) along with q in-
creasing when q> 0 is faster than the decay rate along with q decreasing when q< 0. Our tests
also show that f(α) values corresponding to q< -10 at the right end are still positive, but when
q> +2, f(α) values at the left end corresponding to some periods are negative. Further, the
deep meaning of right- hook shapes is that the value range of q corresponding to the part with
small fluctuations of an energy spectrum is wider; there are greater differences in singularity
strengths and fractal dimensions among its subsets with small fluctuations. So we can say that
there are stronger multifractality in the part with small fluctuations of the spectrum than in the
part with large fluctuations. And for the series of compact support, f(α) obtains the maximum
value 1 when q = 0 (D0 = 1).

The Δf(α) is the difference between the maximum f(α) and the minimum f(α) and represents
the right hook degree of a spectrum. The greater Δf(α) is the stronger the right-hook degree is.
The mean of the values of Δf(α) for 12 periods in “intermediate mapping” is the minimum
(0.3376, variance 0.0170) and that in “structural mapping” is the maximum (0.4423, variance
0.0146). In addition, the values of Δf(α) in “structural mapping” are stable over time, and in
other two mappings all show a slight decline.

For clarity, the above findings about the similarities and differences are summarized in
Table 3.

Fig 1. Energy Spectral fractal features in “comprehensive mapping” of the communication network for first half of the year 2010. (a) q-order
Fluctuation function Fq(s) versus scale s in log-log plots. (b) q-order Hurst exponent h(q). (c) q-order Mass exponent τ(q). (d) Multifractal spectrum function f
(α).

doi:10.1371/journal.pone.0128251.g001
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Conclusions and Discussions

Conclusions concerning the study object
From above findings about the similarities in the three mappings, it can be summarized that
the energy spectra of any communication network of this community have features of multi-
fractality and long-range correlation. Moreover, there are more different singularities among
the small fluctuation subsets than among the large ones. The growth rates (in log-log plot of
fluctuation functions with respect to scale) and the singularity strengths of the small fluctuation
subsets are greater than those of the large ones. The energy spectral fractal indicators of these
networks are relatively stable or show slightly declining trend from the second half of the year
2006 to the first half of the year 2012.

However, the energy spectra of any communication network in different mappings also have
different features: Firstly, the long-range correlation in “structural mapping” is the minimum
while that in “comprehensive mapping” is the maximum. Secondly, the singularity strength of
the subset having largest count (q = 0) in “structural mapping” is the minimum while that in in-
termediate mapping” is the maximum. Thirdly, the width of singular spectrum in “structural
mapping” is also the minimum while in “intermediate mapping” is the maximum. Fourthly, the
right-hook degree in “structural mapping” is the maximum while that in “intermediate

Fig 2. Energy Spectral fractal features in “intermediate mapping” of the communication network for first half of the year 2010. (a) q-order
Fluctuation function Fq(s) versus scale s in log-log plots. (b) q-order Hurst exponent h(q). (c) q-order Mass exponent τ(q). (d) Multifractal spectrum function f
(α).

doi:10.1371/journal.pone.0128251.g002
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Fig 3. Energy Spectral fractal features in “struture mapping” of the communication network for first half of the year 2010. (a) q-order Fluctuation
function Fq(s) versus scale s in log-log plots. (b) q-order Hurst exponent h(q). (c) q-order Mass exponent τ(q). (d) Multifractal spectrum function f(α).

doi:10.1371/journal.pone.0128251.g003

Table 3. Summary of the similarities and differences of fractal features in different mappings.

MW MF RH h(q) h(2)(Hurst exponent) α (in the value
range of q)

α
(q = 0)

Δα f(α) (in the value
ranges of q)

Δf(α) (Degree
of right hook)

CM
p p

subsets with small
fluctuations are larger

almost
all>0.5

max subsets with small
fluctuations are larger

mid middle subsets with small
fluctuations are wider

middle

p p
ditto ditto decline

slightly
ditto mid stable ditto decline slightly

IM
p p

subsets with small
fluctuations are larger

almost
all>0.5

middle subsets with small
fluctuations are larger

max max subsets with small
fluctuations are wider

min

p p
ditto ditto decline

slightly
ditto max decline

slightly
ditto decline slightly

SM
p p

subsets with small
fluctuations are larger

almost
all>0.5

min subsets with small
fluctuations are larger

min min subsets with small
fluctuations are wider

max

p p
ditto ditto stable ditto min stable ditto stable

MW: mapping way. MF: Multifractality. RH: right hook

doi:10.1371/journal.pone.0128251.t003
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mapping” is the minimum. Fifthly, all the fractal indicators in “structural mapping” are very sta-
ble over time, while those in other two mappings show slightly downward trend.

In conclusion, on one hand, all energy spectra of communication networks have some com-
mon fractal features, regardless of mapping ways and time, which indicates that they are the in-
trinsic attributes of the communication structures modeled by the networks. And from the
implied meaning of spectral fractal of networks, we can conclude that the communication
structures have the features of multiple self-similarity and criticality. On the other hand, the val-
ues of the fractal indices of any communication network in three mappings are quite different.

Conclusions concerning research methods
In the three mappings of communication networks, the “structural mapping” only considers
whether there is a connection relationship between a pair of nodes. The “intermediate map-
ping” also considers the intensity of the relationship based on “structural mapping”, and the
“comprehensive mapping” further considers node attributes based on “intermediate mapping”.
It could be known from conclusions about the study object that the energy spectrum in “struc-
tural mapping” of a communication network generally has the fractal features of energy spectra
in other two mappings of the network, so for simplicity, one can directly use it to analyze the
fractal features of the network structure.

However, compared with using “comprehensive mapping” and “intermediate mapping”,
the energy spectral multifactuality of a network revealed by using “structural mapping” is
weaker, the right hook feature is stronger and the fractal indices are stable over time, which
means that the “structural mapping” just roughly and slowly reflects network’s fractal features
and their changes as time goes by. Therefore, to deeply understand the structure of networks
we need to use “comprehensive mapping” or “intermediate mapping”.

We think the following problems need to be discussed.

The value range of q
Under the condition that singularity strength α and fractal dimension f (α) are greater than 0,
the multifractal range of an energy spectrum could be represented by the symmetrical value
range of q. And corresponding f(α) curve shows the fractal feature of right or left hook. In this
paper, several tests about the symmetrical value range of q are conducted. It is found that when
values of q are from -2 to 2, the values of α and f(α) are greater than 0 for most periods. The
symmetrical value range of q is determined by the value of q corresponding to the value of f(α)
that decreases to zero first at left or right end. Of course, the fractal features of energy spectra
could also be studied by taking the value range of q asymmetrically.

About scale s >1
In the standard partition function-based multifractal formalism (pi(s)*sai where pi(s) denotes
density of subset i), when s tends to zero, the scale exponent ai is defined as singularity strength
of subset i [28]. Because s is less than 1, the value of ai of the subset i having higher density
should be smaller. In MF-DFA, the scale s is greater than 1; it can be known that the large fluc-
tuation corresponds to the high density for stationary and normalized series [27]. Therefore,
the value of ai of the subset i with larger fluctuation should be larger, but the case calculation in
this paper shows the result that the larger fluctuation subset corresponds to smaller ai value.

Careful analysis shows that the Mass index τ(q) calculated from the actual data in this paper
is one upward convex function versus q, so the larger q is, the smaller the derivative of τ(q) is.
And α is the derivative of τ(q) versus q, thus the conclusion is obtained that ai of the subset i
with larger fluctuation must be smaller. Therefore, pi(s)* sai in the standard partition
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function-based multifractal formalism needs to be revised as pi(s)* s-ai if one defines ai of this
paper in terms of pi(s).

The repeated roots
MF-DFA requires series of compact support, i.e. xj = 0 for an insignificant fraction. When
there are repeated roots in eigenvalues, some segments of the series will be composed entirely
of the same data when the scale becomes small. The differences between the data and their
local trend will be 0s, and the detrended series does not meet the condition of compact support.
So we remove the repeated roots during calculation.

Concluding Remarks
This paper reveals the characteristics of communication structures of the OSC by comparing
the energy spectral fractal behaviors in different quantum mappings of the communication
networks. The proposed quantum mapping method can also be applied to the structural study
of other large-scale online communities.

It should be noted that it is only a study from the perspective of symmetry based on quan-
tum mapping for the communication structures of OSC, and further study is needed from the
perspective of symmetry breaking. And the study also is needed to be done on whether the con-
clusions concerning different quantum mappings of the communication networks can be ex-
tended to general complex networks.

Supporting Information
S1 Data. Communication intensities of communicators in 12 periods.
(RAR)

S2 Data. Numbers of production times of communicators in 12 periods.
(RAR)

S1 Fig. MCG of the communication network of first half of the year 2011.
(PDF)

S1 File. CodePlex Terms of Use.
(DOCX)

Acknowledgments
Thanks to Lianqiang Zhou's help in English writing.

Author Contributions
Conceived and designed the experiments: JY HY. Performed the experiments: JY JZ. Analyzed
the data: JY HY. Contributed reagents/materials/analysis tools: HL JW.Wrote the paper: JY HL.

References
1. Raymond E. The cathedral and the bazaar. Knowledge, Technology & Policy. 1999; 12(3): 23–49.

2. Crowston K, Wei KN, Howison J, Wiggins A. Free/Libre Open Source Software Development: What
We Know andWhat We Do Not Know. ACM Computing Surveys. 2012; 44(2). n.p.

3. Bianchi J, Kang M, Stewart D. The organizational selection of status characteristics: Status evaluations
in an open source community. Organization Science. 2012; 23(2): 341–354.

4. Porcello D, Hsi S. Crowdsourcing and Curating Online Education Resources. Science. 2013; 341
(6143): 240–241. doi: 10.1126/science.1234722 PMID: 23869007

Energy Spectral Behaviors of Communication Networks of OSC

PLOSONE | DOI:10.1371/journal.pone.0128251 June 5, 2015 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128251.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128251.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128251.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128251.s004
http://dx.doi.org/10.1126/science.1234722
http://www.ncbi.nlm.nih.gov/pubmed/23869007


5. Oishi K, Cebrian M, Abeliuk A, Masuda N. Iterated crowdsourcing dilemma game. Scientific Reports.
2014; arXiv:1401.4267.

6. Ledford H. Bioengineers look beyond patents. Nature. 2013; 499(7456): 16–17. doi: 10.1038/499016a
PMID: 23823774

7. Lerner J, Tirole J. Some simple economics of open source. Journal of Industrial Economics. 2002; 50
(2): 197–234.

8. Fang Y, Neufeld D. Understanding Sustained Participation in Open Source Software Projects. Journal
of Management Information Systems. 2009; 25(4): 9–50.

9. Roberts J, Hann Il-Horn, Slaughter. Understanding the Motivations, Participation, and Performance of
Open Source Software Developers: A Longitudinal Study of the Apache Projects. Management Sci-
ence. 2006; 52(7): 984–999.

10. Barabási L, Albert R. Emergence of scaling in random networks. Science. 1999; 286 (5439): 509–512.
PMID: 10521342

11. Wagstrom PA, Herbsleb JD, Carley K. A social network approach to free/open source software simula-
tion. First International Conference on Open Source Systems, Genova. 2005.

12. Zeng JQ, Yang JM, Chen Q. Mass production structure research based on weighted network model. In-
dustrial Engineering Journal. 2013; 16(3):110–115.

13. Leonardo E, Klaus MF, Dima LS. Spectral properties of google matrix of Wikipedia and other networks.
The European Physical Journal B. 2013; 86 (193): doi: 10.1140/epjb/e2013-31090-8

14. Vanni T, Mesa-Frias M, Sanchez-Garcia R, Roesler R, Schwartsmann G, Goldani MZ, et al. Internation-
al Scientific Collaboration in HIV and HPV: A Network Analysis. PLOS ONE. 2014; 9(3): e93376. doi:
10.1371/journal.pone.0093376 PMID: 24682041

15. Zhu K, Li W, Fu X, Nagler J. How Do Online Social Networks Grow? PLoS ONE. 2014; 9(6): e100023.
doi: 10.1371/journal.pone.0100023 PMID: 24940744

16. Liao H, Xiao R, Cimini G, Medo M. Network-driven reputation in online scientific communities. PLoS
ONE. 2014; 9(12): e112022. doi: 10.1371/journal.pone.0112022 PMID: 25463148

17. Crowston K, Howison J. Hierarchy and centralization in free and open source software team communi-
cations. Knowledge, Technology & Policy. 2006; 18(4):65–85.

18. Zhao FC, Yang HJ, Wang BH. Scaling invariance in spectra of complex networks: A diffusion factorial
moment approach. Physical Review E. 2005; 72(4): 046119. PMID: 16383480

19. Yang HJ, Zhao FC, Wang BH. Synchronizabilities of networks: A new index. Chaos. 2006; 16: 043112.
PMID: 17199390

20. Yang HJ, Chuanyang Y, Guimei Z, Baowen L. Self-affine fractals embedded in spectra of complex net-
works. Physical Review E. 2008; 77: 045101(R). PMID: 18517677

21. Bak P. How nature works: the science of self-organized criticality. Springer-Verlag New York, Inc.
1996; 198 p.

22. Powell J. An introduction to effective low-energy Hamiltonians in condensed matter physics and chem-
istry. physics. chem-ph. 2009; arXiv:0906.1640v6.

23. Feng D, Feng ST. Condensedmatter physics and quantummechanics. Physics. 2001; 3(5): 271–278.

24. Feng D, Jing GJ. Recent developments in Condensed matter physics. Progress in physics. 1991; 11
(2): 127–213.

25. SanthanamMS, Bandyopadhyay JN, AngomD. Quantum spectrum as a time series: Fluctuation mea-
sures. Physical Review E. 2006; 73(1): 015201. PMID: 16486205

26. Yang HJ, Zhao FC, Longyu Q, Beilai H. Temporal series analysis approach to spectra of complex net-
works. Physical Review E. 2004; 69: 066104. PMID: 15244664

27. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Bunde A, Havlin S, Stanley HE. Multifractal
detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Ap-
plications. 2002; 316(1): 87–114.

28. Lopes R, Betrouni N. Fractal and multifractal analysis: A review. Medical Image Analysis. 2009; 13:
634–649. doi: 10.1016/j.media.2009.05.003 PMID: 19535282

29. Mandelbrot B, Calvet L, Fisher A. Large deviation theory and the multifractal spectrum of financial
prices. New Haven: Yale University. 1997.

30. Agaev I. Detection of financial crisis by methods of multifractal analysis. Available: http://www.docin.
com/p-33516013.html.

31. Kantelhardt JW, Roman HE, Greiner M. Discrete wavelet approach to multifractality. Physica A: Statisti-
cal Mechanics and its Applications. 1995; 220(3): 219–238

Energy Spectral Behaviors of Communication Networks of OSC

PLOSONE | DOI:10.1371/journal.pone.0128251 June 5, 2015 15 / 15

http://dx.doi.org/10.1038/499016a
http://www.ncbi.nlm.nih.gov/pubmed/23823774
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1140/epjb/e2013-31090-8
http://dx.doi.org/10.1371/journal.pone.0093376
http://www.ncbi.nlm.nih.gov/pubmed/24682041
http://dx.doi.org/10.1371/journal.pone.0100023
http://www.ncbi.nlm.nih.gov/pubmed/24940744
http://dx.doi.org/10.1371/journal.pone.0112022
http://www.ncbi.nlm.nih.gov/pubmed/25463148
http://www.ncbi.nlm.nih.gov/pubmed/16383480
http://www.ncbi.nlm.nih.gov/pubmed/17199390
http://www.ncbi.nlm.nih.gov/pubmed/18517677
http://www.ncbi.nlm.nih.gov/pubmed/16486205
http://www.ncbi.nlm.nih.gov/pubmed/15244664
http://dx.doi.org/10.1016/j.media.2009.05.003
http://www.ncbi.nlm.nih.gov/pubmed/19535282
http://www.docin.com/p-33516013.html
http://www.docin.com/p-33516013.html

