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Abstract High-content phenotypic screening has become the approach of choice for drug

discovery due to its ability to extract drug-specific multi-layered data. In the field of epigenetics,

such screening methods have suffered from a lack of tools sensitive to selective epigenetic

perturbations. Here we describe a novel approach, Microscopic Imaging of Epigenetic Landscapes

(MIEL), which captures the nuclear staining patterns of epigenetic marks and employs machine

learning to accurately distinguish between such patterns. We validated the MIEL platform across

multiple cells lines and using dose-response curves, to insure the fidelity and robustness of this

approach for high content high throughput drug discovery. Focusing on noncytotoxic glioblastoma

treatments, we demonstrated that MIEL can identify and classify epigenetically active drugs.

Furthermore, we show MIEL was able to accurately rank candidate drugs by their ability to produce

desired epigenetic alterations consistent with increased sensitivity to chemotherapeutic agents or

with induction of glioblastoma differentiation.

Introduction
The epigenetic landscape of a cell is largely determined by the organization of its chromatin and the

pattern of DNA and histone modifications. These confer differential accessibility to areas of the

genome and through direct and in-direct regulation of all DNA-related processes, form the basis of

the cellular phenotype (Jenuwein and Allis, 2001; Lawrence et al., 2016; Berger, 2007;

Goldberg et al., 2007). By collecting global information about the epigenetic landscape, for exam-

ple using ATAC- or histone ChIP-seq, we can derive multilayered information regarding cellular

states (Miyamoto et al., 2018; Mikkelsen et al., 2007). These include stable cell phenotypes such

as quiescence, senescence, or cell fate, as well as transient changes such as those induced by cyto-

kines and chemical compounds. However, current methods for collecting such information are not

adapted for high-content drug screening. Over the past decade the decreasing cost and remarkable

scalability of high content screening have made it a particularly attractive alternative for drug discov-

ery. More recently, novel image processing tools coupled with multiparametric analysis and machine

learning have significantly impacted our ability to investigate and understand the output of pheno-

typic screens (Kang et al., 2016; Scheeder et al., 2018). Despite these advantages, such assays

have not been adapted to extract and utilize information form the cellular epigenetic landscape.
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While malignant glioblastoma is the most common and lethal brain tumor, current therapeutic

options offer little prognostic improvement, so the median survival time has remained virtually

unchanged for decades (Jhanwar-Uniyal et al., 2015; Parvez, 2008; Burger and Green, 1987).

Tumor-propagating cells (TPCs) are a subpopulation of glioblastoma cells with increased tumori-

genic capability (Patel et al., 2014) operationally defined as early-passaged (<15) glioblastoma cells

propagated in serum-free medium (Nakano et al., 2008). Compared to the bulk of the tumor, TPCs

are more resistant to drugs, such as temozolomide (TMZ) and radiation therapy (Bao et al., 2006;

Safa et al., 2015). This resistance may explain the failure of traditional therapeutic strategies based

on cytotoxic drugs targeting glioblastoma. Multiple approaches aimed at reducing or circumventing

the resilience of TPCs have been proposed. These include targeting epigenetic enzymes (i.e.,

enzymes that write, remove, or read DNA and histone modifications) to increase sensitivity to cyto-

toxic treatments (Jones et al., 2016; Strauss and Figg, 2016; Lee et al., 2017; Romani et al.,

2018); and differentiating TPCs to reduce their tumorigenic potential (von Wangenheim and Peter-

son, 1998; Von Wangenheim and Peterson, 2001; von Wangenheim and Peterson, 2008;

Lee et al., 2015; Song et al., 2016; Garros-Regulez et al., 2016).

Here, we introduce Microscopic Imaging of the Epigenetic Landscape (MIEL), a novel high-con-

tent screening platform that profiles chromatin organization using the endogenous patterns of his-

tone modifications present in all eukaryotic cells. We validate the platform across multiple cell lines

and drug concentrations demonstrating its ability to classify epigenetically active compounds by

molecular function, and its utility in identifying off-target drug effects. We show MIEL can accurately

eLife digest Each cell contains a complete copy of a person’s genes coded in their DNA.

However, for a cell to perform its specific role, it only needs a small fraction of this genetic

information. The mechanisms that control which genes a cell is using fall under the umbrella of

‘epigenetics’ (meaning beyond genetics). These mechanisms involve changes in the way that DNA is

organized inside the cell nucleus and changes in how accessible different parts of the genome are to

various cellular components.

DNA is long and fragile so, to maintain its integrity, it is wrapped around protein complexes

called histones. Adding chemical modifications to histones is one of the main epigenetic

mechanisms that cells use to regulate which genes are turned on and off. Several methods allow

researchers to read patterns of histone modification and use this information to derive what state a

cell is in and how it might behave. Improving these methods is of particular interest in drug

development, where this information could reveal the effects, and side-effects, of new treatments.

Unfortunately, existing techniques are costly in both time and money, and they are not well suited to

analyzing epigenetic changes caused by the large numbers of compounds tested during drug

development.

To overcome this barrier, Farhy et al. have developed a new system called ‘Microscopic Imaging

of the Epigenetic Landscape’ (MIEL for short). The system allows them to quickly analyze the

epigenetic changes caused by each of a large number of different chemical compounds when they

are used on cells. MIEL tags different histone modifications by staining each with a different color,

and then uses automated microscopy to produce images. It then extracts information from these

images using advanced image analysis tools. The changes induced by different drugs can then be

compared and categorized using machine learning algorithms.

To test the MIEL system, Farhy et al. grew brain cancer cells (derived from human tumors) in the

lab, and treated them with compounds that target proteins involved in histone modifications. Using

their newly created pipeline, Farhy et al. were able to identify the unique epigenetic changes caused

by these compounds, and train the system to correctly predict which type of drug the cells had been

treated with. In a different set of experiments Farhy et al. demonstrate the utility of their new

pipeline in identifying drugs that induce a set of epigenetic changes associated with a reduced

ability to regrow tumors.

This new system could help screen thousands of compounds for their epigenetic effects, which

could aid the design of new treatments for many diseases.
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rank candidate drugs by their ability to produce a set of desired epigenetic alterations such as glio-

blastoma differentiation.

Results

The MIEL platform
We have developed a novel phenotypic screening platform, Microscopic Imaging of Epigenetic

Landscape (MIEL), which interrogates the epigenetic landscape at both population and single cell

levels using image derived features and machine learning. MIEL takes advantage of epigenetic marks

such as histone methylation and acetylation, which are always present in eukaryotic nuclei and can

be revealed by immunostaining. MIEL analyzes the immunolabeling patterns of epigenetic marks

using conventional image analysis methods for nuclei segmentation, feature extraction, and previ-

ously described machine-learning algorithms (Collins et al., 2015) (Figure 1a and

Materials and methods). Primarily, we utilized four histone modifications: H3K27me3 and H3K9me3,

which are associated with condensed (closed) facultative and constitutive heterochromatin, respec-

tively; H3K27ac, associated with transcriptionally active (open) areas of chromatin, especially at pro-

moter and enhancer regions; and H3K4me1, associated with enhancers and other chromatin regions

(Figure 1a; Creyghton et al., 2010; Shlyueva et al., 2014). To focus on the intrinsic pattern of epi-

genetic marks, we use only texture-associated features (e.g., Haralick’s texture features

[Haralick et al., 1973], threshold adjacency statistics, and radial features [Hamilton et al., 2007]) for

multivariate analysis. Previous studies have successfully employed similar features for cell painting

techniques combined with multiparametric analyses to accurately classify subcellular localization of

proteins (Hamilton et al., 2007), cellular subpopulations (Loo et al., 2009), and drug mechanisms of

action (Collins et al., 2015; Caie et al., 2010; Gustafsdottir et al., 2013; Loo et al., 2007).

We employed three main methods of data visualization and analysis: (1) To visualize similarity

between multiple cell populations across all acquired features we conducted multidimensional scal-

ing (MDS) using the Euclidean distance between the multivariate centroids of all populations being

compared and displayed the results as a 2D scatter plot (termed distance map;

Materials and methods and Figure 1a). (2) To classify multiple cell populations, we employed qua-

dratic discriminant analysis of multivariate centroids(DA; Materials and methods and Figure 1a). (3)

Single cells within each cell populations were classified using a Support Vector Machine (SVM;

Materials and methods and Figure 1a).

The most commonly used cellular assays for epigenetic drug discovery are lysis and ELISA based

assays, such as AlphaLISA (PerkinElmer). Imaging-based alternatives rely on staining for relevant his-

tone modification and monitoring changes in average fluorescent intensity (Sayegh et al., 2013;

Luense et al., 2015). Using MIEL, we screened a library of 222 epigenetically active compounds,

many with known targets among epigenetic writers, erasers, or readers (SBP epigenetic library, Fig-

ure 1—figure supplement 1a,b). Our analysis focused on MIEL’s ability to (1) detect active com-

pounds; (2) group drugs by function and identify off-target effects; (3) be robust across cell lines and

drug concentrations; (4) rank active drugs, and derive information regarding drug mechanism of

action.

MIEL improves detection of epigenetically active drugs
To test the ability of the MIEL approach to detect active compounds and compare it to intensity-

based methods, primary-derived TPCs (GBM2 cell line) were treated with epigenetically active drugs

for 24 hr (10 mM, triplicates). Treated cells were immuno-labeled for multiple histone modifications

expected to exhibit alterations following drug treatment (H3K9me3, H3K27me3, H3K27ac and

H3K4me1). Image analysis including nuclei segmentation and features extraction was conducted, as

previously described (Collins et al., 2015) on Acapella 2.6 (PerkinElmer). Phenotypic profiles were

generated for each compound or control (DMSO) treated wells. These are vectors composed of

1048 (262 features per modification X four modifications) texture features derived from the staining

of each histone modification and representing the average value for each feature across all stained

cells in each cell population (drug or DMSO). When treatment reduced cell count to under 50

imaged nuclei per well, the compound was deemed toxic and excluded from analysis. Following fea-

ture normalization by z-score, we calculated the Euclidean distance between vectors of the
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Figure 1. MIEL compares the epigenetic landscape of multiple cell populations and can be used to detect active epigenetic drugs across cell lines and

drug concentrations. (A) Flowchart of MIEL pipeline. Fixed cells were immunostained for the desired epigenetic modifications and imaged. Nuclei were

segmented based on DNA staining (Hoechst 33342 or DAPI) and texture features were calculated from the pattern of immunofluorescence. The relative

similarity of multiple cell populations was assessed by calculating the multi-parametric Euclidean distance between populations centers, and

represented in 2D following MDS (distance map). Discriminant analysis is used to functionally classify whole cell populations based on their multi-

parametric centers. SVM classification is used to separate single cells in each population and estimate populations overlap. (B) Table showing the

fraction of epigenetic drugs in each functional category identified as active by either MIEL analysis employing texture features derived from images of

GBM2 cells stained for H3K9me3, H3K4me1, H3K27ac, H3K27me3, or by intensity-based analysis using the same modifications (see

Materials and methods). (C,D) Quadratic discriminant analysis using texture features derived from images of GBM2 cells treated with either DMSO or

85 active compounds (two technical replicates per compound; 38 DMSO replicates) stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. (C) Scatter

Figure 1 continued on next page
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compounds and DMSO- treated cells. These distances were then normalized (z-score) to the average

distance between DMSO replicates and the standard deviation of these distances. Compounds with

a distance z-score of greater than three were defined as active (see Materials and methods section).

This analysis identified 122 compounds that induced significant epigenetic changes. Active com-

pounds were not uniformly distributed across all functional drug categories. Rather, we identified 10

categories in which 50% of the drugs were categorized as active and nontoxic and 13 categories in

which 25% or fewer of the drugs induced detectable epigenetic alterations following a 24 hr treat-

ment (Figure 1b).

To compare MIEL with current thresholding methods, we repeated the calculation using mean

fluorescence intensity for all histone modifications by normalizing (z-score) each drug against DMSO;

active compounds were defined as compounds for which z-scored intensity for at least one of the

histone modifications was greater than three or less than �3. As a result, we identified 94 active

compounds, which were distributed across functional categories similarly to MIEL-identified com-

pounds (Figure 1b). For each functional category, the number of compounds identified as active

using thresholding was smaller than the number identified using MIEL (Figure 1b) demonstrating

MIEL’s increased detection sensitivity over standard thresholding.

To determine the contribution of individual histone modifications, we repeated both MIEL and

thresholding analyses individually for each of the four modifications. Using MIEL-based analysis, a

single modification yielded similar detection rates to the combination of modifications across most

functional categories (Figure 1—figure supplement 2a). Using intensity-based analysis, individual

modifications yielded lower detection rates compared to the combination of modifications and dis-

played equal or reduced detection rates when compared to MIEL in all categories and modifications

(Figure 1—figure supplement 2a). Of note, 3 of the four modifications used for MIEL analysis

showed similar detection rates across most of the functional categories. However, detection rates

using H3K27me3 were consistently reduced across most active categories (Figure 1—figure supple-

ment 2a) except for EZH1/2 inhibitors, possibly due to the role these enzymes play in regulating this

posttranslational modification. To further compare MIEL and thresholding, we estimated the magni-

tude of epigenetic alterations induced by active compounds. We calculated the fold increase in dis-

tance from DMSO (normalized to average distance between DMSO replicates) as well as the fold

change in fluorescence intensity for active compounds in each category. In all categories, MIEL

showed an increased effect (Figure 1—figure supplement 2b).

These results demonstrate that, across all tested epigenetic marks, detecting epigenetically active

compounds was markedly improved using the MIEL method compared to current image-based

thresholding methods.

MIEL correctly classifies epigenetic compounds by function and detects
off-target effects
One key advantage of phenotypic profiling methods like MIEL is the ability to classify compounds by

function and identify nonspecific effects through comparison with profiles of well-defined controls.

To assess whether MIEL could correctly group compounds by function, we applied discriminant anal-

ysis (DA) to all active, nontoxic compounds from categories that had at least three such compounds

(85 compounds; seven categories and DMSO). Two replicates from each drug and 38 DMSO repli-

cates were used as a training set for a quadratic DA, using all texture features derived from images

Figure 1 continued

plots depicting the first two discriminant factors derived from features of all four histone modification images for each cell population. (D) Confusion

matrix showing classification results of discriminant analysis. Left column details number of compounds or DMSO replicates for each category in the

test set (one replicate per compound). Numbers represent the percent of compounds classified correctly (diagonal) and incorrectly (off the diagonal).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of the epigenetic drug library used in this study.

Figure supplement 2. MIEL improves detection rates and effect size compared to intensity based methods.

Figure supplement 3. Intensity based functional classification shows reduced classification accuracy compared with MIEL.

Figure supplement 4. MIEL can distinguish between HDAC inhibitors with different specificity.

Figure supplement 5. Low concentration valproic acid treatment induces epigenetic and transcriptomic changes distinct from that of known HDAC

inhibitors.
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of the four histone modifications. The third replicate for each compound, as well as 10 DMSO repli-

cates, was used as a test set to validate the model. Results showed that MIEL separated multiple cat-

egories of epigenetically active drugs with an average accuracy of 91.4% (Figure 1c,d). Although

many of the epigenetically active compounds induced alterations in average fluorescence (Figure 1—

figure supplement 2b), a DA utilizing intensity measurements from all four channels was ineffective

at separating the various categories and yielded only 51.6% average accuracy (Figure 1—figure sup-

plement 3a). To test whether individual histone modification textures contain sufficient information

to distinguish between the various drug classes, we performed DA using features derived from each

modification. Although this degraded MIEL’s ability to separate compound subclasses, which

affected similar changes in histone modification such as Class I and Pan HDAC inhibitors, MIEL was

still able to separate major categories, such as histone phosphorylation and deacetylation (Figure 1—

figure supplement 3b).

DNA labeling dyes such as DAPI and Hoechst can partially recapitulate the staining pattern of

H3K9me3, which labels constitutive heterochromatin. To test the ability of DNA labeling dyes to

capture information regarding chromatin organization and their usefulness for function based classi-

fication, we used texture features derived from the DAPI channel to repeat the functional classifica-

tion. This yielded an overall classification accuracy of 65.6% (Figure 1—figure supplement 3b)

compared with 86.4% provided by H3K9me3 (Figure 1—figure supplement 3b). Despite reduced

overall accuracy, it is evident that DAPI and other DNA dyes may be an informative and cheap alter-

native to histone staining in at least some applications when the analyzed epigenetic landscape are

very distinct.

Of note, the compound library used in this study included Pan HDACi, Class I HDACi, and Class I

HDACi, known to also target HDAC6. HDAC inhibitors targeting both Class I and HDAC six dis-

played the same profile as Pan HDAC, and DA showed the two categories to be undistinguishable.

This was likely due to the high expression of HDAC Class I and HDAC six and low expression of

other HDACs in the GBM2 glioblastoma line (Figure 1—figure supplement 4a,b,c).

Of the 85 compounds tested, 7 (8.2%) were identified as active but were misclassified by MIEL.

One of these was valproic acid, a commonly used anticonvulsant (Peterson and Naunton, 2005)

which also functions as a Pan HDAC inhibitor at high concentrations (Phiel et al., 2001). Though val-

proic acid is expected to inhibit HDACs only at high concentrations (>1.2 mM), a short 24 hr treat-

ment induced detectable epigenetic changes even at low concentrations (<30 mM). However, when

we quantified H3K27ac and H3K27me3 immunofluorescence intensity at these concentrations, no

increase in histone acetylation or decrease in histone methylation similar to other Pan HDAC inhibi-

tors (TSA, SAHA; Figure 1—figure supplement 5a) was seen. To test, whether observed epigenetic

changes resulted in corresponding transcriptomic alterations, we sequenced RNA from GBM2 cells

treated with either DMSO, TSA, SAHA or valproic acid (15 mM) for 24 hr and identified all genes

altered by at least one of the drugs (as compared to DMSO; 118 genes). This analysis indicated that

the Pan HDAC inhibitors induced similar transcriptomic changes that were not apparent in the tran-

scriptomic profile of valproic acid-treated cells (Figure 1—figure supplement 5b). To test whether

MIEL profiles reflected global drug-induced transcriptomic profiles, FPKM values for all expressed

genes (FPKM >1 in at least one cell population) were used to calculate the Euclidean distance

between all 4 cell populations. FPKM-based distances were then correlated to image texture fea-

ture-based distances, which yielded a high and significant correlation between these metrics

(R = 0.91, pv <0.05; Figure 1—figure supplement 5c).

Taken together, these demonstrate a unique ability of the MIEL approach to identify epigeneti-

cally active compounds, to accurately categorize them according to their molecular mechanism of

action, and to detect off-target effects of compounds with known mechanism of action.

Unbiased detection of compound concentration-dependent effect on
cellular epigenetic state
As drugs vary in potency, predicting the function of unknown drugs relies on generating functional

category-specific profiles that remain valid over a range of activity levels. To determine whether

MIEL could correctly identify the functional category of drugs with different potencies, we treated

GBM2 cells with drugs from several active categories at a range of concentrations (0.1, 0.3, 1, 3, 10

mM) and conducted DA aimed at separating the different concentrations in each class. We found

that for most drug categories tested (inhibitors of: Aurora, JAK, SIRT and EZH1/2), DA yielded low
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average classification accuracies (Figure 2a - Aurora kinase: 43.3%; Figure 2—figure supplement

1a - EZH1/2: 62.5%, SIRT:4 6.2%, JAK: 37.2), indicating similar MIEL profiles across tested drug con-

centrations. However, Pan HDAC and HDAC Class I inhibitors displayed progressive profile changes,

allowing DA to separate the different concentrations at higher accuracy (Figure 2a – HDAC Pan:

80.9%; Figure 2—figure supplement 1a - HDAC Class I: 82.2%).

In addition to their on-target effect, drugs may induce epigenetic alterations through toxicity and

stress. To estimate the impact of toxicity on drug induced profile changes and its contribution to

drug misclassification across a range of concentrations, we plotted z-scored distance from DMSO

(effect size) against z-scored nuclei count (a proxy for cytotoxicity) for GBM2 cells treated at a range

of drug concentrations (0.1, 0.3, 1, 3, 10 mM). This demonstrated that some compound classes, such

as Aurora and JAK inhibitors, induce epigenetic alterations only in concentrations at which cell count

is significantly reduced, whether through toxicity or direct effect on proliferation (Figure 2b – dark

blue and pink respectively), while other compounds, such as HDAC inhibitors, characteristically have

a concentration range where epigenetic alterations are not accompanied by reduced cell counts

(Figure 2b – green and yellow). Interestingly, both SIRT and EZH1/2 (Figure 2b – light-blue and red,

respectively) inhibitors affected significant epigenetic changes without inducing significant changes

in cell count.

These results indicated the MIEL platform is ideally positioned to analyze dose-dependent effects

from drug treatment. In particular, our data suggest that low (0.1 mM) and high (10 mM) concentra-

tion of HDAC inhibitors resulted in distinct and separable epigenetic landscapes, suggesting poten-

tially distinct chromatin/gene expression profiles and divergent biological outcomes when using a

low vs high concentration of such compounds.

MIEL profiles are coherent across multiple cell lines
Testing candidate drugs in multiple cell lines can help gauge their inclusivity and identify tumor sub-

types that do not respond to a specific drug or drug class. To test whether MIEL readouts were

coherent across multiple glioblastoma TPCs, we treated 4 cell lines with a subset of drugs from the

epigenetic library (57 drugs), derived phenotypic profiles, and calculated their effect size (z-scored

Euclidean distance from DMSO replicates). This revealed a significant positive correlation between

all 4 cell lines pointing to similarities in their drug sensitivity profiles and demonstrating the robust-

ness of the MIEL read out (Figure 2c,d). To assess the ability of MIEL to group compounds by func-

tion across multiple cell lines we employed DA to classify DMSO and drug treated TPCs across

these 4 GBM lines. This analysis enabled accurate separation of cells treated with drugs modulating

distinct functions, such as EZH1/2 or SIRT inhibitors (5 and 3 compounds respectively; mean 100%

accuracy; Figure 2e). However, we were unable to separate drug subclasses with similar functions,

such as class I and pan HDACs inhibitors (6 and 17 compounds respectively; mean accuracy 76.8%;

Figure 2e). These results demonstrate the ability of MIEL to correctly categorize by function drugs

with varying degrees of potency across multiple cells lines.

Finally, although individual drug activity correlated well across cells lines, the magnitude of the

effect for some drug classes was highly correlated to the expression levels of the target gene. For

example, SIRT inhibition was significantly more effective in lines showing reduced Sirt1 expression

(the main SIRT to deacetylate histone 3; n = 4 compounds, p<0.02; Figure 2—figure supplement

1b,c), and there was a significant inverse correlation between Sirt1 expression and the effect size

(R = �0.87; Figure 2—figure supplement 1c). These results further highlight the sensitivity of MIEL

and its ability to reflect internal transcriptomic differences between cell populations.

MIEL ranks compounds with similar function by activity
MIEL analysis indicated that the magnitude of drug induced profile changes, as measured by dis-

tance from DMSO replicates, varies between individual drugs within each drug class (Figure 3—fig-

ure supplement 1a). To test whether these differences are biologically meaningful, we correlated

MIEL-based activity readouts with the ability of epigenetic drugs to synergize with other treatments

as these are often designed to work as part of a combination therapy (Lee et al., 2017;

Romani et al., 2018). One common approach is to use epigenetic drugs to sensitize tumor cells to

standard of care cytotoxic treatments (Strauss and Figg, 2016; Zhou et al., 2015; Li et al., 2017;

Entin-Meer et al., 2007), such as radiation and temozolomide (TMZ), which are used to treat
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Figure 2. MIEL distinguishes between multiple categories of epigenetic drugs. (A) Quadratic discriminant analysis using texture features derived from

images of GBM2 cells treated with DMSO, 0.1, 0.3, 1, 3 or 10 mM Aurora kinase (n = 11 compounds, two replicates) or HDAC Pan inhibitors (n = 11

compounds, two replicates) stained for either H3K9me3+H3k27ac or H3K27me3 + H3K27ac. Scatter plots depict the first two discriminant factors for

each cell population (drug replicate). Confusion matrixes showing results for the discriminant analysis. Numbers represent the percent of replicates

Figure 2 continued on next page
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glioblastoma. To identify drug classes that sensitize glioblastoma TPCs to cytotoxic therapy, GBM2

cells were treated with epigenetic drugs for 2 days prior to radiation or TMZ. Cytotoxic treatment

was carried out for 4 days at levels that induced a 50% reduction in cell numbers (1Gy radiation or

200 mM TMZ; Figure 3a). At the end of day six treatment, cells were counted, and a combined drug

index (CDI) was calculated (see Materials and methods). Though we did not identify any drugs that

synergized (CDI < 0.7) with the radiation therapy (Figure 3b, right panel), multiple PARP and BET

inhibitors (PARPi and BETi) sensitized cells to TMZ (Figure 3b, left panel).

PARPi have been extensively studied in this context and have been shown to function through

multiple non-epigenetic mechanisms such as PARP trapping (Murai et al., 2012; Lord and Ash-

worth, 2017; Kedar et al., 2012). Consistent with this, most PARPi did not induce detectable epi-

genetic changes using MIEL (Figure 3d, Figure 3—figure supplement 1b), and we found no

correlation between the magnitude of epigenetic changes as measured by MIEL and CDI (Figure 3d

– bottom panel). To date, only a single report utilizing the BETi OTX015 (Berenguer-Daizé et al.,

2016) has pointed to synergy with TMZ, prompting us to validate this finding in five additional glio-

blastoma lines. In three lines, BETi increased the TMZ effectiveness (average CDI: 454M 0.76 ± 0.28,

PBT24 0.78 ± 0.12 and GBM2 0.51 ± 0.2; Mean ± SD; n = 11 BETi; Figure 3c). In the other three

lines, the drugs did not synergize and, in many cases, were found to be protective against (CDI > 1)

TMZ (average CDI: SK262 1.4 ± 0.26, 101A 1.4 ± 0.22 and 217M 1.2 ± 0.21; Mean ± SD; n = 11 BETi;

Figure 3c; p- values for all pairwise comparisons Figure 3c).

We detected only few BETi-induced epigenetic changes in our initial screen conducted over 24 hr

(Figure 1b). However, following a 6 days treatment 6 out of 11 BETi induced significant (average

z-scored distance from DMSO replicates >3) epigenetic changes in all cell line tested (Figure 3d,

Figure 3—figure supplement 1b). In lines displaying TMZ and BETi synergy, the degree of BETi

activity, as measured by MIEL, significantly correlated with the degree of synergism (Figure 3d – top

panel). This demonstrated that for individual compounds, MIEL can predict relative drug activity and

suggests an epigenetic component for the mechanism of BETi-TMZ synergy.

BET inhibitors decrease expression of MGMT
O6-alkylguanine DNA alkyltransferase (MGMT), which provides the main line of defense against

DNA alkylating agents such as TMZ, has been found to be epigenetically silenced through DNA

methylation in a large fraction of glioblastoma tumors (Karayan-Tapon et al., 2010; Hegi et al.,

2005). To gain a better understanding of the mechanism by which BETi sensitize glioblastoma TPCs

to TMZ treatment, we quantified MGMT expression in the six lines tested using qPCR. This analysis

showed that while all lines expressed similar BET transcription factors (TFs) levels, such as Brd2

(Figure 3e), and were thus susceptible to BET inhibitors, only the three lines displaying BETi-TMZ

synergy expressed MGMT (Figure 3e). Treating those three lines with BETi, dramatically reduced

MGMT expression (Figure 3f). Finally, combining BET inhibitors with the MGMT inhibitor

Figure 2 continued

classified correctly (diagonal) and incorrectly (off the diagonal). (B) Scatter plot comparing the magnitude of effect (average z-scored Euclidean

distances from DMSO) to drug-induced cytotoxicity (average z-scored cell count). Euclidean distance was calculated using image texture features

derived from images of H3K27ac + H3K27me3 (Aurora, JAK, SIRT, EZH1/2) or H3K27ac + H3K9me3 (HDAC Pan, HDAC Class I). Distances and cell

counts represent average of all compounds in each category; nAurora = 11, nEZH1/2=5, nHDAC Class I=7, nHDAC Pan=43, nJAK = 15, nSIRTi = 4). Arrows denote

the lowest concentration at which compounds of each category induce significant cytotoxicity. (C) Scatter plots comparing the z-scored Euclidean

distances from DMSO replicates across 4 GBM lines (n = 57 compounds, z-score for each compound is the average of 3 technical replicates). Euclidean

distances were calculated using image texture features derived from images of H3K27ac and H3K27me3 or H3K27ac and H3K9me3. (D) A table

summarizing the Pearson coefficient and statistical significance of z-scored Euclidean distances shown in ‘C.’ (E) Quadratic discriminant analysis using

texture features derived from images of GBM2, PBT24, 101A, 217 M cells treated with either DMSO, 5 EZH1/2 inhibitors, 3 SIRT inhibitors, 6 Class I

HDAC inhibitors or 17 Pan HDAC inhibitors. Features derived from images of cells stained for H3K27me3 + H3K27ac (EZH1/2, SIRT) or H3K27ac +

H3K9me3 (HDACi). Scatter plots depicting the first two discriminant factors for each cell population (two replicates per drug per cell line) color coded

according to cell line. Confusion matrix showing classification results for the discriminant analysis (test set, one replicate per drug per cell line).

Numbers represent the percent of compounds classified correctly (diagonal) and incorrectly (off the diagonal).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. MIEL distinguishes between multiple categories of epigenetic drugs across different drug concentrations.
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Figure 3. MIEL can be used to rank candidate drugs by activity. (A) Top: Scheme describing the experimental setup used to identify synergy between

epigenetic drugs and radiation or TMZ. Bottom: Scatter plots showing the fold reduction in GBM2 cell count following a 4 day treatment with varying

TMZ concentration and radiation doses. (B) Scatter plots showing fold change in cell count (compared to DMSO treated cells) and coefficient of drug

interaction (CDI) for synergy with TMZ (left) and radiation (right) for each drug (n = 222, values represent the average of 3 technical replicates). (C)

Figure 3 continued on next page
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Lomeguatrib did not increase sensitivity to TMZ above the levels conferred by Lomeguatrib alone

(Figure 3g).

In sum, we have discovered that several BETi synergized with TMZ treatment by reducing MGMT

expression. We applied MIEL to rank BETi according to their magnitude of epigenetic effect and

demonstrated that they ranks according their ability to synergize with TMZ suggesting that their

mechanism of action involves epigenetic change. In contrast, the activity of PARP inhibitors didn’t

correlate with magnitude of epigenetic effect, suggesting an alternative mechanism of action. Thus,

we propose that the MIEL approach is well positioned to systematically analyze and identify epige-

netically active compounds, then provide critical initial information for their mechanism of action.

MIEL discriminates between multiple cell fates
By altering histone and DNA modifications, epigenetic drugs have a direct effect on the MIEL read-

out. To test the ability of MIEL to identify and classify in-direct epigenetic changes we tested its util-

ity for identifying drugs inducing GBM differentiation. Previous attempts to design screening

strategies for this purpose have met with multiple difficulties. One critical problem is the lack of

informative markers faithfully reporting GBM differentiation that could be used for high-throughput

screening (Patel et al., 2014). The lack of informative markers for GBM differentiation and the ability

of MIEL to identify compounds producing desired epigenetic alterations prompted us to test the

feasibility of using this approach to screen for drugs inducing GBM TPCs differentiation.

For this, we first tested the ability of MIEL to discriminate between different cell fates. We ana-

lyzed 3 cell types: primary human fibroblasts, induced pluripotent stem cells (iPSCs) derived from

these fibroblasts, and neural progenitor cells (NPCs) differentiated from the iPSCs. The fibroblasts

were isolated from three unrelated donors (WT-61, WT-101, WT-126) and used to obtain corre-

sponding iPSC and NPC lines. Cellular identities of the 3 cell types were verified by immune-fluores-

cence for Sox2 and Oct4 (Figure 4a), and MIEL analysis was carried out using data from either

H3K4me1 and H3K9me3 or H3K27ac and H3K27me3 staining, with both combinations providing

similar results. Multivariate centroids were calculated for each cell population and plotted on a dis-

tance map to visualize the relative Euclidean distance between various cell populations. The fibro-

blasts, iPSCs, and NPCs each segregate to form three visually distinct territories (Figure 4—figure

supplement 1c). We separated the nine lines by cell-fates using DA, which showed an accurate sep-

aration of the different cell-fates across all three donors (average accuracy 100%; Figure 4b, Fig-

ure 4—figure supplement 1e). A similar analysis aimed at separate the different donors showed

only low accuracy (average accuracy 55.5%; Figure 4c, Figure 4—figure supplement 1f). To deter-

mine whether it was possible to discriminate between individual cells with different fates, a Support

Vector Machine (SVM) classifier was trained on a subset of fibroblasts, iPSCs, and NPCS from the

three donors. Classification of the test set indicated a high degree of separation between the differ-

ent fates at a single cell level (Figure 4—figure supplement 1b,d). Additionally, MIEL analysis (using

only H3K9me3) was able to discriminate between primary hematopoietic cell types freshly isolated

from mouse bone marrow, namely lymphoid, myeloid, and stem/progenitors (Figure 4—figure sup-

plement 2). However, closely related hematopoietic stem and progenitor cells were not readily sep-

arated (Figure 4—figure supplement 2).

Figure 3 continued

Graph showing individual and average CDI for BET inhibitors in 6 GBM lines (n = 11 drugs, average of 3 technical replicates; p-values calculated by

ANOVA using Tukey’s HSD for multiple comparisons between lines and shown in table). (D) Scatter plot showing the correlation between CDI and

MIEL-derived activity (z-scored Euclidean distance from DMSO) of BET and PARP inhibitors (nBETi = 11; nPARPi = 10; values represent the average of 3

technical replicates) in 3 GBM lines (454M, PBT24, GBM2). (E) Bar graph showing the relative normalized expression of Brd2 and MGMT in 6 GBM lines

as measured by qPCR (Mean ± SD; n = 3 technical repeats). (F) Bar graph showing fold reduction in MGMT expression following treatment with BET

inhibitors in three different GBM lines as measured by qPCR (Mean ± SD; n = 3 technical repeats). (G) Graph showing individual and average TMZ

sensitization CDI for BETi, MGMTi (Lomeguatrib) and BETi and MGMTi in GBM2 cells (n = 11 drugs, values represent the average of 3 technical

replicates).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. MIEL can report relative drugs activity.

Farhy et al. eLife 2019;8:e49683. DOI: https://doi.org/10.7554/eLife.49683 11 of 26

Research article Cancer Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.49683


Figure 4. MIEL can distinguish between cell fates and identify glioblastoma differentiation. (A) Hoechst 33342 stained (blue), and Sox2 (red) and Oct4

(green) immunofluorescence labeled fibroblasts (Sox2-/Oct4-), iPSCs (Sox2+/Oct4+) and NPCs (Sox2+/Oct4-). Scale bar, 50 mm. (B, C) Quadratic

discriminant analysis separating either cell fates or cell lines using texture features derived from images of fibroblasts, iPSCs, and NPCs lines from three

human donors (WT-61, WT-101 and WT-126; three technical replicates each); stained for H3K9me3 and H3K4me1. (B) Discriminant analysis separating

Figure 4 continued on next page
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These results underscore MIEL’s ability to discriminate multiple different cell types and differenti-

ation states uniquely based on their single-cell epigenetic landscapes both in cultured and primary

cells of human and mouse origin.

MIEL determines the signatures of glioblastoma stem cells and
differentiated glioblastoma
We tested MIEL’s ability to distinguish TPCs and differentiated glioma cells (DGCs), derived from

the same primary human GBMs (Suvà et al., 2014). Three TPC/DGC pairs were derived in parallel

from three genetically distinct glioblastoma tumor samples (MGG4, MGG6, and MGG8) over a 3

month period using either serum-free FGF/EGF conditions for TPCs or 10% serum for DGCs

(Suvà et al., 2014). Visualization using distance maps demonstrated that TPCs and DGCs segregate

to form two visually distinct territories (Figure 4—figure supplement 1g) and were separated with

high accuracy using DA (mean accuracy 100%; Figure 4d). SVM-based pairwise classification of sin-

gle cells distinguished TPCs from their corresponding DGC lines with an average accuracy of 83%,

using any of the four epigenetic marks tested (H3K27me3, H3K9me3, H3K27ac, and H3K4me1;

Figure 4e). An SVM classifier derived from images of the MGG4 TPC/DGC pair separated all 3 TPC/

DGC pairs with 88% average accuracy, providing proof of principle for the derivation of a signature

for non-tumorigenic cells obtained following serum differentiation of primary glioblastoma cells

(Figure 4f).

These findings suggest that MIEL can readily distinguish undifferentiated TPCs from differenti-

ated DGCs based on multiparametric signatures of these glioblastoma cells using only the patterns

of universal epigenetic marks.

Short-term treatment with serum or Bmp4 initiates TPC differentiation
For the purpose of establishing a screening protocol, we tested whether short serum or Bmp4 treat-

ment is sufficient to induce a differentiation-like phenotype in TPCs. We treated several glioblastoma

cell lines for 3 days with either serum or Bmp4, then quantified expression of core transcription

Figure 4 continued

the different cell types. Scatter plot depicting the first two discriminant factors for each cell population (two replicate per cell line and cell type).

Confusion matrixes showing classification results for discriminant analysis (test set: one replicate per cell line and cell type) Numbers represent the

percent of correctly (diagonal) and incorrectly (off the diagonal) classified cell populations. (C) Discriminant analysis attempting to separate different cell

lines. Scatter plot depicting the first two discriminant factors for each cell population (two replicates per cell line and cell type). Confusion matrixes

showing classification results for discriminant analysis (test set: one replicate per cell line and cell type). Numbers represent the percent of correctly

(diagonal) and incorrectly (off the diagonal) classified cell populations. (D, E, F) TPC and DGC cell lines derived simultaneously from tumors of 3 human

donors (MGG4, MGG6, MGG8; three technical replicates each); stained for H3K9me3, H3K4me1. (D) Quadratic discriminant analysis separating TPCs

and DGCs using image texture features. Scatter plot depicting the first discriminant factor for each cell population (two replicates per cell line).

Confusion matrix showing classification results for discriminant analysis (test set: one replicate per cell line). Numbers represent the percent of correctly

(diagonal) and incorrectly (off the diagonal) classified cell populations. (E) Pairwise classification of single TPC and DGC cells using an SVM classifier

trained on texture features derived from images of H3K27me3, H3K9me3, H3K27ac, or H3K4me1. Numbers correspond to the percent of correctly

classified cells for each line using indicated epigenetic marks. (F) Bar graph showing results of SVM classification for single TPC and DGC cells using a

classifier trained on texture features derived from images of H3K27ac and H3K27me3 marks in the MGG4 line. (H) Quadratic discriminant analysis using

texture features derived from images of untreated or 2 days serum or Bmp4 treated GBM2, 101A, SK262 and 454 M cells (three replicates per cell lines

per treatment) and stained for H3K9me3, H3K4me1. Scatter plot depicting the first two discriminant factors for each cell population (two replicates per

cell lines per treatment). Confusion matrix showing classification results for discriminant analysis (test set: one replicate per cell line per treatment).

Numbers represent the percent of correctly (diagonal) and incorrectly (off the diagonal) classified cell populations. (I) Distance map depicting the

relative Euclidean distance between the transcriptomic profiles of DMSO-, Bmp4- and serum-treated GBM2 cells calculated using FPKM values of all

expressed genes (14,376 genes; FPKM > 1 in at least one sample). Each treatment in triplicates. (J) Distance map depicting the relative Euclidean

distance between the multiparametric centroids of DMSO-, Bmp4- and serum-treated GBM2 cells calculated using texture features derived from

images of H3K27ac and H3K27me3 marks. Each treatment in triplicates. R denotes Pearson correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. MIEL can distinguish between multiple cell fates.

Figure supplement 2. MIEL can distinguish between cells from different hematopoietic lineages.

Figure supplement 3. Serum and Bmp4 reduce expression of genes associated with undifferentiated glioblastoma TPCs.

Figure supplement 4. GO analysis of transcriptomic changes induced by serum and Bmp4.

Figure supplement 5. Serum and Bmp4 treatments induce distinct epigenetic and transcriptomic changes.

Farhy et al. eLife 2019;8:e49683. DOI: https://doi.org/10.7554/eLife.49683 13 of 26

Research article Cancer Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.49683


factors previously shown to determine the TPC transcriptomic program of TPCs (Suvà et al., 2014).

Immunostaining revealed that the four transcription factors Sox2, Sall2, Brn2 and Olig2 were down-

regulated by both serum and Bmp4 in a cell line-dependent manner (Figure 4—figure supplement

3a). RNAseq analysis of serum- and Bmp4-treated GBM2 cells revealed that 3 days of treatment

reduced (vs untreated cells) expression of most genes previously found to constitute the transcrip-

tomic stemness signature (Patel et al., 2014) (Figure 4—figure supplement 3b). Additionally, both

serum and Bmp4 were found to attenuate TCP growth rate (Figure 4—figure supplement 3c). To

identify the cellular processes altered by these treatments, we conducted differential expression

analysis. Expression of 4852 genes was significantly altered (p<0.01 and �1.5 < Fold Change>1.5)

by either serum or Bmp4. Gene Ontology (GO) analysis of these altered genes indicated enrichment

in multiple GO categories consistent with initiation of TPC differentiation; these include cell cycle,

cellular morphogenesis associated with differentiation, differentiation in neuronal lineages, histone

modification, and chromatin organization (Figure 4—figure supplement 4).

These results demonstrate that a 3 day treatment with either serum or Bmp4 is sufficient to

induce transcriptomic changes characteristic of TPC differentiation. Previous work indicated distinct

features of glioblastoma differentiation induced with BMP compared to serum (Carén et al., 2015).

Indeed, we observed distinct expression changes, including differences in expression of genes regu-

lating chromatin organization and histone modifications (Figure 4—figure supplement 5a, b),

between serum- and Bmp4-induced glioblastoma differentiation.

MIEL detects epigenetic changes following short-term serum or Bmp4
treatment
To test the ability of MIEL to detect short term TPCs differentiation we treated four genetically dis-

tinct glioblastoma lines with serum or BMP4, then conducted MIEL analysis using either H3K9me3

and H3K4me1 or H3K27ac and H3K27me3. Discriminant analysis allowed high accuracy separation

of these treatments across all cell lines using both histone modification combinations (mean accuracy

100%; Figure 4h; Figure 4—figure supplement 5c).

The global gene expression profile represents a gold standard for defining the cellular state

(Liang et al., 2005). Therefore, we correlated the relative distances between distinct cellular states,

using MIEL-based and global gene expression-based metrics. We sequenced untreated and 3 days

serum- or Bmp4-treated GBM2 TPCs (three replicates each) and used FPKM values of all expressed

genes (FPKM >1 in at least one cell population) to calculate the Euclidean distance matrix between

all cell populations. FPKM-based distances were then correlated to image texture feature-based dis-

tances. The resulting Pearson correlation coefficient of R = 0.93 (p<0.001) suggests a high correla-

tion between these two metrics (Figure 4i,j), demonstrating that MIEL is capable of distinguishing

closely related glioblastoma differentiation routes induced by serum or BMP and validating the

robustness of the MIEL approach for analyzing glioblastoma differentiation.

MIEL based screen for compounds inducing TPCs differentiation
To test whether MIEL can identify compounds inducing GBM TPCs differentiation based on serum/

Bmp4 signature, we screened the Prestwick compound library (1200 compounds). GBM2 TPCs were

treated for 3 days with Prestwick compounds at 3 mM fixed, then immune-labeled for H3K27ac and

H3K27me3. GBM2 cells treated with DMSO, serum, BMP4, or compound were compared within the

same plate (to avoid imaging artifacts and normalization issues).

To identify epigenetically active compounds, we calculated the Euclidean distance to the DMSO

center for each DMSO replicate and Prestwick compound. Distances were z-scored, and active com-

pounds were defined as compounds for which z-scored distance was greater than 3. Compounds

with less than 50 cells imaged were considered toxic and excluded from analysis. This analysis

detected 144 active compounds. To identify compounds inducing epigenetic changes reminiscent of

serum- BMP4-induced differentiation, we used quadratic DA to build a model separating untreated,

serum- and Bmp4-treated cells and classified all 144 active compounds to these categories

(Figure 5a,b). A total 31 compounds were classified as similar to either serum or Bmp4 (i.e., differen-

tiated). Of these, 20 compounds belonged to 1 of the following four categories: Na/K-ATPase inhibi-

tors of the digoxin family, molecules that disrupt microtubule formation or stability, topoisomerase

inhibitors, or nucleotide analogues that disrupt DNA synthesis (Figure 5b). To further narrow down
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Figure 5. MIEL prioritizes small molecules based on serum/Bmp4 differentiation signature. Quadratic discriminant analysis using texture features

derived from images of untreated, serum-, Bmp4- and compound-treated GBM2 cells stained for H3K27me3, H3K27ac. Model was built to separate

untreated, serum- and Bmp4-treated cells (60 technical replicates each). (A) Scatter plot depicting the first two discriminant factors for each population.

(B) Confusion matrix showing classification of epigenetically active Prestwick compounds. Numbers depict the percent of compounds from each

category classified as either untreated, serum or Bmp4 treated. (C) Scatter plot showing the correlation of gene expression profile-based ranking and

MIEL-based ranking for eight candidate drugs, untreated, serum- or Bmp4-treated GBM2 cells. Euclidean distance to serum- or Bmp4-treated GBM2

cells was calculated using transcriptomic profiles (vertical axis) or texture features derived from images of H3K27ac and H3K27me3, H3K9me3, and

H3K4me1 marks (horizontal axis). Distances were normalized to untreated and serum- or Bmp4-treated GBM2 cells. (D) Heat maps showing fold change

in expression of select genes taken from the Gene Ontology (GO) list: cell cycle G2/M phase transition (GO:0044839), chromatin modification

(GO:0006325), and regulation of neuron differentiation (GO:0045664). R denotes Pearson correlation coefficient. Drug concentrations a-c:

febendazole = 0.5 mM, mebendazole = 0.5 mM, cytarabine = 0.3 mM, trifluridine = 3 mM, irinotecan = 0.5 mM, etoposide = 0.3 mM, digitoxigenin = 0.3

mM, digoxin = 0.3 mM.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Functional categories of drugs prioritized by MIEL from the Prestwick library.

Figure 5 continued on next page
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the list of candidates, we conducted pairwise SVM classification of DMSO- and either serum- or

BMP4-treated cells, then selected compounds that induced at least 50% of the cells to be classified

as either serum- or BMP4-treated. We then calculated the Euclidean distance between candidate

compounds and serum- or BMP4-treated cells and selected compounds where the distance to one

or both treatments was less than the distance between DMSO and that treatment. This yielded 20

candidate compounds, of which 15 belonged to 1 of the four categories mentioned above; the top

two compounds from each category were chosen for further analysis (Figure 5—figure supplement

1a).

GBM2 cells were treated for 3 days with DMSO, serum, Bmp4 or candidate compounds at 0.3,1

or 3 mM, fixed, and then immunostained for H3K27ac and H3K27me3. Using pairwise SVM based

classifications of untreated cells and either serum- or Bmp4-treated cells we identified for each of

the eight compounds the lowest concentration at which 50% or more of the cells were classified as

treated (Figure 5—figure supplement 1b). These concentrations were used for all subsequent

experiments (Supplementary file 1 - Table S7). Because most of these compounds are known for

their cytotoxic effects, we verified the growth rates of drug-treated glioblastoma cells. With the

exception of digoxin, which was cytostatic, drug treatment resulted in growth rates comparable with

that induced by serum or BMP4 (Figure 5—figure supplement 2a). We used immunofluorescence

to test for expression of core TPC transcription factors (Sox2, Sall2, Brn2 and Olig2). Except for tri-

fluridine, all compounds induced statistically significant reductions in Sox2; digoxin and digitoxigenin

also induced a significant reduction of Sall2 and Brn2; Olig2 expression was unaltered by any treat-

ment (Figure 5—figure supplement 2b).

Next, we investigated whether the compounds identified using MIEL can induce transcriptomic

changes similar to serum and Bmp4 treatment and quantified the ability of MIEL to predict com-

pounds best at mimicking these treatments. GBM2 cells were treated with DMSO, serum, Bmp4, or

each of the eight candidate compounds; after 3 days, RNA was extracted and sequenced. Transcrip-

tomic profiles of the eight compounds were ranked according to average Euclidean distance (based

on FPKM values for all expressed genes) from serum and BMP4-treated cells. To safeguard against

potential artefacts of cytotoxicity, we compared gene expression-based ranking with measured cel-

lular growth rates from drug treatments and found no positive correlation (Figure 5—figure supple-

ment 2c). Next, we compared Sox2 levels under all treatment conditions to determine whether

expression of this transcription factor can identify drugs that best mimic serum or BMP4. We found

no positive correlation between Sox2 expression and the transcriptomic-based rankings (Figure 5—

figure supplement 2d), suggesting that Sox2 levels alone are insufficient to stratify the compounds.

Finally, to compare MIEL-based signatures to the transcriptomic profile, we ranked MIEL readouts of

cells treated with the eight drugs according to average Euclidean distance from serum- or Bmp4-

treated cells (calculated using texture features derived from images of H3K27ac, H3K27me3,

H3K9me3 and H3K4me1). Comparison of the MIEL-based metric with the gene expression-based

metric revealed a high degree of positive correlation between MIEL- and gene expression-based

rankings (Pearson correlation coefficient R = 0.92, p<0.001; Figure 5c). To further visualize these

results, we constructed heat maps depicting fold change in expression levels of genes associated

with several GO terms enriched by serum and Bmp4. Our top candidate, etoposide, altered expres-

sion of a large portion of genes in similar fashion to that of serum and BMP4; in contrast, the lowest-

ranking candidate, digoxin, induced changes in gene expression, which were rather different from

serum and BMP4 (Figure 5d).

Taken together, the above results reflect the unique ability of MIEL to identify molecules that shift

epigenetic signature of glioblastoma TPCs towards DGCs. Critically, MIEL is capable of ranking such

molecules according to their change-inducing potency and that ranking robustly correlate with

global expression-based readouts of glioblastoma differentiation.

Figure 5 continued

Figure supplement 2. Drugs identified in screen lower proliferation rate of Glioblastoma cells but do not induce down regulation of key transcription

factors.
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Discussion
Here we have introduced MIEL, a novel method that expands phenotypic profiling to take advan-

tage of universal biomarkers present in all eukaryotic cells by exploiting the patterns of chromatin

organization and histone modification patterns. The pipeline we developed employs information

derived from immunofluorescence images of specific histone modifications and is geared towards

drug discovery and high-content screening. Focusing on compounds that modulate epigenetic writ-

ers, erasers, and readers, we have shown that MIEL markedly improves detection compared to con-

ventional intensity-based thresholding approaches and enables their function based categorization.

We have demonstrated that MIEL readouts are coherent across multiple compound concentrations

and cell lines and can provide information regarding drug activity levels and their mechanism of

action. We have also documented MIEL ability to robustly report cellular fate and provide proof of

concept for identifying and prioritizing drugs inducing differentiation of glioblastoma TPCs.

MIEL distinguishes between drugs classes with similar function
Previous studies have demonstrated that image-based profiling can distinguish between classes of

compounds with very distinct functions, such as Aurora and HADC inhibitors (Kang et al., 2016).

One objective of our study was to estimate the resolution of separation between categories of com-

pounds with similar functions. We found that a single histone modification was sufficient to separate

highly distinct classes (Figure 1—figure supplement 3b). However, separating similar classes (e.g.,

Aurora and JAK inhibitors, which affect histone phosphorylation, or Pan and Class I HADCs, which

affect histone acetylation) required staining for at least one additional histone modification

(Figure 1d). Despite their many advantages, cellular assays, including high-content assays, are often

used as secondary screens for epigenetic drugs due to multiplicity of enzyme family members and

an inability to determine direct enzymatic activity (Martinez and Simeonov, 2015). Consequently,

MIEL’s ability to separate closely related functional categories on top of other advantages make this

profiling approach an attractive alternative for primary screens.

Coherence across cell lines can provide vital input for personalized
medicine
Phenotypic profiling methods have been previously used to identify genotype-specific drug

responses by comparing profiles across multiple isogenic lines (Breinig et al., 2015). Here we show

that activity of biologics (i.e., serum and Bmp4) that induces glioblastoma differentiation, as well as

that of 57 epigenetic compounds, was significantly correlated across four different primary glioblas-

toma lines (Figure 2c,d,e; Figure 4h). We also showed that variation in activity levels correlated with

target expression levels and that various categories can be distinguished across cell lines. Together,

these suggest that MIEL could be used to identify cell lines showing an aberrant reaction to selected

drugs and, therefore, aid in identifying optimal treatments for individual patients. Similar applica-

tions have previously been used to tailor specific kinase inhibitors to patients with chronic lympho-

cytic leukemia (CLL) who display venetoclax resistance (Oppermann et al., 2016).

Non-cytotoxic treatments for Glioblastoma
Given the limited success of cytotoxic drugs in treating glioblastoma, we focused on alternative

approaches: (1) epigenetic drugs aimed at sensitizing glioblastoma TPCs to such treatments, and (2)

inducing glioblastoma differentiation. We have demonstrated MIEL’s ability to rank candidate drug

activity to correctly predict the best candidates for achieving the desired effect. The importance of

this is highlighted in large (hundreds of thousands of compounds) chemical library screens, which

typically identify many possible hits needing to be reduced and confirmed in secondary screens

(Hughes et al., 2011; Strovel et al., 2004).

BET inhibitors modulate expression of MGMT
Our results show a significant correlation between BET inhibitor activity, as defined by MIEL

(Figure 3d), and their ability to synergize and increase TPC sensitivity to TMZ and reveal a previously

unknown role for BET inhibitors in reducing MGMT expression (Figure 3e,f,g). Previous studies have

demonstrated upregulation of several BET transcription factors in glioblastomas (Pastori et al.,

2014; Wadhwa and Nicolaides, 2016) and multiple pre-clinical studies have investigated the
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potential of BET inhibition as a single drug treatment for glioblastoma (Xu et al., 2018; Ishida et al.,

2017; Cheng et al., 2013). However, while clinical trials with the BET inhibitor OTX015 demon-

strated low toxicity at doses achieving biologically active levels, no detectable clinical benefits were

found (Hottinger et al., 2016). This prompted approaches using drug combination treatments

(Ramadoss and Mahadevan, 2018) such as combining HDACi and BETi (Heinemann et al., 2015;

Bhadury et al., 2014). The mechanism by which BETi induces increased TMZ sensitivity has not

been described. Recently, a distal enhancer regulating MGMT expression was identified

(Chen et al., 2018). Activation of this enhancer by targeting a Cas9-p300 fusion to its genomic locus

increased MGMT expression while deletion of this enhancer reduced MGMT expression

(Chen et al., 2018). As BET transcription factors bind elevated H3K27ac levels found in enhancers

(Sengupta et al., 2015; Lovén et al., 2013), this may suggest a possible mechanism for BETi-

induced reduction of MGMT expression, which in turn results in increased sensitivity to the DNA

alkylating agent TMZ.

Silencing the MGMT gene through promoter methylation has long been known to increase

responsiveness to TMZ treatment and improve prognosis in patients with glioblastoma (Karayan-

Tapon et al., 2010; Hegi et al., 2005; Esteller et al., 2000). Yet Despite that, clinical trials that

combine TMZ and MGMT inhibitors have not improved therapeutic outcomes in such patients, pos-

sibly due to the 50% reduction in dose of TMZ, which is required to avoid hematologic toxicity

(Quinn et al., 2009a; Quinn et al., 2009b; Quinn et al., 2009c). Thus, BETi offers an attractive line

of research, though further studies are needed to determine whether the elevated sensitivity of glio-

blastoma to BETi, and its ability to reduce MGMT expression could be exploited to improve patient

outcome.

MIEL provides a reliable proxy of the transcriptomic profile
We analyzed serum and BMP4, two established biologicals known to induce glioblastoma differenti-

ation in culture (Lee et al., 2006; Piccirillo et al., 2006; Pollard et al., 2009) and established signa-

tures of the differentiated glioblastoma cells based on the pattern of epigenetic marks that could be

applied across several genetic backgrounds. This is the first time that a signature for glioblastoma

differentiation suitable for high-throughput drug screening has been obtained. Indeed, results of

previous studies using bulk glioblastoma analysis (Carén et al., 2015) or single-cell sequencing

(Patel et al., 2014) could not be readily applied for high-throughput screening. As a proof of princi-

ple, we analyzed the Prestwick chemical library (1200 compounds) to validate MIEL’s ability to select

and prioritize small molecules, which mimic the epigenetic and transcriptomic effects of serum and

BMP4. Surprisingly, we observed that the degree of reduction in endogenous SOX2 protein levels

following drug treatment did not correlate with the degree of differentiation assessed by global

gene expression (Figure 5—figure supplement 2d); in contrast, MIEL-based metrics did correlate.

This result, taken together with MIEL’s ability to distinguish multiple cells types (iPSCs, NPCs, fibro-

blasts, hematopoietic lineages; Figure 4b,c; Figure 4—figure supplement 2) across several genetic

backgrounds, demonstate that the MIEL approach can readily identify compounds inducing desired

changes in cell fate and that it can serve as a cost-effective tool for prioritizing compounds during

the primary screenings.

By tapping into the wealth of information contained within the cellular epigenetic landscape

through modern high-content profiling and machine-learning techniques, the MIEL approach repre-

sents a valuable tool for high-throughput screening and drug discovery and is especially relevant

when the desired cellular outcome cannot be readily defined using conventional approaches.

Materials and methods

Cell culture
Monolayer cultures of patient-derived GMB TPCs were propagated on Matrigel-coated plates in

DMEM:F12 Neurobasal Medium (1:1; Gibco), 1% B27 supplement (Gibco), 10% BIT 9500 (StemCell

Technologies), 1 mM glutamine, 20 ng/ml EGF (Chemicon), 20 ng/ml bFGF, 5 mg/ml insulin (Sigma),

and 5 mM nicotinamide (Sigma). The medium was replaced every other day and the cells were enzy-

matically dissociated using Accutase prior to splitting. Fibroblasts, iPSCs, and iPSC-derived NPCs

were cultured as previously described (Marchetto et al., 2010; Kim et al., 2011).

Farhy et al. eLife 2019;8:e49683. DOI: https://doi.org/10.7554/eLife.49683 18 of 26

Research article Cancer Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.49683


Differentiation treatment
For TPC differentiation treatments cells were cultured in DMEM:F12 Neurobasal Medium (1:1), 1%

B27 supplement, 10% BIT 9500, 1 mM glutamine supplemented with either Bmp4 (100 ng/ml; R and

D Systems) or FBS (10%).

Immunofluorescence
Cells were rinsed with PBS and fixed in 4% paraformaldehyde in PBS for 10 min at room tempera-

ture. After blocking with PBSAT (2% BSA and 0.5% Triton X-100 in PBS) for 1 hr at room tempera-

ture, the cells were incubated overnight at 4˚C with primary antibodies diluted in PBSAT. Primary

antibodies are listed in Supplementary file 1 - Table S1, and the appropriate fluorochrome-conju-

gated secondary antibodies were used at 1:500 dilution. Nuclear co-staining was performed by incu-

bating cells with either Hoechst-33342 or DAPI nuclear dyes.

Microscopy and image analysis
For MIEL analysis, cells were imaged on either an Opera QEHS high-content screening system (Perki-

nElmer) using �40 water immersion objectives or an IC200-KIC (Vala Sciences) using a � 20 objec-

tive. Images collected were analyzed using Acapella 2.6 (PerkinElmer). At least 40 fields/well for

Opera and five fields/well for IC200 were acquired and at least two wells per population were used.

Features of nuclear morphology, fluorescence intensity inter-channel co-localization, and texture fea-

tures (Image moments, Haralick, Threshold Adjacency Statistics) were calculated using custom algo-

rithms (Source Code File one and www.andrewslab.ca). A full list of the features used is available

from the authors. Values for each cell were generated and exported to Microsoft Excel or MATLAB

for further analysis. For Sall2, Olig2, Brn2, Sox2, Oct4, and GFAP immunostaining, images were cap-

tured on an IC200-KIC (Vala Sciences) using a � 20 objective. Between 3 and 8 fields per well were

acquired and analyzed using Acapella 2.6 (PerkinElmer). For all nuclear markers, average intensities

in nucleus or fold change compared to untreated cells are shown. Unless stated otherwise, at least

three wells and a minimum of 300 cells for each condition were compared using the unpaired two-

tailed t-test.

Data processing
The image features-based profile for each cell population (e.g., cell types, treatments, technical rep-

etition) was represented using a vector (center of distribution vectors) in which every element is the

average value of all cells in that population for a particular feature. The vector’s length is given by

the number of features chosen (262 per histone modification). Raw feature values were normalized

by z-scoring to the average and standard deviation of all populations being compared. All cells in

each population were used to calculate center vectors, and each population contained at least 50

cells. Activity level for each drug was determined by calculating the distance from DMSO. For this,

feature values of all DMSO replicates center vectors were used to calculate the DMSO center vector.

Euclidean distance of each compound and each DMSO replicate to the DMSO center vector was cal-

culated. Distances were z-scored to the average distance and standard deviation of DMSO replicates

from the DMSO center vector. Transcriptomic-based profile for each cell population was repre-

sented using a vector in which every element is the z-scored FPKM value for a single gene in that

population. The length of the vector is given by the number of genes used to construct the profile.

Multidimensional scaling - MDS
The Euclidean distance between all vectors (either image features or transcriptomic based) was cal-

culated to assemble a dissimilarity matrix (size N � N, where N is the number of populations being

compared). For representation, the N � N matrix was reduced to a Nx2 matrix with MDS using the

Excel add-on program Xlstat (Base, v19.06), and displayed as a 2D scatter plot.

Discriminant Analysis
Quadratic discriminant analysis was conducted using the Excel add-on program xlstat (Base, v19.06).

The model was generated in a stepwise (forward) approach using default parameters. All features

derived from images of tested histone modification were used for analysis following normalization

by z-score. Features displaying multicollinearity were reduced. Model training was done using
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multiple DMSO replicates and at least two replicates from each cell-line or drug treatment. The

model was tested on at least 8 DMSO replicates and at least one replicate from each cell line or

treatment.

SVM classification
SVM classification was conducted as previously described (Collins et al., 2015). Cell-level data in

total populations (minimum 400 cells per population) were normalized to z-scores, and a subset of

cells from each population being classified was randomly chosen as the training set (subset size at

least 100 � the population number bei ng classified). The training set was used for a SVM classifier

(MATLAB svmtrain function). The remaining cells (test set) were then classified using the SVM-

derived classifier to assess the accuracy of classification (MATLAB svmclassify function). Here, the

accuracy of all pairwise classifications was given as the average accuracy calculated for each popula-

tion. To classify the similarity of multiple cell populations, we classified known populations (e.g., dif-

ferent treatments or cell fates) to generate known bins and then used the same classifiers on the

unknown population to categorize each cell.

Epigenetic drug screening
GBM2 cells were plated at 4000 cells/well and exposed to epigenetic compounds

(Supplementary file 1 - Table S2) at 10 mM for 1 day in 384-well optical bottom assay plates (Perki-

nElmer). Negative control was DMSO (0.1%), 48 DMSO replicates per plate, three technical repli-

cates (wells) were treated per compound. Cells were fixed and stained with histone modification-

specific antibodies (H3K27ac and H3K27me3, H3K9me3, H3K4me1) and AlexaFluor-488- or Alexa-

Fluor-555-conjugated secondary antibodies. DNA was stained with DAPI followed by imaging and

feature extraction. To compare data from multiple plates, average feature values in each plate were

normalized to DMSO. Here, feature values of all DMSO replicates center vectors in each plate, then

were used to calculate the plate-wise DMSO vector. Raw feature values for all center vectors of all

populations in each plate were normalized to the plate-wise DMSO vector; normalized feature values

were z-scored as above. To identify active compounds, activity level for each compound was calcu-

lated as above, and active compounds were defined as compounds for which activity z-score

was >3. Compounds reducing the number of imaged cells per well below 50 were considered toxic

and excluded from analysis.

Concentration curves
GBM2 cells were plated and stained as above. For each compound (Supplementary file 1 - Table

S3), cells were treated at 0.1, 0.3, 1.0, 3.0, 10.0 uM. Activity levels were calculated as above. Aver-

age cell count was calculated across the replicates for each compound to compare epigenetic

changes and toxicity. Cell counts were z-scored against the average and standard deviation of all

DMSO replicates. Distances (z-scored) and cell counts (z-scored) were averaged for each functional

class at each concentration.

RNAseq and transcriptomic analysis
Total RNA was isolated from GBM2 cells using the RNeasy Kit (Qiagen), 0.25 ug total RNA was used

to isolate mRNAs and for library preparation. Library preparation and sequencing were conducted

by the SBP genomics core (Sanford-Burnham NCI Cancer Center Support Grant P30 CA030199).

PolyA RNA was isolated using the NEBNext Poly(A) mRNA Magnetic Isolation Module, and bar-

coded libraries were made using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina

(NEB, Ipswich MA). Libraries were pooled and single-end sequenced (1 � 75) on the Illumina Next-

Seq 500 using the High-Output V2 kit (Illumina). Read data, processed in BaseSpace (https://base-

space.illumina.com), were aligned to Homo sapiens genome (hg19) using STAR aligner (https://

code.google.com/p/rna-star/) with default settings. Differential transcript expression was deter-

mined using the Cufflinks Cuffdiff package (https://github.com/cole-trapnell-lab/cufflinks). For heat

maps showing fold change in expression, FPKM values in each HDACi-treated population were

divided by the average FPKM values of DMSO-treated GBM2 and values shown as log2 of the ratio.

Go enrichment analysis was conducted using PANTHER v11 (Mi et al., 2017) using all genes identi-

fied as differentially expressed following either serum or Bmp4 treatment. To highlight differences in
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expression levels between serum- and Bmp4-treated GBM2 cells, FPKM values in each sample were

z-scored. Zscore=(FPKMObservation-FPKMAverage)/FPKMSD (FPKMObservation- FPKM value obtain

through sequencing; FPKMAverage – average of all FPKM values in all samples for a certain gene;

FPKMSD – standard deviation of FPKM values for a certain gene). Heat maps were generated using

Microsoft Excel conditional formatting.

Comparing epigenetic changes in different cell lines
To compare drug-induced epigenetic changes across multiple glioblastoma cell lines, 101A, 217M,

GBM2 and PBT24 cells were plated at 4000 cells/well and treated with compounds for 24 hr. Com-

pounds and concentrations are shown in Supplementary file 1 - Table S4. Activity level was calcu-

lated as above. Pearson coefficient and significance of correlation for activity levels in each pair of

cell lines were calculated using the Excel add-on program xlstat (Base, v19.06).

Correlation of transcriptomic and image-based profiles
Euclidean distances were calculated using either transcriptomic data (FPKM) or texture features.

Pearson’s correlation coefficient (R) was transformed to a t-value using the formula (t = R � SQRT(N-

2)/SQRT(1-R2) where N is the number of samples, R is Pearson correlation coefficient; the p-value

was calculated using Excel t.dist.2t(t) function. For compound prioritization, Euclidean distance

between the compound treated and serum- or Bmp4-treated GBM2 cells was calculated based on

either FPKM)or image features. The average distance for both serum and Bmp4 treatments was nor-

malized to the average distance of untreated cells to serum and Bmp4.

Sensitization to radiation or TMZ
Cells were plated at 1500 cells/well in 384-well optical bottom assay plates (PerkinElmer). Two sets

of the experiment were prepared; DMSO (0.1%) was used for negative controls at 48 DMSO repli-

cates per plate; three replicates (wells) were treated per compound. Compound concentrations

used are shown in Supplementary file 1 - Table S5. Cells in both sets were pre-treated with epige-

netic compounds for 2 days prior to cytotoxic treatment. Cytotoxic treatment, either 200 mM temo-

zolomide (TMZ, Sigma) or 1Gy x-ray radiation (RS2000; RAD Source) was carried out for 4 days on

single set (‘treatment set’); for TMZ treatment, DMSO control was given to the second set. A single

radiation dose was given at day 3; TMZ was given twice at days 3 and 5 of the experiment. Cells

were fixed, stained with DAPI, and scored using an automated microscope (Celigo; Nexcelom Biosci-

ence). For each compound, fold change in cell number was calculated for both the ‘treatment set’

(Drug+Cytotox) and the ‘control set’ (Drug), compared to DMSO-treated wells in the control set.

The effect of radiation or TMZ alone was calculated as fold reduction of DMSO-treated wells in the

treatment set compared to DMSO-treated wells in the control set (Cytotox). The coefficient of drug

interaction (CDI) was calculated as (Drug+Cytotox)/ (Drug)X(Cytotox). For conformation experi-

ments, the same regiment and CDI calculations were carried out on SK262, 101A, 217M, 454M, and

PBT24 glioblastoma cell lines; PARPi and BETi were used at same concentration as the initial screen

on GBM2 (Table S5).

Prestwick chemical library screen using H3K27me3 and H3K27ac
GBM2 cells were plated at 2000 cells/well and exposed to Prestwick compounds (3 mM;

Supplementary file 1 - Table S6) for 3 days in 384-well optical bottom assay plates (PerkinElmer).

Cells were then fixed and stained with rabbit polyclonal anti-H3K27ac and mouse monoclonal anti-

H3K27me3 antibodies followed by AlexaFluor-488- or AlexaFluor-555-conjugated secondary anti-

bodies. Positive controls contained BMP4 (100 ng/ml) and serum (10%); negative controls contained

DMSO (0.1%). DNA was counterstained with Hoechst. Images were acquired using Perkin Elmer

Opera QEHS. MIEL analysis was conducted as described above.
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Campion L, Campone M, Vallette FM, Gratas-Rabbia-Ré C. 2010. Prognostic value of O6-methylguanine-DNA
methyltransferase status in glioblastoma patients, assessed by five different methods. Journal of Neuro-
Oncology 97:311–322. DOI: https://doi.org/10.1007/s11060-009-0031-1, PMID: 19841865

Kedar PS, Stefanick DF, Horton JK, Wilson SH. 2012. Increased PARP-1 association with DNA in alkylation
damaged, PARP-inhibited mouse fibroblasts. Molecular Cancer Research 10:360–368. DOI: https://doi.org/10.
1158/1541-7786.MCR-11-0477, PMID: 22246237

Kim KY, Hysolli E, Park IH. 2011. Neuronal maturation defect in induced pluripotent stem cells from patients with
rett syndrome. PNAS 108:14169–14174. DOI: https://doi.org/10.1073/pnas.1018979108, PMID: 21807996

Lawrence M, Daujat S, Schneider R. 2016. Lateral thinking: how histone modifications regulate gene expression.
Trends in Genetics 32:42–56. DOI: https://doi.org/10.1016/j.tig.2015.10.007, PMID: 26704082

Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK,
Fine HA. 2006. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the
phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403.
DOI: https://doi.org/10.1016/j.ccr.2006.03.030, PMID: 16697959

Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J, Shin K, Seo YJ, Choi YS, Lee JI, Lee J, Joo KM, Nam DH. 2015.
FoxM1 promotes stemness and Radio-Resistance of glioblastoma by regulating the master stem cell regulator
Sox2. PLOS ONE 10:e0137703. DOI: https://doi.org/10.1371/journal.pone.0137703, PMID: 26444992

Lee DH, Ryu HW, Won HR, Kwon SH. 2017. Advances in epigenetic glioblastoma therapy. Oncotarget 8:18577–
18589. DOI: https://doi.org/10.18632/oncotarget.14612, PMID: 28099914

Li J, Hao D, Wang L, Wang H, Wang Y, Zhao Z, Li P, Deng C, Di LJ. 2017. Epigenetic targeting drugs potentiate
chemotherapeutic effects in solid tumor therapy. Scientific Reports 7:4035. DOI: https://doi.org/10.1038/
s41598-017-04406-0, PMID: 28642588

Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown
PO, Israel MA. 2005. Gene expression profiling reveals molecularly and clinically distinct subtypes of
glioblastoma multiforme. PNAS 102:5814–5819. DOI: https://doi.org/10.1073/pnas.0402870102, PMID: 15
827123

Loo LH, Wu LF, Altschuler SJ. 2007. Image-based multivariate profiling of drug responses from single cells.
Nature Methods 4:445–453. DOI: https://doi.org/10.1038/nmeth1032, PMID: 17401369

Loo LH, Lin HJ, Steininger RJ, Wang Y, Wu LF, Altschuler SJ. 2009. An approach for extensibly profiling the
molecular states of cellular subpopulations. Nature Methods 6:759–765. DOI: https://doi.org/10.1038/nmeth.
1375, PMID: 19767759

Lord CJ, Ashworth A. 2017. PARP inhibitors: synthetic lethality in the clinic. Science 355:1152–1158. DOI: https://
doi.org/10.1126/science.aam7344, PMID: 28302823

Farhy et al. eLife 2019;8:e49683. DOI: https://doi.org/10.7554/eLife.49683 24 of 26

Research article Cancer Biology Human Biology and Medicine

https://doi.org/10.1186/1471-2105-8-110
http://www.ncbi.nlm.nih.gov/pubmed/17394669
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1056/NEJMoa043331
https://doi.org/10.1056/NEJMoa043331
http://www.ncbi.nlm.nih.gov/pubmed/15758010
https://doi.org/10.18632/oncotarget.4242
http://www.ncbi.nlm.nih.gov/pubmed/26087189
https://doi.org/10.1200/JCO.2016.34.15_suppl.e14123
https://doi.org/10.1111/j.1476-5381.2010.01127.x
http://www.ncbi.nlm.nih.gov/pubmed/21091654
https://doi.org/10.18632/oncotarget.16365
https://doi.org/10.18632/oncotarget.16365
http://www.ncbi.nlm.nih.gov/pubmed/28418907
https://doi.org/10.1126/science.1063127
https://doi.org/10.1126/science.1063127
http://www.ncbi.nlm.nih.gov/pubmed/11498575
https://doi.org/10.3390/cancers7020538
http://www.ncbi.nlm.nih.gov/pubmed/25815458
https://doi.org/10.1038/nrg.2016.93
http://www.ncbi.nlm.nih.gov/pubmed/27629931
https://doi.org/10.1038/nbt.3419
http://www.ncbi.nlm.nih.gov/pubmed/26655497
https://doi.org/10.1007/s11060-009-0031-1
http://www.ncbi.nlm.nih.gov/pubmed/19841865
https://doi.org/10.1158/1541-7786.MCR-11-0477
https://doi.org/10.1158/1541-7786.MCR-11-0477
http://www.ncbi.nlm.nih.gov/pubmed/22246237
https://doi.org/10.1073/pnas.1018979108
http://www.ncbi.nlm.nih.gov/pubmed/21807996
https://doi.org/10.1016/j.tig.2015.10.007
http://www.ncbi.nlm.nih.gov/pubmed/26704082
https://doi.org/10.1016/j.ccr.2006.03.030
http://www.ncbi.nlm.nih.gov/pubmed/16697959
https://doi.org/10.1371/journal.pone.0137703
http://www.ncbi.nlm.nih.gov/pubmed/26444992
https://doi.org/10.18632/oncotarget.14612
http://www.ncbi.nlm.nih.gov/pubmed/28099914
https://doi.org/10.1038/s41598-017-04406-0
https://doi.org/10.1038/s41598-017-04406-0
http://www.ncbi.nlm.nih.gov/pubmed/28642588
https://doi.org/10.1073/pnas.0402870102
http://www.ncbi.nlm.nih.gov/pubmed/15827123
http://www.ncbi.nlm.nih.gov/pubmed/15827123
https://doi.org/10.1038/nmeth1032
http://www.ncbi.nlm.nih.gov/pubmed/17401369
https://doi.org/10.1038/nmeth.1375
https://doi.org/10.1038/nmeth.1375
http://www.ncbi.nlm.nih.gov/pubmed/19767759
https://doi.org/10.1126/science.aam7344
https://doi.org/10.1126/science.aam7344
http://www.ncbi.nlm.nih.gov/pubmed/28302823
https://doi.org/10.7554/eLife.49683


Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. 2013. Selective
inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334. DOI: https://doi.org/10.
1016/j.cell.2013.03.036, PMID: 23582323

Luense S, Denner P, Fernández-Montalván A, Hartung I, Husemann M, Stresemann C, Prechtl S. 2015.
Quantification of histone H3 Lys27 trimethylation (H3K27me3) by high-throughput microscopy enables cellular
large-scale screening for small-molecule EZH2 inhibitors. Journal of Biomolecular Screening 20:190–201.
DOI: https://doi.org/10.1177/1087057114559668, PMID: 25409661

Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR. 2010. A model for
neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell 143:
527–539. DOI: https://doi.org/10.1016/j.cell.2010.10.016, PMID: 21074045

Martinez NJ, Simeonov A. 2015. Cell-based assays to support the profiling of small molecules with histone
methyltransferase and demethylase modulatory activity. Drug Discovery Today: Technologies 18:9–17.
DOI: https://doi.org/10.1016/j.ddtec.2015.10.004, PMID: 26723887

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. 2017. PANTHER version 11: expanded
annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic
Acids Research 45:D183–D189. DOI: https://doi.org/10.1093/nar/gkw1138, PMID: 27899595

Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP,
Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C,
et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:
553–560. DOI: https://doi.org/10.1038/nature06008, PMID: 17603471

Miyamoto K, Nguyen KT, Allen GE, Jullien J, Kumar D, Otani T, Bradshaw CR, Livesey FJ, Kellis M, Gurdon JB.
2018. Chromatin accessibility impacts transcriptional reprogramming in oocytes. Cell Reports 24:304–311.
DOI: https://doi.org/10.1016/j.celrep.2018.06.030, PMID: 29996092

Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y. 2012. Trapping of
PARP1 and PARP2 by clinical PARP inhibitors. Cancer Research 72:5588–5599. DOI: https://doi.org/10.1158/
0008-5472.CAN-12-2753, PMID: 23118055

Nakano I, Masterman-Smith M, Saigusa K, Paucar AA, Horvath S, Shoemaker L, Watanabe M, Negro A, Bajpai R,
Howes A, Lelievre V, Waschek JA, Lazareff JA, Freije WA, Liau LM, Gilbertson RJ, Cloughesy TF, Geschwind
DH, Nelson SF, Mischel PS, et al. 2008. Maternal embryonic leucine zipper kinase is a key regulator of the
proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research 86:
48–60. DOI: https://doi.org/10.1002/jnr.21471, PMID: 17722061

Oppermann S, Ylanko J, Shi Y, Hariharan S, Oakes CC, Brauer PM, Zúñiga-Pflücker JC, Leber B, Spaner DE,
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