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ABSTRACT Intermediate phenotypes such as gene expression values can be used to elucidate the
mechanisms by which genetic variation causes phenotypic variation, but jointly analyzing such
heterogeneous data are far from trivial. Here we extend a so-called mediation model to handle
the confounding effects of genetic background, and use it to analyze flowering time variation
in Arabidopsis thaliana, focusing in particular on the central role played by the key regulator FLOWERING TIME
LOCUS C (FLC). FLC polymorphism and FLC expression are both strongly correlated with flowering
time variation, but the effect of the former is only partly mediated through the latter. Furthermore, the
latter also reflects genetic background effects. We demonstrate that it is possible to partition these
effects, shedding light on the complex regulatory network that underlies flowering time variation.
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A crucial question in genetics is understanding how genetic variation
translates into phenotypic variation. DNA sequence polymorphisms
influence final phenotypes through intermediate phenotypes such as
protein structures, epigenetic states, and gene expression levels—many
of which can be assayed using modern technologies. Understanding
how these intermediate, molecular phenotypes mediate the effects of
genetic variation is of fundamental interest, and has enormous applied
implications.

Interest has inparticular focused on gene expression levels since they
dynamically respond to environmental stimuli, developmental transi-
tions, and other physiological states. Mapping studies have shown that
eQTL (expression Quantitative Trait Loci) frequently coincide with

causal variants identified using GWAS (Genome-Wide Association
Studies, see; Nicolae et al. 2010; GTEx Consortium 2017), supporting
the notion that a substantial proportion of genetic variants influence
the phenotype by regulating expression levels of the corresponding
genes (Nicolae et al. 2010; Cubillos et al. 2012; Barfield et al. 2017;
Chun et al. 2017; Mancuso et al. 2017). However, even if this were true,
the correlation betweenmeasured expression variation and phenotypic
variation would not necessarily be perfect due to time-, tissue-, and
environment-specific regulation. To quantify this, the genetic effect can
be decomposed using a “mediation model” (seeMaterials andMethods
for more about medation models) into an “indirect effect” that can be
explained by gene expression levels and a “direct effect” that cannot be
(Figure 1; Baron 1986; Valeri and Vanderweele 2013; Huang et al.
2015). A recent study reported that only about 20% of human disease
heritability is thus mediated by gene expression (O’Connor et al. 2017).

Here we use GWAS and mediation analysis to study the transcrip-
tional network regulating flowering time in Arabidopsis thaliana. A
novel feature of our analysis is that we explictly model the confounding
effects of the genetic background using a linear mixed-model approach
that has become standard in GWAS (Vilhjálmsson and Nordborg
2013). That confounding can bias mediation analyses is well known
(Richiardi et al. 2013; Yang et al. 2017), as is the fact that genetic
background is a major confounder of GWAS inA. thaliana— especially
of locally adaptive traits (Aranzana et al. 2005; Atwell et al. 2010). To our
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knowledge this is the first time that mediation analysis including
random effects for the genetic background is performed, where we
justify our approach using the statistical theory of counterfactuals.

Flowering time in A. thaliana is well-suited for the development of
mediationmodels for at least three reasons. First, systematically collected
multi-layer data are available. Since A. thaliana is highly selfing and
naturally exists as inbred lines, multiple phenotypes, including interme-
diate ones such as gene expression, have been collected for the same
genotype. Second, sampling and growth conditions are controllable
and uniform, unlike in human studies, making modeling easier. Finally,
flowering time is one of the best understood traits in plants. More than
one hundred genes in several major pathways have been described: the
photoperiod, ambient temperature, autonomous, integrator, gibberellin
and vernalization pathways combine to regulate flowering (Simpson and
Dean 2002; Kim et al. 2009;Wellmer and Riechmann 2010; Srikanth and
Schmid 2011; Andrés and Coupland 2012).

Our primary goal in this study is to use flowering time as an example
to explore how best to combine heterogeneous, multilayer data in order
to improve our understanding of the genotype-phenotype map. Our
results illustrate well the complexities inherent in even a very simple
network structure.

MATERIALS AND METHODS

Data sets
We used published A. thaliana data sets containing genotypes (Long et al.
2013), RNA-seq transcriptome data (Dubin et al. 2015), as well as flowering
time phenotypes (Sasaki et al. 2015, Table S1). All plants were grown under
constant 10� (132 lines) and 16� (154 lines) in 16 h day length condition. For
RNA seq analysis, RNA was extracted from whole rosettes collected at
11-12 h after dawn at nine-leaf stage (Dubin et al. 2015). In addition, we
used a dataset for flowering time and FLC expression including global
populations (Shindo et al. 2005; Atwell et al. 2010, 101 lines). Plants were
grown under natural light conditions in the greenhouse (22-23�) from Oc-
tober 2002 to March 2003. FLC expression was measured by q-RT-PCR
using RNA extracted from young leaves after 4 weeks of growth (nearly
nine-leaf stage). With respect to genotypes the genome-wide SNP informa-
tion in the 1001 genome project was used (The 1001 Genomes Consortium
2016). The dataset of 10� were used for model building, it of 16� and
greenhouse were used for prediction of flowering time by the model.

Correlation analysis
Both Spearman’s (r) and Pearson’s (r) correlation coefficient between
flowering time and expression levels were calculated for 20,285 genes

forwhichmore than 10% lines showed detectable expression levels. The
Benjamini Hochberg prodecure (Benjamini 1995) was applied to the
p-values corresponding to r to obtain genes with the most highly
correlated expression levels while controlling FDR at 5%. For the result-
ing genes a correlation network (Figure 2) was visualized with Cyto-
scape (Shannon et al. 2003) using a Bonferroni corrected threshold of

1.35e-05 for p-values (741 ¼
�
39
2

�
tests for pairs of 38 genes +flowering

time at a family wise error rate of 0.01).

GO analysis
Enrichment of knownflowering timegeneswas estimated usingBiNGO
as a plugin of Cytoscape (Maere et al. 2005) with Benjamini-Hochberg
FDR correction (Benjamini 1995). The GO term ”regulation of flower
development” (TAIR; Berardini et al. 2015) was used for the analysis of
flowering time genes. FDR was calculated based on the GO list as de-
scribed in Sasaki et al. (2015).

Genome-Wide Association Studies (GWAS)
GWAS analysis for flowering time and FLC expression was performed
using LIMIX (Lippert et al. 2014), and the following liner mixed-model
(LMM):

Y ¼ Xbþ uþ e

varðYÞ ¼ s2
gKþ s2

e I

where Y is the n· 1 vector of a phenotype (either the standardized flower-
ing time or the standardized FLC expression), X is the n· 1 vector of the
standardized genotype to be tested (SNP), and b is the parameter of the
corresponding fixed effect. u � Nð0;s2

gKÞ is the random effect including
the kinship matrixK representing genetic relatedness (IBS) (Yu et al. 2006;
Kang et al. 2008) and e � Nð0;s2

eIÞ refers to the residual. Bonferroni-
correctionwasused formultiple-testing correction (using a familywise error
rate of 5%with 3,401,897 SNPs after excluding all SNPs withMAF # 0:1).

Variance component analysis
Cis-genetic effects of loci on an expression level Y was estimated using
local_vs_global_mm() function in mixmogam (https://github.com/
bvilhjal/mixmogam) with the model

Y ¼ Ulocal þ Uglobal þ e

Ulocal � N
�
0;s2

localKlocal
�

Uglobal � N
�
0;s2

globalKglobal

�

eY � N
�
0;s2

yIn
�

Here Ulocal and Uglobal are random effects corresponding to local and
global relatedness, respectively, and e is noise. The local region is
defined as6 15 Kb coding region of each gene, and the global region
is defined as the entire genome. With mixmogam the local and global
IBS matrices were calculated as genetic relatedness using all SNPs in
local and global regions, respectively. Significance of the variance
components was estimated by permutation tests (1000 times) with
maintaining the chromosomal order of all observations but shuffling
the relative positions of the two variables.

Mediation analysis
The ideaof usingpathway analysis to dissect biological effects into direct
and indirect causal relationships was developed already about 100 years
ago byWright (1921). However, his methods were by and large ignored

Figure 1 A genotype-phenotype model that includes gene expres-
sion. The phenotype is affected by a genetic polymorphism that is
partly mediated by the expression of a nearby gene, resulting in a
direct and indirect genetic effect. Both gene expression and pheno-
type are also affected by confounding genetic background.
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in the biological sciences (see Shipley 2016, for a discussion of why this
was the case), and it was rather in the social sciences that similar ideas
were developed almost half a century later. For example, Baron and
Kenny (1986) discussed questions of mediation analysis in the context
of pathway models. The modern approach to causal inference however
relies upon the counterfactual framework (see, for example: Pearl 2009;
Imbens and Rubin 2015).

To develop these ideas denote by X some input variable, by M the
mediator and by Y the outcome. In the counterfactual framework one
conceptualizes for each individual different potential outcomes
depending on the state of other variables. For example one would de-
note byYxðuÞ the state ofY for individual uwhenXwould be equal to x.
Although in practice never observable, one contemplates the potential
outcomes depending on different values of x as mathematically existing
entities — the counterfactual variables. The average causal effect (or
total effect) of a change from x to x� is then defined by EðYx 2Yx�Þ:
Under certain assumptions it is then possible to estimate this causal
effect from observational data (Pearl 2009; VanderWeele 2015).

If one is interested in the effect that changing x has on the outcomeY
directly (i.e., effects that are not mediated by other variables), then the
first idea is to look at counterfactual outcomes when keeping the levels
m of the mediatorM fixed. This leads to the so-called Controlled Direct
Effect CDE ¼ EðYxm 2Yx�mÞ: The CDE is not very appealing in our
case for two reasons. First, the gene expression levels (our mediator)
can certainly not be controlled at all, and, second, controlling does not
provide the definition of an indirect effect. In contrast, the concepts of
natural direct effect (NDE) and natural indirect effect (NIE) introduced

by Pearl (2001) are directly applicable. The natural direct effect defined
as NDE ¼ EðYxmx� 2Yx� Þ compares (at an individual level) the change
in the outcome Y between input x� and input x but assuming the
mediator level would take the counterfactual value mx� : So NDE mea-
sures the change in outcome when themediator level is kept fixed while
changing input x. In contrast the natural indirect effect is defined as
NIE ¼ EðYx�mx 2Yx� Þ; so here the input is kept fixed at x� and one
measures the change in outcome that would occur by changing the
mediator according to the counterfactual mx: Identifiability assump-
tions for NDE and IDE for observational data are given in Pearl (2001)
and VanderWeele and Vansteelandt (2009).

Now the concepts of CDE, NDE and IDEmake it possible to obtain
clear definitions of direct and indirect effects for rather general classes of
regression models. We want to illustrate this first in the context of the
simplest possible linear regressionmodel formediation analysis. To this
end consider data froma sample of sizenwith inputX 2 ℝn; amediator
M 2 ℝn and a trait variable Y 2 ℝn and consider the model

M ¼ Xb1 þ eM ; eM � N
�
0;s2

MIn
�

Y ¼ Xb2 þMu1 þ eY ; eY � N
�
0;s2

YIn
�
;

where In is the n· n identity matrix, b1 and b2 are parameters for the
fixed effects, and u1 is the parameter for the effect of the mediatorM.
In our case, X corresponds to SNPFLC ,M to the gene expression levels
of the corresponding gene and Y denotes the flowering time. The
classical approach of pathway analysis simply consists of plugging
in the model for M in the second equation for Y,

Figure 2 Correlation between flowering time and gene expression levels in the Swedish population. (A) The significance of the GO enrichment for
flowering time genes (and implied FDR; see Methods) as function of the significance threshold for the flowering-expression correlation. (B) Outline of the
flowering pathways in A. thaliana (reviewed in, e.g., Kim et al. 2009; Wellmer and Riechmann 2010; Srikanth and Schmid 2011). FLC represses the floral
integrator genes FD, FT, and SOC1. FT is induced by the photoperiod pathway throughCONSTANS (CO), which is induced byCRYPTOCROMEs (CRYs);
the FT protein is a mobile flowering signal that works with FD to induce SOC1 and floral meristem genes including APETALA1 (AP1), FRUITFUL (FUL),
and SEPALATA (SPL3). AGL24 and SOC1 regulate each other in positive feedback loops and induce transcription of LFY. The gibberellin pathway
promotes flowering by inducing SOC1 and the floral meristem-identity gene LEAFY (LFY). (C) A correlation network based on gene expression levels.
Nodes show flowering time (yellow) and the genes in Table 1 (blue, or orange for the a priori gene set). Edges show significant correlations between
nodes (with Bonferroni correction to control FWER at a ¼ 0:01) in pink or blue (for positive and negative correlations, respectively).
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Y ¼ Xb2 þ ðXb1 þ eMÞu1 þ eY ; (1)

with corresponding expectation

EðYÞ ¼ Xðb2 þ b1u1Þ: (2)

Then b2 would be referred to as the direct effect and b1u1 as the indirect
effect which is mediated throughM. It turns out that for the simple model
(1) both CDE and NDE coincide with the direct effect from pathway anal-
ysis CDE ¼ NDE ¼ b2 and also NIE ¼ b1u1: This follows for example
from the analysis given in VanderWeele and Vansteelandt (2009), where a
slightly more general model including interactions between the inputX and
themediatorM is considered. For the linearmodel (1) standard software for
regression can then be used to obtain estimates of NDE and NIE and
VanderWeele and Vansteelandt (2009) also show how to compute the
corresponding standard deviations. A simple SAS macro to perform these
computations is described in Valeri and Vanderweele (2013).

One shortcoming of this extremely simple mediation approach is
that it does not take into account at all the polygenic effect from other
SNPs. The customary mixed model approach to GWAS analysis uses a
random effect to model that polygenic effect and we would like to
incorporate such random effects into the mediation analysis. Thus
consider the following generalization of (1)

M ¼ Xb1 þ Zg1 þ eM ; eM � N
�
0;s2

MIn
�

(3)

Y ¼ Xb2 þMu1 þ Zg2 þ eY ; eY � N
�
0;s2

YIn
�
; (4)

where g1 and g2 act as random effects for the polygenic effects by all
other SNPs, say Z ¼ ðX1; . . . ;XpÞ (where the SNP genotypes have
been standardized) and gi � Npð0;s2

i IpÞ: Now the error terms eM
and eY might be seen specifically to model environmental effects
and measurement errors of M and Y, respectively. According to the
pathway approach plugging in the model for M in the second equa-
tion for Y now yields

Y ¼ Xb2 þ ðXb1 þ Zg1 þ eMÞu1 þ Zg2 þ eY ; (5)

and taking expectations again results in (2). Therefore, according to
pathway analysis the definitions of direct and indirect effects remain
exactly the same as in case of the standard mediation model (1) without
randomeffects. In termsof counterfactuals it is straight forward to see that

NDE ¼ EðYxmx� 2Yx� Þ ¼ EðYxmx� 2Yx�mx� Þ
¼ b2x þ u1m

� 2b2x
� 2 u1m

� ¼ b2ðx2 x�Þ

and denoting by fMjXðmjxÞ the conditional density function of M
given X ¼ x we obtain

NIE ¼ EðYx�mx 2Yx� Þ ¼ EðYx�mx 2Yx�mx� Þ
¼

Z
m
EðYjx�;mxÞfMjXðmjxÞdm

2

Z
m
EðYjx�;mx� ÞfMjXðmjx�Þdm

¼
Z
m
ðx�b2 þmu1ÞfMjXðmjxÞdm

2

Z
m
ðx�b2 þmu1ÞfMjXðmjx�Þdm

¼ u1EðMjX ¼ xÞ2 u1EðMjX ¼ x�Þ ¼ u1b1ðx2 x�Þ

(6)

where we used (4) for the fourth equality and (3) for the last
equality. In summary, it follows that also in case of the mixed

model, the direct and indirect effects based on counterfactuals
coincide with the effects already obtained for the simple linear
model. The only remaining question is how to efficiently estimate
the parameters b1;b2 and u1: This problem has been comprehen-
sively studied and a number of software packages are available
(e.g., Kang et al. 2008).

Using the notation K ¼ ZZ9 for the kinship matrix we obtain

Var ðMjXÞ ¼ s2
1K þ s2

MIn ¼ s2
Mðl1K þ InÞ

Var ðY jMÞ ¼ s2
2K þ s2

YIn ¼ s2
Y ðl2K þ InÞ

n Table 1 List of genes whose expression is significantly correlated
with flowering time. Spearman correlation coefficient r with its
corresponding p-value, as well as the squared Pearson correlation
coefficient r2 which quantifies the explained variation of a simple
linear model

Gene ID r p-value r2 Descriptiona

AT5G10140 0.63 3.05E-16 0.53 FLC�

AT1G65480 20.54 2.64E-11 0.37 FT�

AT2G45660 20.47 1.35E-08 0.22 SOC1�

AT2G41640 20.42 7.03E-07 0.20 Glycosyl-
transferase

AT3G57920 20.39 3.28E-06 0.17 SPL15
AT1G04400 20.38 5.24E-06 0.15 CRY2�

AT5G52310 20.38 5.39E-06 0.14 RD29A
AT1G69440 20.38 5.53E-06 0.18 AGO7
AT3G13100 20.38 7.71E-06 0.10 ATP-BINDING

CASSETTE C7
AT1G23870 20.38 8.98E-06 0.16 TPS9
AT5G44630 20.37 9.65E-06 0.13 Terpenoid

cyclases
AT3G09100 20.37 9.74E-06 0.11 protein coding
AT5G51720 0.37 9.90E-06 0.07 AT-NEET
AT4G33040 20.37 1.02E-05 0.12 protein coding
AT3G04485 0.37 1.51E-05 0.13 other RNA
AT1G77810 20.37 1.62E-05 0.10 Galactosyl-

transferase
AT2G13560 20.36 1.70E-05 0.11 NAD-ME1
AT3G08990 0.36 1.73E-05 0.08 protein coding
AT1G17020 20.36 1.78E-05 0.07 SRG1
AT1G06160 0.36 2.26E-05 0.07 ORA59
AT3G19860 20.36 2.35E-05 0.11 BHLH121
AT5G48400 20.36 2.60E-05 0.10 ATGLR1.2
AT3G19500 0.36 2.76E-05 0.14 protein coding
AT3G05660 20.36 2.80E-05 0.11 AtRLP33
AT4G24540 20.35 3.33E-05 0.11 AGL24�

AT5G25120 20.35 3.42E-05 0.15 CYP71B11
AT3G18840 20.35 4.03E-05 0.08 TPR-like super-

family protein
AT2G18196 0.35 4.67E-05 0.11 protein coding
AT5G46210 20.35 4.78E-05 0.10 ATCUL4
AT1G53165 20.35 5.01E-05 0.09 ATMAP4K

ALPHA1
AT3G20250 20.34 5.12E-05 0.09 APUM5
AT5G44590 0.34 5.68E-05 0.12 protein coding
AT3G55610 20.34 6.47E-05 0.12 P5CS2
AT4G18130 20.34 6.63E-05 0.13 PHYE
AT1G78050 20.34 6.82E-05 0.12 PGM
AT5G10490 20.34 6.94E-05 0.12 MSL2
AT5G58900 0.34 7.22E-05 0.10 protein coding
AT2G46500 20.34 7.92E-05 0.11 ATPI4K
a
Genes in bold have flowering-related mutant phenotypes; �denotes genes that
are also part of a more conservative list of a priori candidates (Srikanth and
Schmid 2011).
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with l1 ¼ s2
1=s

2
M and l2 ¼ s2

2=s
2
Y : The same software packages can

be used to estimate these ratios (Kang et al. 2008). Scripts used for the
mediation analysis are available in supplemental scripts.

To test whether there is an indirect effect, that is the null hypothesis
b1¼0, we used permutation tests. Gene expression values were per-
muted 1500 times while keeping flowering time, genotype and the re-
latedness matrix fixed.

Estimation of explained variance
The amount of flowering time variation explained by SNPFLC and
FLC expression was estimated using the r2 defined for the LMM by
Nakagawa and Schielzeth (2013). We estimated r2 for three models:

• r2total; for the full model including SNP and expression effects
Y ¼ Xb2 þMu1 þ Zg2 þ eY given in equation (4);

• r2SNP; for a SNP model Y ¼ Xbþ Zg þ eY ; and;
• r2expression; for a SNP-independent expression model

Y ¼ Muþ Zg þ eY (estimated as r2expression ¼ r2total 2 r2SNP).

Prediction of flowering time
Flowering time was predicted using the full mediation model given
by equation (4), using estimates of b2 and u1 from the 10� data
ðb2 ¼ 0:25;     u1 ¼ 0:51Þ: Based on the assumption that effects of

population structure on Y and M are proportional, we then estimate
Zg2 for each new data set by fitting a null model M ¼ Zg2 þ eM by
REML as implemented in EMMA (Kang et al. 2008). The variation
explained by the resulting model was estimated using r2 as just de-
scribed (Nakagawa and Schielzeth 2013). To test whether the variance
component was positive permutation tests were applied (Figure S2).

Data availability
Table S2 contains all flowering time and FLC expression data. Other
gene expression data (Dubin et al. 2015) are available at GEO with
accession GSE54680. SNP data sets are available at https://github.com/
Gregor-Mendel-Institute/swedishgenomes (Long et al. 2013) and
http://1001genomes.org (The 1001 Genomes Consortium 2016). All
scripts used for the mediation analysis are available in supplemental
scripts. Supplemental material available at Figshare: https://doi.org/
10.25387/g3.6837674.

RESULTS

Correlation between gene expression and
flowering time
We began by asking whether gene expression, as measured in whole
plants (above-ground tissue only) at a few weeks of age (the nine-leaf

Figure 3 Genetic effects on gene expression levels.
Effects of local genetic variation were estimated using a
variance component analysis and 30-kb windows sur-
rounding each gene in Table 1. The lower panel shows
the fraction of expression variation explained by local
genetic variation surrounding each gene (cis-effects are
along the diagonal), and the top panel shows number
of associations explaining more than 10% of the varia-
tion (cf. Table S2).
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stage) was correlated with the eventual flowering of the same genotype
(at 10� under long-day conditions; seeMethods) across 132 inbred lines
(Table S1). According to the Benjamini Hochberg procedure at an FDR
level of 5%, 38 out of 20,285 genes (0.2%) showed significant correlation
with flowering time (Table 1). Of these, 9 were annotated as being
related to flowering, and 5 were also part of a more conservative list
of a priori candidates (Srikanth and Schmid 2011). This represents a
highly significant enrichment, which persists at higher FDR cut-offs
(Figure 2A; see Methods).

The top three genes (Table 1) were all a priori flowering time genes:
FLOWERING LOCUS C (FLC; Michaels and Amasino 1999; Sheldon
et al. 1999) in the vernalization pathway, and FLOWERING LOCUS T
(FT; Kardailsky et al. 1999; Kobayashi et al. 1999) and SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS 1 (SOC1; Samach et al. 2000)
in the ”integrator” pathway (Table 1; Figure 2B). In agreement with
previous work, FLC expression was clearly most strongly correlated: the
explained variance, r2 = 0.53, is strikingly similar to what was seen by
Lempe et al. (2005) using a sample under different environmental
conditions. The expression of the integrator loci FT and SOC1 is less
strongly correlated with flowering, which is interesting given that these
loci are thought to act downstream of FLC, and are in this sense closer to
the phenotype (Figure 2B; Schmid et al. 2003; Wellmer and Riechmann
2010).

The correlation network connecting the genes in Table 1 with
flowering was consistent with the known flowering-time pathways
(Figure 2C). The integrator pathway connected FT and SOC1 with
another strong a priori candidate, AGL24, a known inducer of SOC1
(Yu et al. 2002, 2004; Michaels et al. 2003). The photoperiod pathway
was not connected with the integrator pathway but included CRY2
(Toth et al. 2001) as a hub gene in a network containing 19 other
genes. The vernalization pathway, via FLC, cleary plays a central role,
connecting the integrator pathway and the photoperiod pathways via
FT and CRY2.

The genetic basis of expression and flowering variation
The correlation network between gene expression and flowering time
(Figure 2C) inherently undirected and tells us little about causation, but
insight can be gained by identifying the genetic causes of the expression
variation (Schadt et al. 2005). We used variance component analysis
(Lippert et al. 2014; Meng et al. 2016) to estimate the effect of local
(cis-acting) genetic variation on gene expression, using a 30 kb
window surrounding each gene. Based on permutation tests
(p, 0:05), roughly one third of the genes in Table 1 were significantly
cis-regulated (Figure 3 and Table S2). FLC stood out in that not only it
was strongly cis-regulated, but genetic variation at the gene was also
significantly associated with expression of almost half of the other
genes in Table 1. Thus genetic variation at FLC is affecting the ex-
pression of these loci in trans, almost certainly through its effect on
FLC expression. In contrast, the expression level of several other genes
highly correlated with flowering time, including FT, SOC1, and CRY2
showed no evidence of cis-regulation, but strong evidence for being
regulated by genetic variation at FLC. This suggests that FLC is the key
determinant of flowering time under our conditions.

To further study the effect of FLC, we carried out genome-wide
association studies (GWAS) for flowering time and FLC expression
(Figures 4 and S1). In agreement with our previous results (Sasaki
et al. 2015), GWAS for flowering time identified a genome-wide sig-
nificant association with a single nucleotide polymorphism (SNP)
in the promoter region of FLC (Chr5:3,180,721; p-value = 1.14E-08,
MAF = 0.38) in addition to weaker associations in two other a priori
candidates (Figure 4A). However, there was no significant association

for FLC expression (Figure 4B), even at FLC itself—which is surprising
given the strong correlation between FLC expression and flowering
time (Table 1) and the evidence for cis-regulation obtained using var-
iance-components analysis (Figure 3).

A mediation model of flowering time variation
Weare thus facedwith a seeminglyparadoxical result.How can a SNPat
FLC (SNPFLC) predict flowering time but not FLC expression, when
FLC expression strongly predicts flowering time (Figure 4)? We note
that there is no non-synonymous variation in this gene (Li et al. 2014),
so the effect of local genetic variation must be regulatory—and indeed
the variance component analysis confirms the existence of massive
cis-regulatory variation (Figure 3).

This suggests two things:first, SNPFLCmust affect flowering through
some aspect of FLC expression that is not captured by our expression
data; second, the expression variation we measure must partly be
caused by genetic variation not tagged by SNPFLC (in cis or in trans).
As just noted, the variance-component analysis clearly supports cis-
regulation of FLC (Figure 3).

To estimate the extent to which the effect of SNPFLC on flowering is
captured by FLC expression, we performed a statistical mediation anal-
ysis (Baron 1986; Valeri and Vanderweele 2013; Palmer et al. 2017).
Specifically, we modeled a traitY under the regulation of a causal factor
G that partly acts through an intermediatemediatorM in the context of
a confounding background factor C (Figures 1 and 5A). In the present
context, we assumed that the SNPFLC (G) regulates flowering time (Y)
and that this effect is partly captured by the measured FLC expression
(M). Because FLC expression was measured at the vegetative stage,
many weeks before flowering, we assume that M affects Y and not
the other way around. We used a linear mixed-model approach
(LMM; see Methods) to extend the mediation model to allow genetic
background loci to affect both M and Y (Figure 5A).

Using thismodel, we estimate that 40.8%of the total effect of SNPFLC
is mediated by (measured) FLC expression. As argued above, the
remaining 59.2% must thus be due to unmeasured effects on FLC

Figure 4 GWAS for flowering time (A) and FLC expression (B). Gray
horizontal lines indicate Bonferroni-corrected 5% significance thresh-
olds and orange arrows in panel A show a priori flowering time genes
(from Sasaki et al. 2015); the arrow in B shows the SNP in the FLC
region identified in A.

3064 | E. Sasaki, F. Frommlet, and M. Nordborg



regulation, as it is hard to see how SNPFLC could affect flowering any
other way.

Furthermore, the model explained nearly half of the phenotypic
variation (r2 ¼ 0:48), and both SNPFLC and FLC expression contrib-
uted significantly ðp, 0:01Þ: Interestingly, the latter explained more of
the variation (r2 ¼ 0:29) than the former (r2 ¼ 0:19), presumably
reflecting cis-genetic variation at FLC not tagged by SNPFLC as well
as the effect of trans-acting background genetic loci (Figure 5B).

The importance of the genetic background can readily be seen by
comparing the result above to thoseobtainedusingamodel thatdoesnot
control for confounding genetic background (Figure 5A). Under this
model, SNPFLC explained a much higher proportion of the phenotypic
variance (r2 ¼ 0:34 vs. r2 ¼ 0:19 above), as observed in the presence of
confounding (Figure 5B). The effect of confounding can also be seen in
a genome-wide inflation of p-values (Figure 5C). Finally, we investi-
gated the extent to which the effect of SNPFLCmight bemediated by the
expression levels of other genes by simply replacing FLC expression
with that of another gene in the model (Figure 5A). Of the 38 genes in
Table 1, 16 showed significant mediation of SNPFLC at p# 0:05 (Figure
5D). Among those were most of the genes having flowering-related
mutant phenotypes. Correlation with FLC expression was not a strong
predictor formediating the SNPFLC effect. For example, genes related to
the integrator pathway, including FT, SOC1,AGL24, and SPL15 (Figure
2), all mediated SNPFLC regardless of the correlation with FLC expres-
sion. On the other hand, CRY2 in the photoperiod pathway did not
mediate SNPFLC although its expression is significantly correlated with
that of FLC. In contradiction to this result, the variance component

analysis shows trans regulation of FLC on CRY2 expression (Figure 3).
These suggest that CRY2 might be regulated by FLC polymor-
phisms not tagged by SNPFLC (or epistasis).

Prediction of flowering time using the FLC model
As described in the previous section, we explain almost half of
flowering time variation (r2 ¼ 0:48) using SNPFLC (r2 ¼ 0:19) and
SNPFLC-independent FLC expression (r2 ¼ 0:29). Thus a single SNP
and a single expression measurement allows us to predict flowering
time rather well (Figure 6A).

To investigate the limits of this “single gene” model we tried to
predict flowering using flowering time and expression data gener-
ated for the same population, but at a higher growth temperature,
namely 16�C (Dubin et al. 2015). Higher temperature generally
accelerates flowering, but also prevents vernalization (Duncan
et al. 2015), thus significantly delaying flowering for some genotypes
(Sasaki et al. 2015).

We predicted flowering time at 16�C using SNPFLC and FLC ex-
pression at 16�C with effects of genetic background. We applied pa-
rameters estimated using the 10�C data to the model (see Methods for
details). SNPFLC was significantly associated with flowering time in the
16�C data as well (p-value = 3.31E-07; Figure S1A-B), but a correlation
between FLC expression and flowering time was only seen for early-
flowering lines that have no requirement of vernalization (cf. Figures
6A and B). Nonetheless the performance of the model changed sur-
prisingly little (the explained variation of flowering time decreased from
48 to 43% (Figure 6B).

Figure 5 Mediation analysis of flowering time regulation by FLC. (A) Models used. The full model correcting for genetic background is shown on
top (LMM, linear mixed-model), and the model without such a correction is shown below (LM, linear model). For details see text. Estimates are
shown in blue. (B) Proportion of flowering time variation (r2) explained by SNPFLC and FLC expression under the two models (see text). (C) QQ
plots of genome-wide association for flowering time and FLC expression with (blue line) and without (red line) correcting for population structure.
(D) The SNPFLC effect that is mediated by expression of each of the genes in Table 1. Red bars indicate that effect is significant (p,0:05).
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We also tested the model on a different population for which
greenhouse (approximately 23�C) and FLC expression data were avail-
able (Shindo et al. 2005). In these data, SNPFLC was not significantly
associated with flowering time, but FLC expression still showed a weak
correlation with flowering, and the model predicted 29% of flowering
time variation (Figure 6C). This decreased prediction accuracy might
be due to unknown genes that affect FLC action as suggested by Shindo
et al. (2005).

DISCUSSION
Ourprimarygoal in this studywas touseflowering time inA. thalianaas
a test case for understanding the connection between genotype and
phenotype. Specifically, we built a statistical model to understand
how genetic variation and gene expression variation at the central
flowering regulator FLC combine to cause phenotypic variation. Both
variables are significantly correlated with flowering time, but not with
each other. We resolve this apparent paradox by demonstrating that
genetic variation at FLC is only partly captured by measuring FLC
expression, and that FLC expression also captures the effect of genetic
background loci. The complexity apparent in even such a simple net-
work has broader implications for our ability to understanding the
genotype-phenotype map. We also demonstrate that it is essential to
control for genetic background in these kinds of studies. Using a clas-
sical linear mixed model (LMM) approach commonly used in GWAS
studies, we developed a simple mediation model that takes genetic
background into account, and showed that it dramatically reduced
overestimation of the effect of FLC. AlthoughPrincipal ComponentAnal-
ysis (PCA) can, in principle, also handle complex confounding (Yang

et al. 2017), the LMM-based approach is simple, and has a clear theoret-
ical justification and interpretation (Vilhjálmsson and Nordborg 2013).

According to our estimates, less than half of the effect of the main
SNP at FLC is captured by FLC expression (Figure 5). Given that there
is no non-synonymous variation at FLC, the missing variation must
reflect aspects of FLC expression we did not measure (e.g., tissue- or
time-specific expression). Conversely, the fact that FLC expression only
partly reflects the main SNP almost certainly reflects both allelic het-
erogeneity at FLC (Hagenblad et al. 2004; Shindo et al. 2005; Li et al.
2014) and background genetic loci. Integration analyses have reported
weak connection in genetic regulation between intermediate and final
phenotypes in both A. thaliana and humans (Zhang et al. 2011;
GTExConsortium 2017). Although the observation has been attributed
to noise and other confounding effects (Leek and Storey 2007; Fusi et al.
2012), genetic complexity likely also contributes. Mediation analyses
like those carried out here should help resolve this.

Our results also shed some light on the network regulatingflowering
time. Our correlation and variance component analyses (Figures 2–3),
support the considerable experimental evidence that FLC works up-
stream of the integration and photoperiod pathways, controlling the
expression of key flowering time genes like FT and SOC1 in the in-
tegration pathway and CRY2 in the photoperiod pathway (Hepworth
et al. 2002; El-Assal et al. 2003; Michaels et al. 2005). However, it is
interesting to note that the effect of SNPFLC was mediated by FT and
SOC1 but not CRY2 (Figure 5D). This suggests that FLC may regulate
these pathways differently. In general, however, the central role played
by FLC is illustrated by how well our simple model predicts flowering
time across populations and environments (Figure 6).

Figure 6 Prediction of flowering time. (A) Top: A scatter plot between flowering time and the expression level of FLC, both at 10�C; with
histograms for each phenotype illustrating the effect of SNPFLC. Reference and non-reference alleles are shown in blue and red, respectively. The
dashed lines are regression lines for each allele. Bottom: predicted vs. observed flowering time. (B) The 10�C model applied to the same
population grown at 16�C: (C) The 10�C model applied to a different population grown in the greenhouse. Dashed lines in model fits show
95% confidence intervals.
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In conclusion, our results illustrate how genetic variation and in-
termediate phenotypes such as gene expression may be combined to
understand the genotype-phenotype map, while at the same time
illustrating the complexity of even an extremely simple network dom-
inated by a single locus.
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