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Medical breakthroughs in recent years have led to cures for many diseases. The
mixture cure model (MCM) is a type of survival model that is often used when a
cured fraction exists. Many have sought to identify genomic features associated
with a time-to-event outcome which requires variable selection strategies for
high-dimensional spaces. Unfortunately, currently few variable selection meth-
ods exist for MCMs especially when there are more predictors than samples.
This study develops high-dimensional penalized Weibull MCMs, which allow
for identification of prognostic factors associated with both cure status and/or
survival. We demonstrated how such models may be estimated using two dif-
ferent iterative algorithms. The model-X knockoffs method was combined with
these algorithms to control the false discovery rate (FDR) in variable selection.
Through extensive simulation studies, our penalized MCMs have been shown to
outperform alternative methods on multiple metrics and achieve high statistical
power with FDR being controlled. In an acute myeloid leukemia (AML) appli-
cation with gene expression data, our proposed approach identified 14 genes
associated with potential cure and 12 genes with time-to-relapse, which may
help inform treatment decisions for AML patients.
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1 INTRODUCTION

Medical breakthroughs in recent years have led to cures for various diseases including cancer. For example, improvement
in outcomes has occurred in younger adults with acute myeloid leukemia (AML) during the past decades. Approximately
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50% to 75% of adult AML patients treated with chemotherapy achieves complete remission (CR) and approximately
20% to 30% of the patients enjoy long-term disease-free survival.1 Yanada et al2 suggested that AML patients with
3-year relapse-free survival from the CR date can be considered “potentially cured.” In practice, a long plateau in the
Kaplan-Meier (K-M) estimated survival distribution with sufficient follow-up may indicate the presence of a cure fraction
in the sample studied.

When a cure fraction is present, one assumption in regular survival models such as the Cox proportional hazards
(PH) model, that all subjects will experience the event of interest, is violated. In this case, a Cox PH model tends to
underestimate the hazard and overestimate the survival for the susceptible subjects.3 A special type of survival model,
namely, the mixture cure model (MCM), is frequently used in the presence of a cure fraction.4-7 MCMs postulate that a
fraction of the patients are cured with the survival probability of one and the other patients are susceptible to the event of
interest with the failure time following a proper survival distribution, referred to as the latency distribution. The latency
distribution can be depicted using parametric models4 and semi-parametric PH models.5-7 Parametric latency models
have straightforward distributional assumptions and are easy to fit using various optimization methods for maximum
likelihood estimation.

In order to better understand disease mechanisms, high-throughput genomic applications have been conducted to
identify important biomarkers that are associated with some time-to-event outcomes. When the number of covariates
exceeds the sample size, many traditional model-fitting approaches are not applicable. Effective variable selection proce-
dures for high-dimensional data are needed to select a set of variables that are truly associated with the event of interest.
Various penalization methods have been proposed and widely used during the past decades for variable selection in sur-
vival analysis, such as the least-absolute shrinkage and selection operator (LASSO)8 and the adaptive LASSO.9 However,
only a few papers focused on the penalized MCMs when a cure fraction exists.

Liu et al10 studied variable selection for the semi-parametric PH MCM, where both the LASSO and the smoothly
clipped absolute deviation (SCAD) penalties were considered. The expectation-maximization (E-M) algorithm11 was
used to maximize the penalized likelihood. A recent paper12 followed the work of Liu et al and extended the method
to mixture and promotion time cure models6 based on LASSO and adaptive LASSO.13 Beretta and Heuchenne14 gen-
eralized the PH MCM to accommodate time-varying covariates, using the SCAD penalty. Another approach by Scolas
et al15 adopted a parametric MCM with an accelerated failure time (AFT) regression model for latency and adap-
tive LASSO for variable selection on interval-censored data. However, a common limitation of these papers10,12,14,15

is that only low-dimensional data, where the number of covariates is much smaller than the sample size, were
considered.

Fan et al16 proposed a penalization method for estimating the MCM where they explicitly considered the structural
effects of covariates. That is, they postulated that the covariate effects on cure probability and those on survival func-
tion of susceptibles are potentially linearly related. Although the method is able to analyze high-dimensional data, their
strong assumption of proportionality structure may constrain its applicability. They later proposed a less restrictive strat-
egy which imposes a sign-based penalty to promote similarity in signs of the two-parts (referred to as SCinCRM in
the remainder of this article).17 Bussy et al18 introduced a more general mixture model (C-Mix) which considered sub-
groups of patients with different prognosis and risks. The C-Mix model includes the MCM as a special case and applies
to high-dimensional data, but it only allows subgroup membership, not the latency portion, to be driven by covariates.
Additionally, the variable sets selected by the aforementioned methods are likely to contain redundant or noise vari-
ables, also known as false positives. Effectively controlling the false discovery rate (FDR), the expected proportion of
false positives among all selected variables, without sacrificing power has been a major challenge in variable selection
research.

This study aims to develop penalized parametric MCMs for high-dimensional datasets, which allow for identification
of prognostic factors associated with both cure status and/or survival of susceptibles. Two different iterative algorithms,
the generalized monotone incremental forward stagewise (GMIFS)19 and the E-M algorithm,11 are adopted for model
estimation. These algorithms are further combined with the model-X knockoffs20 which is a flexible selection frame-
work that allows strict FDR control. The remainder of the article is organized as follows. Section 2 introduces the
statistical models and algorithms, and presents a brief introduction of the model-X knockoffs framework. A simula-
tion study designed to empirically compare our proposed methods with alternative approaches (including SCinCRM,
C-Mix, and traditional survival models that do not consider cure) is reported in Section 3. In Section 4, we apply dif-
ferent methods to a high-throughput gene expression dataset for AML patients and present a list of genes that were
identified as being associated with either the probability of cure or survival. Section 5 concludes the article with a
discussion.
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2 STATISTICAL MODELS AND ALGORITHMS

2.1 Weibull MCMs

Let T ∼ f (t) be a random non-negative continuous variable representing lifetime of interest (e.g., relapse-free survival
time) with the cumulative distribution function (CDF) denoted by F(t). A proportion 𝜋 of subjects are susceptible (Y = 1)
to the event of interest, and 1 − 𝜋 are cured (Y = 0) who will not experience the event even after an extended follow-up,
that is, S(t|Y = 0) = 1 for all t. Note the cure status Y is unknown for censored subjects. The survival function for the
entire population is given by

S(t|x,w) = 1 − 𝜋(x) + 𝜋(x)S(t|Y = 1,w) = 1 − 𝜋(x)F(t|Y = 1,w), (1)

where x and w represent the covariates associated with incidence (whether one is cured) and latency (what is the survival
function given one is uncured), respectively. Therefore, F(t|x,w) = 1 − S(t|x,w) = 𝜋(x)F(t|Y = 1,w) and differentiating
this with respect to t, the density is f (t|x,w) = 𝜋(x)f (t|Y = 1,w). The likelihood L for right-censored survival data with a
cured fraction is

L(𝜽) ∝
N∏

i=1
[f (ti|xi,wi)]𝛿i[S(ti|xi,wi)]1−𝛿i

=
N∏

i=1
[𝜋(xi)f (ti|Yi = 1,wi)]𝛿i[1 − 𝜋(xi)F(ti|Yi = 1,wi)]1−𝛿i

, (2)

where 𝛿i = 1 indicates the failure time was observed while 𝛿i = 0 indicates the observed time was censored. The
log-likelihood is then proportional to

l(𝜽) ∝
N∑

i=1
[𝛿i log(𝜋(xi)f (ti|Yi = 1,wi)) + (1 − 𝛿i) log(1 − 𝜋(xi)F(ti|Yi = 1,wi))]. (3)

In this article, a fully parametric likelihood function is considered. Specifically, the Weibull distribution, a popular
parametric survival distribution that allows the formularization of both AFT and PH models, is assumed for the latency
of the susceptibles. The Weibull density is f (t|Y = 1) = 𝜆𝛼(𝜆t)𝛼−1 exp[−(𝜆t)𝛼] where the shape 𝛼 and scale 𝜆 parameters
are both positive. We introduce the effects of the covariates w by replacing 𝜆𝛼 with 𝜆𝛼 exp(𝜷Tw) such that

f (t|Y = 1,w) = 𝜆𝛼(𝜆t)𝛼−1 exp(𝜷Tw) exp[−(𝜆t)𝛼 exp(𝜷Tw)]. (4)

The probability of being susceptible is most frequently modeled with logistic regression,4,5,21,22 in which case we replace
𝜋(x)with exp(b0 + bTx)∕(1 + exp(b0 + bTx)). Substituting these two expressions into Equation (3) yields the log-likelihood
for the Weibull MCM, given by

l(𝜽) ∝
N∑

i=1

{

𝛿i log
(

exp(b0 + bTxi)
1 + exp(b0 + bTxi)

𝜆𝛼(𝜆ti)𝛼−1 exp(𝜷Twi) exp
[
−(𝜆ti)𝛼 exp(𝜷Twi)

]
)

+(1 − 𝛿i) log
(

1 −
exp(b0 + bTxi)

1 + exp(b0 + bTxi)
(
1 − exp

[
−(𝜆ti)𝛼 exp(𝜷Twi)

])
)}

. (5)

With high-dimensional covariate spaces, penalization is desired for both coefficient sets, b for incidence and 𝜷 for
latency. That being said, sometimes it is useful to coerce some covariates that are known risk factors into the model
without penalty, such as baseline demographic and clinical characteristics. Hence, we further partition the two sets of
predictors as x = (xu, xp) and w = (wu,wp), where the u subscript represents the unpenalized predictors that we wish to
force into the model, while the p subscript represents the penalized predictors for which we seek a parsimonious model,
such as genomic features. The parameters corresponding to the incidence portion of the model are given by b = (b0,bu,bp)
where b0 is the intercept, while the parameters corresponding to the latency portion are 𝜷 = (𝜷u, 𝜷p), so that [1, xT

i ]b =
b0 + bT

u xu,i + bT
p xp,i and 𝜷Twi = 𝜷T

u wu,i + 𝜷T
p wp,i. The unknown parameters are listed in 𝜽 = (𝛼, 𝜆, b0,bu,bp, 𝜷u, 𝜷p), and

the observed data include Oi = (ti, 𝛿i, xu,i, xp,i,wu,i,wp,i), for i = 1, … ,N.
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2.2 Generalized monotone incremental forward stagewise

First, we used the GMIFS method19 to estimate the penalized Weibull MCM for high-dimensional data. In the linear
regression setting, the incremental forward stagewise (FS𝜖) method is a version of boosting which produces a coefficient
path strikingly similar to the L1-penalized regression (LASSO) path along the penalization level.23 FS𝜖 works by incre-
menting the coefficient of the variable most correlated with the current residuals by an amount±𝜖 at each step. When the
incremental amount 𝜖 ↓ 0, the algorithm (called FS0) produces an identical path to the LASSO path under certain con-
ditions.24 FS0 was later characterized as a monotone version of the LASSO with much smoother regularization paths.19

The GMIFS method is a generalization of this characterization to problems involving other than squared error loss, such
as the logistic regression model.19 As long as the gradient functions can be derived, the GMIFS is theoretically applicable
to any parametric models. In fact, it has been proven useful in a wide variety of high-dimensional settings for modeling
discrete survival time,25 ordinal,26,27 or count responses.28

The GMIFS algorithm proceeds in an iterative fashion and updates one of the penalized coefficients by a small incre-
mental amount at each iteration step. To determine which penalized covariate is to be updated, the algorithm adopts the
steepest ascent method, that is, updating the coefficient associated with the largest gradient. In our case, one penalized
incidence coefficient in bp and one penalized latency coefficient in 𝜷p were selected and updated at each step. To deter-
mine the direction of the update at each step, the expanded penalized design matrices (Xp,−Xp) and (Wp,−Wp) were
used as input. Both expanded matrices were centered and scaled before entering the algorithm. The corresponding coef-
ficients were then expanded to (b+p ,b−p ) and (𝜷+p , 𝜷−p ), and the Karush-Kuhn-Tucker condition ensures that at most one
of b+j and b−j associated with the same covariate xj (or 𝜷+j and 𝜷−j with wj) was greater than zero at the same time.19 At
each iteration, the selected coefficients were updated with a small incremental amount 𝜖 (set to be 0.001) so that the coef-
ficient paths for both positive and negative parts are constrained to be monotonically nondecreasing. In the end of the
algorithm, the solution paths for the original coefficients bp and 𝜷p were obtained by subtracting the coefficient estimates
for the negative versions of the variables, from those for the positive counterparts.

The GMIFS algorithm for the penalized Weibull MCM is summarized in Algorithm 1. The algorithm starts
with b+p = b−p = 0, and 𝜷

+
p = 𝜷−p = 0. The unpenalized parameters, 𝛼, 𝜆, b0, bu and 𝜷u, are initialized using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization method with the method of moments (MOM) estimates for
𝛼 and 𝜆 as starting values. The algorithm then iterates between updating the penalized parameters and updating the
unpenalized parameters. To update the unpenalized parameters, the BFGS method is applied, considering the penal-
ized parameters (b+p ,b−p ) and (𝜷+p , 𝜷−p ) fixed at the current estimates. If the difference between the log-likelihoods of
two successive steps is less than a prespecified tolerance 𝜏 (set to be 10−5), the iterative procedure is considered to
be convergent. Otherwise, the algorithm stops after 10 000 iterations. To prevent over-fitting, cross-validation can be
used to select the optimal step which yields the final estimates. The C-statistic designed for MCMs29 (described in
Section 3.3) is used as the cross-validation metric for the GMIFS as well as the E-M algorithm discussed in the next
section.

2.3 Expectation-maximization algorithm

The E-M algorithm is a natural choice for problems with hidden variables, such as the cure status Yi in the MCMs.10,12,16

In this section, we introduce the E-M and describe how it can be applied to the L1 penalized MCMs.

Algorithm 1. GMIFS algorithm for penalized Weibull mixture cure models

1: Start with b+p = b−p = 0 and 𝜷+p = 𝜷−p = 0.
2: Initialize the unpenalized parameters, 𝛼, 𝜆, b0, bu, and 𝜷u, using a maximization algorithm of the log-likelihood.
3: Considering 𝛼, 𝜆, b0, bu, and 𝜷u fixed, find the predictor j = arg max

(
𝜕l
𝜕bp

)

and update bp,j ← bp,j + 𝜖 where bp,j ∈

{b+p ,b−p }; find the predictor m = arg max
(

𝜕l
𝜕𝜷p

)

and update 𝛽p,m ← 𝛽p,m + 𝜖 where 𝛽p,m ∈ {𝜷+p , 𝜷−p }.

4: Update 𝛼, 𝜆, b0, bu, and 𝜷u by maximum likelihood given the current b+p , b−p , 𝜷+p , and 𝜷−p .
5: Repeat steps 3 and 4 until the difference between successive log-likelihoods is less than a prespecified tolerance 𝜏.
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Assuming that we have observed the cure status Yi for i = 1, … ,N, the complete-data likelihood function for the
MCM is

LC(𝜽) =
N∏

i=1
𝜋(xi)Yi[1 − 𝜋(xi)]1−Yi[h(ti|Yi = 1,wi)𝛿i S(ti|Yi = 1,wi))]Yi

, (6)

where h(ti|Yi = 1,wi) is the hazard function of an uncured patient. In a Weibull MCM, the penalized complete-data
log-likelihood with the LASSO penalty for both bp and 𝜷p can be written as

lCP(𝜽) =
N∑

i=1

{
Yi log 𝜋(xi) + (1 − Yi) log[1 − 𝜋(xi)]

}

+
N∑

i=1

{
𝛿iYi log(𝜆𝛼) + (𝛼 − 1)𝛿iYi log(𝜆ti) + 𝛿iYi(𝜷Twi) + Yi[−(𝜆ti)𝛼 exp(𝜷Twi)]

}

− N
J∑

j=1
𝜇1j ||bp,j|| − N

M∑

m=1
𝜇2m |

|𝛽p,m|| , (7)

where J denotes the number of predictors in bp, M denotes the number of predictors in 𝜷p, and 𝝁 =
(𝜇11, … , 𝜇1J , 𝜇21, … , 𝜇2M) is a vector of tuning parameters tuned by cross-validation. For the sake of simplicity, the same
value 𝜇 was used for all tuning parameters.

In the E-step, the algorithm calculated the expected lCP(𝜽) with respect to the conditional distribution of Yi given the
current parameter estimates ̂𝜽 and the observed data Oi. Since the Yi’s are linear terms in lCP(𝜽), we only need to compute
the expected value of Yi given ̂𝜽 and Oi, denoted by p̂i = E(Yi| ̂𝜽,Oi) = P(Yi = 1| ̂𝜽,Oi). When the subject i was censored
with 𝛿i = 0,

p̂i =
𝜋̂(xi) ̂S(ti|Yi = 1,wi)

1 − 𝜋̂(xi) + 𝜋̂(xi) ̂S(ti|Yi = 1,wi)
, (8)

according to the Bayes’ theorem. When an event was observed for the subject i with 𝛿i = 1, p̂i equals to 1. We can integrate
the two cases into one expression, given by

p̂i = 𝛿i + (1 − 𝛿i)
𝜋̂(xi) ̂S(ti|Yi = 1,wi)

1 − 𝜋̂(xi) + 𝜋̂(xi) ̂S(ti|Yi = 1,wi)
. (9)

To obtain the expected lCP(𝜽), the E-step replaces Yi in Equation (7) with p̂i given above.
The M-step maximized the expected lCP(𝜽), which is equivalent to maximizing the logistic portion and the survival

portion separately to obtain updated parameters. A trick was adopted to convert the L1 penalization to a constrained
optimization problem with a differentiable objective, by doubling the number of penalized parameters.30 Specifically, for
a real number a, we can write |a| = a+ + a− and a = a+ − a−, where a+ and a− correspond to the positive and negative
part of a, respectively, satisfying a+ ≥ 0 and a− ≥ 0. Then the limited-memory BFGS with bound constraints (L-BFGS-B)
is applicable to efficiently solve the optimization problems in the M-step. The unpenalized parameters were updated using
the regular BFGS method in each M-step.

The E-M algorithm is summarized in Algorithm 2. Similar to the GMIFS, 𝛼 and 𝜆 were initialized using the MOM
estimates, while 𝜷u was initialized using estimates from a low-dimensional Cox model with covariates Wu, and bu was

Algorithm 2. E-M algorithm for penalized Weibull mixture cure models

1: Fix the tuning parameter 𝜇 and initialize bu, bp, 𝛼, 𝜆, 𝜷u, and 𝜷p.
2: Execute the E-step by computing p̂i = E(Yi| ̂𝜽,Oi) and replacing Yi with p̂i in lCP(𝜽).
3: Update bp and 𝜷p with the L-BFGS-B algorithm and the converting approach discussed above.
4: Update 𝛼, 𝜆, b0, bu, and 𝜷u, using a maximization algorithm of the log-likelihood given the current bp and 𝜷p.
5: Repeat steps 2 to 4 until the difference between successive log-likelihoods is less than a prespecified tolerance 𝜏.
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initially set equal to 𝜷u for simplicity. The algorithm then iterated between the E-step and the M-step until convergence.
The E-M usually converged much quicker than the GMIFS thanks to the L-BFGS-B method, so a maximum iteration step
of 100 was used. The optimal 𝜇 was selected using the cross-validated C-statistic for MCMs.29

2.4 Model-X knockoffs

The model-X knockoffs approach20 was recently developed as a flexible variable selection framework with exact
finite-sample FDR control. Because the method places no restriction on data dimensionality or conditional distribution,
it is known in theory to apply seamlessly to arbitrary response types including time-to-event data. In this framework, a
set of “knockoff” variables ̃Z = ( ̃Z1, … ,

̃Zq) are constructed to mimic the covariance structure of the original covariates
Z = (Z1, … ,Zq). Formally, for any subset of the covariates, B ⊂ {1, … , q}, when the entries Zj and ̃Zj are swapped for
each j ∈ B, the joint distribution of (Z, ̃Z) will remain invariant. Another property of the knockoff variables is that they
are independent of the response conditionally on the original covariates. In this way, the knockoffs can be used as nega-
tive controls for the real covariates so that true signals can be teased apart from noise variables. Practically, the knockoff
variables can be constructed using the second-order approximate approach20 with the knockoff R package,31 assuming
that the covariates follow a multivariate normal distribution. When the covariates cannot be depicted by Gaussian distri-
butions, deep generative models such as the deep knockoff machine32 can be used to relax the distributional assumption
and generate valid knockoffs in general settings. Since we have two sets of covariates Xp and Wp in our model, we con-
structed a group of knockoff variables for each set. The second-order approximate approach was used for the knockoff
construction in the simulation studies in Section 3 and the deep knockoff machine was used in the application in Section 4
where the covariates were not normally distributed.

The knockoffs X̃p and W̃p were then augmented with the corresponding original covariates Xp and Wp, respectively,
to form two extended matrices, [Xp, X̃p] and [Wp, W̃p], with the number of predictors doubled. These extended matrices
were used as new input matrices that entered the GMIFS or E-M algorithm. The absolute values of estimates of the
penalized coefficients for the extended sets of covariates were obtained and used as the variable importance measurements
in terms of explaining the cure status or the latency. For example, the importance measure for an incidence covariate Xp,j ∈
{Xp, X̃p} is denoted by Uj = |̂bp,j|. We then calculated the difference between the importance measurement of the original
predictor and that of the knockoff as the statistic used for variable selection, denoted by Vj = Uj − Ũj. A data-dependent
threshold for bp is given by

𝜁 = min
{

v > 0 ∶
1 + #{j ∶ Vj ≤ −v}
#{j ∶ Vj ≥ v}

≤ 𝜏FDR

}

, (10)

where 𝜏FDR denotes the target FDR level. The variables in Xp whose statistics exceed the threshold 𝜁 are then selected. In
this way, strict FDR control in variable selection is guaranteed,20 meaning that on average, 80% of the variables selected
by the framework are expected to be true signals if 𝜏FDR is set to 20%. A similar procedure is followed to select important
variables from the latency covariates Wp.

3 SIMULATION STUDIES

3.1 Competing approaches

Simulation studies were conducted to compare the performance of our methods with that of competing approaches. The
SCinCRM16 and C-Mix18 are both relevant alternative methods with publicly available code and are thus included in
the comparison. The SCinCRM aimed at promoting sign consistency between the incidence coefficients and the latency
coefficients by imposing a sign-based penalty. The sign penalty term was governed by a tuning parameter which can be
tuned to zero when the sign consistency assumption is not supported by the data. In that case, the method reduces to a
penalized MCM. Besides the sign constraint, there are a few other differences between our method and the SCinCRM.
They used the Cox PH model for the survival function of susceptible subjects, while we considered the Weibull model
which is also a PH model. Instead of the L1 penalty, the minimax concave penalty (MCP)33 was adopted for the regression
coefficients. They also applied the E-M algorithm to estimate the model but used coordinate descent in each M-step.
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The C-Mix18 method considers a general mixture model where different subgroups of patients have different prognosis
and risks. The provided code supports the estimation of a MCM where one of the subgroups has zero risk. Compared with
our method, they used a similar E-M procedure with the L-BFGS-B algorithm, but there are some distinctions between
their model and ours. The most obvious distinction is that they only consider regression on the incidence part while we
incorporate regression on both incidence and latency. They assume a simple geometric distribution in their code which
allows for closed-form updates of a latency parameter that is identical for all subjects. Moreover, the elastic-net penalty34

is used for the coefficient regularization instead of L1.
Other than the aforementioned approaches, we would also like to investigate how a survival model without con-

sidering cure fraction would perform when a non-negligible subset of treated patients are cured. We thus included the
L1 penalized Weibull survival model (referred to as “non-cure Weibull” in the remainder of this article) and the L1
penalized Cox PH model (referred to as “non-cure Cox”) for comparison. Since no efficient implementation of the L1
penalized Weibull model for high-dimensional data is available to our best knowledge (there is a Bayesian implemen-
tation35 which is expected to be slow), we implemented the non-cure Weibull model via the GMIFS algorithm. The
glmnet R package36,37 was used to implement the L1 penalized Cox model. These non-cure models were tuned using
the cross-validated C-statistic based on only the latency coefficients (see Section 3.3 for a detailed description of the
metric).

The R code for implementing the proposed estimation algorithms and conducting the simulation studies has been
made available at https://github.com/hanfu-bios/curemodels.

3.2 Simulation settings

In the simulations, we used the same set of covariates for incidence (X) and latency (W) with N = 400 observations,
J = 500 penalized predictors and two unpenalized predictors. We randomly allocated 3/4 of the data to a training set
and 1/4 to a testing set. The penalized covariates Xp = Wp were generated from a J-dimensional Gaussian distribution
MVN(0,𝚺)where𝚺was a block diagonal matrix with the block size of B = 50. Each block had an autoregressive structure
with the (i, j)th element being 𝜎2

𝜌
|i−j| where 𝜎 = 0.5 and 𝜌 = 0.2 to reflect small correlations among predictors. The entries

in the unpenalized covariate matrices Xu = Wu were i.i.d. generated from a N(0, 𝜎2) distribution with 𝜎 = 0.5.
There were R = 10 penalized predictors having nonzero effects (called signals) on each regression part. One signal

predictor (bp,j or 𝛽p,j) was randomly selected from each block and assigned a coefficient value A (called signal amplitude)
taking on random signs, that is, bp,j, 𝛽p,j ∈ {±A}. We varied the value of A from 0.4 to 1.8 in our simulations to cover
common effect sizes of interest for gene expression data. All other predictors within that block were simply “null” noise
variables with zero coefficients. The unpenalized coefficients bu and 𝜷u were sampled from N(𝜇u, 𝜎

2
u)where 𝜇u ∈ {±0.3}

and 𝜎u = 0.1. In the default simulation setting, the incidence covariates and latency covariates were independently sam-
pled. In order not to favor our methods over SCinCRM because of their sign consistency assumption, we also performed
a simulation where the coefficients from the two parts, bu and 𝜷u, bp and 𝜷p, had the same signs.

Next, the cure status Yi for i = 1, … ,N was generated from a Bernoulli distribution with the mean of 𝜋(xi) =
exp(b0 + bTxi)∕(1 + exp(b0 + bTxi)). The intercept b0 was sampled from N(𝜇b0 , 0.01). To control the cure rate in the sim-
ulated data, the expected value for b0 was varied. Two values were chosen, 𝜇b0 ∈ {0.5, 1.5}, to reflect different cure rates
approximately at 40% and 25%, respectively. For susceptible subjects with Yi = 1, the event time Ti (in years) followed a
Weibull distribution with the shape parameter 𝛼 and the scale parameter 𝜆 exp[(𝜷T

u wu,i + 𝜷T
p wp,i)∕𝛼]. We set 𝛼 = 1 and

𝜆 = 2. The censoring time followed a uniform distribution on [0,Cmax]. If the event occurred later than the censoring
(Ti > Ci) or the subject was cured (Yi = 0), then the censoring indicator 𝛿i = 0; otherwise, 𝛿i = 1 indicating the event was
observed. For uncured subjects, the observed time ti was the smaller value between Ti and Ci, and for cured subjects,
ti = Ci. We set Cmax = 20 so that the censoring rate was approximately 45% when the cure rate was around 40%, and 31%
when the cure rate was around 25%.

To test robustness of our methods, we first applied an alternative data-generating distribution for the event time Ti of
susceptible subjects. The generalized gamma (GG) family is known to be an extensive family containing many survival
distributions as special cases, including the Weibull. It has three parameters, the location parameter 𝜇, scale parameter 𝜎
and shape parameter Q, with the density of

fGG(t) =
|Q|

𝜎tΓ(Q−2)

[

Q−2(e−𝜇t)
Q
𝜎

]Q−2

exp
[

−Q−2(e−𝜇t)
Q
𝜎

]

. (11)

https://github.com/hanfu-bios/curemodels
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When 𝜎 = 1
𝛼

, 𝜇 = −log𝜆 − 𝜷
T w
𝛼

and Q = 1, the GG density translates into the Weibull density we used in Equation (4).
In the alternative data-generating process, the event time Ti for uncured subjects followed a GG distribution with 𝜎

and 𝜇 described above but Q = 2 instead, which made it not a Weibull density anymore and further, violated the PH
assumption. We therefore investigated the model performance of the different methods when the latency models were
misspecified.

Further, we examined the robustness of our methods in the case where the underlying data generating process was a
non-MCM, or more specifically, a promotion time cure model.38 The promotion time cure model was constructed in the
context of cancer recurrence which is assumed to be promoted by carcinogenic cells that remain active after treatment.
The unobserved number of carcinogenic cells Ni is incorporated through a Poisson model. In the simulation, we let Ni
follow a Poisson distribution with the mean of exp(𝜷Twi). For each carcinogenic cell, the time to activation followed a
standard exponential distribution. If Ni > 0 for subject i, the event time Ti was the time when the first carcinogenic cell
became activated; if Ni = 0, subject i was cured with Ti = ∞. The covariates wi, the coefficients 𝜷 and the censoring times
were generated in the same way as in our default simulation setting. The signal amplitude A was set to be 1. Under this
simulation setting, we assessed the performance of our penalized MCMs when the model was completely different from
the data generating process.

3.3 Metrics for performance evaluation

In this section, we describe multiple metrics for performance evaluation and method comparison. Since variable selection
is our primary objective, the most important metrics in this study are false discovery proportion (FDP) and power in
selecting variables. The FDP is the realized version of FDR, calculated by the proportion of false positives among all
variables selected, that is, variables with nonzero estimated coefficients in the regularized models. Power can be estimated
by the proportion of true signals being identified. A low FDP and a high power are usually desired but a tradeoff exists
between the two. When the knockoff framework is applied so that FDR is controlled at a target level, a model with a
higher power is preferred.

Besides variable selection, we also assessed performance in terms of prediction and estimation bias. The concordance
index (C-index or C-statistic) is a frequently used metric for censored data which measures the probability of concordance
between prediction and observation. Given a predicted risk score Ri (Ri = ̂𝜷

Twi in our model), the C-statistic for a standard
survival model is the proportion of concordant pairs divided by the total number of possible evaluation pairs, given by

̂C =
∑N

i=1
∑N

j=1,j≠iI[Ri > Rj]Ii,j
∑N

i=1
∑N

j=1,j≠iIi,j
, (12)

where Ii,j = I[ti < tj, 𝛿i = 1] + I[ti = tj, 𝛿i = 1, 𝛿j = 0]. In this formula, the cured patients are not differentiated from those
uncured but censored. A refined version was proposed29 to take the cure status into account. Specifically, they applied a
prespecified cutoff to assume whether a censored subject was cured or not. If the censoring time was beyond the cutoff
time point, the subject was assumed to be cured. Otherwise, the cure status was unknown. In their cure status weighting
approach, they assigned the weight of 1 for subjects who experienced the event (yi = 1), 0 for presumptive cured subjects
(yi = 0), and the estimated probability of non-cure for other censored subjects with unknown cure status (yi missing). The
C-statistic is defined as

̂C =
∑N

i=1
∑N

j=1,j≠iI[ ̂𝜷
Twi > ̂𝜷

Twj]
{

vjyj + (1 − vj)𝜋̂(xj)
}

Ii,j
∑N

i=1
∑N

j=1,j≠i
{

vjyj + (1 − vj)𝜋̂(xj)
}

Ii,j
, (13)

where vj is the indicator of whether yi is known and 𝜋̂(xj) = exp( ̂b0 + ̂b
T

xj)∕(1 + exp( ̂b0 + ̂b
T

xj)). In this way, the estimated
coefficients from both regression parts are incorporated into the metric. For approaches with both regression parts (our
methods and SCinCRM), we used the definition in Equation (13), while the Equation (12) was used for approaches with
only one regression part (C-Mix, non-cure Weibull, and non-cure Cox models), with Ri calculated using the corresponding
regression coefficients.

In an earlier paper,39 Asano et al proposed an AUC metric for susceptibility prediction based on a similar weighting
scheme which they called the mean score imputation method. Given the estimated probability of non-cure 𝜋̂(xi) and
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a cutoff value a (0 ≤ a ≤ 1), the true positive rate (TPR) and false positive rate (FPR) for susceptibility prediction were
estimated by

T̂PR(a) =
∑N

i=1I[𝜋̂(xi) ≥ a] {viyi + (1 − vi)𝜋̂(xi)}
∑N

i=1 {viyi + (1 − vi)𝜋̂(xi)}
,

F̂PR(a) =
∑N

i=1I[𝜋̂(xi) ≥ a] {vi(1 − yi) + (1 − vi)[1 − 𝜋̂(xi)]}
∑N

i=1 {vi(1 − yi) + (1 − vi)[1 − 𝜋̂(xi)]}
. (14)

Having the TPR and FPR values, the AUC can be estimated using the trapezoidal method. In addition, we also assessed
susceptibility prediction in terms of prediction accuracy. Specifically, we used the K-M estimated survival probability for
the last observed event ĉ as a cured proportion cutoff. Then, the subjects with the top (1 − ĉ)th percentile of the estimated
susceptible probability 𝜋̂(xi) were predicted as being susceptible (Ŷi = 1) and the others being cured (Ŷi = 0). Since the
true susceptibility status Yi was available in the simulation studies, we calculated the susceptibility prediction accuracy
with the proportion of Ŷi = Yi for i = 1, … ,N. The AUC and accuracy metrics assess the predictive performance for the
cure status and thus only apply to the approaches which include the incidence regression part.

A common limitation of the C-statistic with cure status weighting and the AUC with mean score imputation is the
requirement of a prespecified cutoff for cure, which may be considered subjective or arbitrary. The cutoff point was used
to produce a proxy yi for the unobserved real cure status Yi, based on which the predictive performance for the incidence
portion can be measured. In this article, a cutoff of 5 years was used since it is a commonly used time point in cancer
prognosis to indicate potential cure after a patient achieves complete remission. Under the default simulation setting, the
probability of being cured given one’s observed time t > 5 was around 95.3%, suggesting that the cutoff of 5 was reasonable
for the simulations presented here. Researchers are advised to select a cutoff value tailored to their own applications and
data.

Two additional metrics were applied to measure estimation bias, the relative model error (RME) and estimation error
(ERR), as described in the SCinCRM paper.17 They are defined as

RME =
( ̂𝜷 − 𝜷)T𝚺( ̂𝜷 − 𝜷)
( ̂𝜷∗ − 𝜷)T𝚺( ̂𝜷∗ − 𝜷)

,

ERR =
( ̂𝜷 − 𝜷)T( ̂𝜷 − 𝜷)
( ̂𝜷∗ − 𝜷)T( ̂𝜷∗ − 𝜷)

, (15)

where 𝚺 is the covariance matrix of the covariates, and ̂𝜷
∗ represents the oracle estimates derived from the models where

only the true signals were included and the coefficients for the other covariates were forced to be zero. These two metrics
are basically comparing the distance between estimates and true values with that between oracle estimates and true
values. They were calculated to assess the estimation for both penalized incidence coefficients bp and penalized latency
coefficients 𝜷p.

3.4 Simulation results

In this section, simulation results are reported for different approaches using the metrics previously described. Due to
space limitations, we only presented here the results under the default simulation setting where 𝜇b0 = 0.5 corresponds
to a cure rate of roughly 40%, b and 𝜷 were independently simulated, and a Weibull distribution was used for latency.
The results under alternative settings (𝜇b0 = 1.5, same signs of b and 𝜷, or GG distribution for latency) were similar and
reported in the Appendix.

Figure 1 presents the cure prediction accuracy and C-statistic for different methods on training and testing data. The
x-axis is the signal amplitude A in the data generating process. Each point in the plots represents the averaged value
among 100 repetitive experiments. From the figure, we can observe that our methods (MCMs estimated by GMIFS or
E-M) generally achieved better performance than the competing approaches in terms of these two metrics. The C-statistic
for the non-cure Cox model had a tiny advantage for the training data but a noticeable disadvantage for the testing data
in comparison to our MCMs. Further, cure prediction cannot be assessed when using the non-cure models because of
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F I G U R E 1 Cure prediction accuracy (top row) and C-statistic (bottom row) plotted by signal amplitude for the training (right) and
testing (left) datasets for our mixture cure models (MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a
non-cure Weibull and a non-cure Cox model. For our MCMs and SCinCRM, the C-statistic with cure status weighting was calculated, while
the regular C-statistic was calculated for C-Mix and non-cure models

the lack of an incidence regression component. C-Mix performed the worst due to its simplified model assumption. As
the signal became stronger, most methods tended to perform better except for C-Mix and the non-cure Weibull model.
As observed, the testing performance was generally worse in comparison to the training performance, but again, that did
not hold for C-Mix and the non-cure Weibull model.

Figure 2 shows the changes of the metrics of RME (in the left panels) and ERR (in the right panels) over signal
amplitude for both incidence and latency parts. The incidence error for C-Mix and the latency error for MCM(EM) and
the non-cure Cox model were extremely high when the signal amplitude was small and thus omitted from the figure for
better presentation. In most cases, our GMIFS approach outperformed SCinCRM even though SCinCRM uses the MCP
penalty which is known to enjoy the oracle property while the L1 penalty does not. With our variance-covariance matrix
𝚺, the differences between the values of RME and those of ERR were unnoticeable.

To compare the performance in variable selection, we applied the model-X knockoffs framework to each of the meth-
ods and set the target FDR level set at 20%. The FDP and power results of different methods are presented in Figure 3. We
can see the FDP of all methods was well controlled below the target FDR level, except for the non-cure Cox model. In the
meantime, the power increased as the amplitude increased and the incidence power was generally lower than the latency
power, but our GMIFS and E-M methods achieved higher power than the other approaches in both regression parts. The
power for SCinCRM was pretty low all the time and the non-cure Weibull models performed the worst in latency variable
selection given the power of almost zero.

The results under alternative simulation settings are presented in the Appendix. Figures A1 to A3 show the simulation
results when 𝜇b0 = 1.5 corresponding to a cure rate of roughly 25%. The results were very similar to what we have observed
in Figures 1 to 3. From Figure A2, SCinCRM has achieved slightly better estimation error than our GMIFS approach when
the signals were strong. The results when the latency followed a GG distribution are presented in Figures A4 to A6. With
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F I G U R E 2 Relative model error (left) and estimation error (right) plotted by signal amplitude for incidence (top row) and latency
(bottom row) for our mixture cure models (MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure
Weibull, and a non-cure Cox model

F I G U R E 3 False discovery proportion (left) and power (right) plotted by signal amplitude for incidence (top row) and latency (bottom
row) for our mixture cure models (MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a
non-cure Cox model
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the misspecified latency distribution, the latency power of our Weibull MCMs was lower in comparison to our default
simulation scenario, but still higher than the competitors. Other metrics were not noticeably hampered, which suggests
our methods may be robust to latency model misspecification. Under the simulation setting where the event times were
generated from a promotion cure model, only the regular C-statistic in Equation (12) was assessed as it was the only met-
ric that was still meaningful when we fit a two-component MCM to data from a one-component data generating process.
With 50 repetitive experiments where the signal amplitude was 1, our MCM using GMIFS achieved an average C-statistic
of 0.778 in training sets and 0.572 in testing sets. In contrast, the non-cure Weibull model had an average C-statistic of
0.547 in training sets and 0.539 in testing sets. The results indicate that our MCM still achieves better predictive perfor-
mance than the non-cure model even under severe deviations from the model assumptions, as long as a cure fraction
exists.

Figures A7 to A9 display the results when the true penalized incidence and latency coefficients were identical (bp =
𝜷p), and the unpenalized incidence and latency coefficients (bu and 𝜷u) had the same signs. The power for SCinCRM
became higher under the same-sign settings, but was still lower than that for our GMIFS and E-M methods. Due to the
two-part interconnections, the incidence power of our methods was boosted, so was the power for C-Mix and non-cure
Cox model which only have one regression component. It is worth noting that the non-cure Cox model performed the
best in terms of all metrics when the signal was strong enough under this simulation scenario. These results indicate that
the non-cure Cox model may still be a good choice even when a cured fraction is present, provided the true signals from
the two regression components are the same, having identical or at least strongly correlated coefficients. This is a rather
limited scenario, though. In most cases, we would not expect the incidence and latency components to be comprised of
exactly the same variables with the same effect sizes. Therefore, our two-component MCMs have clear advantages when
different variables influence cure probability or survival of the susceptibles.

4 APPLICATION ON AML

4.1 Data

We applied the methods to a dataset containing 816 adult AML patients who were treated on frontline CALGB/Alliance
protocols. Almost all of these patients received intensive cytarabine and daunorubicin or idarubicin-based induction
treatment on CALGB/Alliance trials between 1986 and 2016. Institutional review board approval of all CALGB/Alliance
protocols was obtained before any research was performed. In accordance with the Declaration of Helsinki, patients
provided study-specific written informed consent to participate in treatment and companion cytogenetic (CALGB 8461),
leukemia tissue bank (CALGB 9665), and molecular (CALGB 20202) studies, which involved collection of pretreatment
bone marrow aspirates and blood samples. No patient received allogeneic stem cell transplantation (allo-SCT) in first
complete remission (CR) on study protocols, and off-study patients who received an allo-SCT were excluded from the
outcome analyses due to missing follow up data. Only those younger than 60 years old at enrollment were included into
the analysis because for them, the treatment may be promising enough to lead to cures. We also limited the samples to
those who had complete baseline and demographic data.

In the context of cure, relapse-free survival (RFS) is more relevant than overall survival (OS) because, obviously, one
cannot be cured from death. We thus considered the patients who had attained a CR, which left us with 452 AML patients,
and defined RFS as the duration between the date of CR and relapse or death, whichever was earlier. We used the tradi-
tional definition for RFS because patients who died prior to their visit may have relapsed, so this is a conservative estimate.
The censoring rate was 34.5%. Out of the 296 events observed, most of the patients (87.1%) experienced AML relapse,
indicating our definition of event is a good proxy for relapse. We performed a hypothesis test to detect whether there was
a significant nonzero cure fraction for RFS,40 which was significant (P-value <10−4). Figure 4 depicts the RFS estimated
using the K-M method. The long plateau in the RFS distribution demonstrates there is empirical evidence of sufficient
follow-up as well as a fraction of long-term survivors at roughly 30%. The median follow-up among those censored for
RFS was 8.95 years. Other than identifying a sufficient follow-up from a plateau of K-M curve, formal statistical tests40,41

can be performed. Identifying a significant cure fraction and sufficient follow-up is usually the recommended first step
before one applies cure models to survival data.42 In fact, cure models may yield biased estimates when these assumptions
are violated.43

Along with the time-to-event response, the dataset contains gene expression levels of 35 226 RNA transcripts cap-
tured using ribosomal RNA-depleted protocols, allowing for quantification of mRNA and non-coding RNAs. We filtered
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F I G U R E 4 Relapse-free survival for 452 AML patients younger than 60 years at enrolment treated on frontline CALGB/Alliance
protocols

T A B L E 1 Descriptive statistics of unpenalized covariates in the Alliance data

Variables Total, N = 452

Incidence covariates

ELN 2017, no. (%)

Favorable 279 (61.7%)

Intermediate 99 (21.9%)

Adverse 74 (16.4%)

WT1 mutation, no. (%) 35 (7.7%)

Latency covariates

Platelets, mean (SD) 73.1 (63.6)

WBC, mean (SD) 41.7 (49.0)

FLT3-ITD, no. (%) 104 (23.0%)

TET2 mutation, no. (%) 36 (8.0%)

NRAS mutation, no. (%) 77 (17.0%)

Abbreviations: ELN 2017, European LeukemiaNet prognostic group;45 FLT3-ITD, presence of FLT3-internal tandem duplication; SD, standard deviation; WBC,
white blood cell count.

out the transcripts with low expression (mean value ≤5), leaving J = 4887 transcripts for the analyses. Some base-
line/demographic characteristics were also available in the dataset, including age, race, sex, European Leukemia Net
(ELN) risk group, cytogenetic abnormality (binary), white blood cell (WBC) count, hemoglobin, platelet count, per-
cent of blasts in bone marrow and in peripheral blood, as well as mutation status for 18 known AML-associated genes.
In the preliminary analysis, we performed a stepwise variable selection in a MCM44 among the baseline/demographic
variables. The cutoff of 0.05 was used to add or remove covariates based on P-values from likelihood ratio tests.
The selected baseline variables for incidence and latency were considered as unpenalized covariates Xu and Wu,
respectively, whose descriptive statistics were displayed in Table 1. The gene expression data were used as penalized
covariates Xp and Wp in the following analyses. We elected to include this initial screening process among base-
line/demographic variables as we were interested in discovering genes associated with outcome of AML patients after
controlling for commonly measured variables. Generally, researchers should appeal to existing literature, prior knowl-
edge, or expert clinical opinion when determining whether to include unpenalized covariates vs enforcing penalties on all
predictors.
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F I G U R E 5 Boxplots of C-statistics (left) and AUC (right) from the testing datasets from 10 repeats of a data-splitting approach to
evaluate the model performance on the AML dataset. Performance was compared among our mixture cure models (MCM) using the GMIFS
and EM algorithm, SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model. For our MCMs and SCinCRM, the C-statistic with cure
status weighting was calculated, while the regular C-statistic was calculated for C-Mix and non-cure models

4.2 Method comparison

A data-splitting approach was used to evaluate the model performance on the real data. We split the dataset into a train-
ing set of size 3N∕4 and a testing set of size N∕4. Then we fit different models on the training data and evaluated the
performance on the testing data. Specifically, the C-statistic and the imputation-based AUC39 described in Section 3.3
were measured for evaluation, since these two metrics do not rely on underlying true values of parameters (which are not
available in real data). Again, the C-statistic with cure status weighting in Equation (12) was calculated for our MCMs
and SCinCRM, while the regular C-statistic in Equation (13) was calculated for C-Mix and non-cure models which only
have one regression component. The data-splitting process was repeated 10 times to reflect variability.

Figure 5 displays the C-statistic and AUC results for different methods. Our GMIFS and E-M methods achieved better
results than SCinCRM and C-Mix in this application dataset. The non-cure models obtained a high C-statistic but they
were unable to provide incidence-based information to calculate AUC for cure prediction. We also recorded the running
time for different approaches. The non-cure Cox model was the fastest (less than 1 minute per repetition) due to the
effective implementation of the glmnetR package.36,37 C-Mix was also relatively fast (30 minutes per repetition) because
of its simple model assumptions. SCinCRM was quite slow for such high-dimensional data and spent around two days for
a single repetition. The other three methods (GMIFS, E-M and non-cure Weibull model) took a few hours, among which
the E-M algorithm appeared to be the fastest.

4.3 Gene discovery

In this section, we fit the models using the data we have after filtering (N = 452). Before combining with the model-X
knockoffs, the estimates for unpenalized coefficients in the model were obtained using GMIFS or E-M and reported in
Table A1. The estimates from GMIFS and E-M were very similar and their magnitudes and signs were mostly consis-
tent with previous findings. For example, when we look at the coefficients for the ELN risk group45 which stratifies AML
patients into genetic-risk categories using selected cytogenetic abnormalities and gene mutations, subjects in the Inter-
mediate and Adverse risk groups were associated with higher probabilities of being susceptible in contrast to the favorable
group (reference group).

The model-X knockoffs framework was then combined with different methods for controlled variable selection. Since
the gene expression values typically do not strictly follow a Gaussian distribution, we used the deep knockoff machine32

to generate the knockoff copies. With the target FDR level set to be 20% for both incidence and latency coefficients, the
number of selected genes for different methods was displayed in the first two rows of Table 2. The specific selected genes
are presented in Figures A10 and A11 in the form of Venn diagrams. Since GMIFS was the only method that successfully
identified important genes from both regression parts, we only focused on the GMIFS findings. Table 3 and 4 report the
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T A B L E 2 Number of selected genes for models fit using the Alliance data and validation performance using three other publicly
available AML datasets

MCM
(GMIFS)

MCM
(E-M)

SCin
CRM C-Mix

Non-cure
Weibull

Non-cure
Cox

# selected in incidence 14 0 0 29 - -

# selected in latency 12 9 16 - 0 39

GSE37642 AUC 0.944 - - 0.961 - -

C-index 0.679 0.660 0.606 0.712 - 0.849

GSE12417 AUC 1 - - 1 - -

C-index 0.844 0.668 0.849 0.783 - 0.889

TCGA AUC 0.917 - - 1 - -

C-index 0.751 0.691 0.715 0.744 - 0.808

T A B L E 3 Fourteen selected genes in the incidence regression part using GMIFS combined with the model-X knockoffs framework

Gene Description

COQ8A SNP associated with leukocyte count in GWAS studies52

EIF4E3 Tumor suppressor, reduced expression in AML specimens53

FAM30A High expression was an adverse risk factor in AML54

TNPO1 Potential direct target of mixed lineage leukemia fusion proteins55

PEX2 Overexpressed in hepatocellular carcinoma (HCC) tissues56

KDM2B Oncogene in diverse cancers, inducing cell proliferation57

SRSF2 Mutations found in AML, associated with inferior RFS58

RUNX2 Homolog of RUNX1, a central player in hematopoiesis59

ADA Increased levels associated with short survival in AML60

MXD1 Tumor suppressor, expression affected AML survival61

IDS Mutations lead to Hunter syndrome52

STK17B High expression associated with apoptosis and poor OS62,63

PFDN5 Candidate for a tumor suppressor gene64

TAF9B Essential for cell viability, associated with apoptosis52

Abbreviation: GWAS, genome-wide association study.

selected genes by GMIFS for incidence and latency, respectively, as well as brief description of known associations with
AML or oncology in general. Some genes are known oncogenes or tumor suppressor genes, and some have been shown
to differentially express in AML or other cancers.

4.4 Validation of the identified genes

Independent datasets were employed to validate our selected genes, including two datasets from Gene Expression
Omnibus (GEO) and one from The Cancer Genome Atlas (TCGA).46 It is worth noting that there exist two major dis-
parities between our dataset and the validation datasets. First, relapse-free survival data were not available in these
independent datasets, so overall survival was used instead as a proxy. Second, the validation datasets included patients
who received allo-SCT while our dataset only included patients with intensive chemotherapy. The first GEO dataset
(GSE37642) includes the gene expression for 136 AML patients treated in the German AMLCG 1999 trial. The gene
expression levels were measured using the Affymetrix HG-U133Plus2 GeneChip and each observation corresponded to a
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T A B L E 4 Twelve selected genes in the latency regression part using GMIFS combined with the model-X knockoffs framework

Gene Description

CALCOCO2 Up-regulated in high-risk myelodysplastic syndrome65

TAX1BP1 Protects from liver cancer development66

LMO2 Oncogene of T-cell acute lymphoblastic leukemia67

RNU5B-1 Differentially expressed in various cancers68,69

H2BC21 Expression associated with AML relapse and prognosis70

EREG Promotes progression of various cancers71

ABCC4 Regulates leukemia cell proliferation and differentiation72

CAMK2G Suppresses differentiation and stimulates proliferation73

PLXNC1 Part of immunological signature predictive of prognosis74

PITRM1 Regulating mitochondrial function in AML75

TMEM50A Highly up-regulated in late stage cervical cancer76

TMCO3 Up-regulated in chronic lymphocytic leukemia77

F I G U R E 6 Using GSE37642 as a validation dataset and extracting Affymetrix probe sets that mapped to our selected genes from our
training phase to assign subjects into groups based on our MCM, Kaplan-Meier estimates for predicted cured (N = 32) vs uncured (N = 104)
groups (left panel), Kaplan-Meier estimates for subjects with lower risk (N = 52) vs higher risk (N = 52) among those that were predicted to be
uncured (middle panel), and re-scaled latency survival functions for all 136 subjects with lower (N = 71) vs higher (N = 65) risk (right panel)

probe set instead of a RNA transcript as in the Alliance data. Thus, the predictors in the original and validation datasets
are distinct and the coefficients cannot be directly applied. As a workaround, we linked RNA transcripts and probe sets
through their corresponding genes and included all probe sets that mapped to our selected transcripts in Tables 3 and 4
into the Weibull MCM.

According to the estimated coefficients, we assigned the 136 subjects into different subgroups, including cured vs sus-
ceptible, and having low risk vs high risk of death. The predicted cured status was determined by the estimated incidence
coefficients (see Section 3.3) and the high/low risk group was determined by the estimated latency coefficients and a cut-
off of 0, that is, I( ̂𝜷Tw > 0) with w centered. The left panel in Figure 6 presents the K-M estimates for predicted cured
(N = 32) vs uncured (N = 104) groups, and the middle panel in Figure 6 presents the K-M estimates for subjects with
lower risk (N = 52) vs higher risk (N = 52) among those that were predicted to be uncured. From the figures, the predicted
cured group had the survival probability of 1 as expected, while the predicted uncured group had an estimated survival
function that descended toward 0. The two risk groups among those predicted to be susceptible were well separated, with
a P-value of 2 × 10−7 for a log-rank test.

The above estimation method for latency survival probabilities only includes the subjects who were predicted to be
uncured and thus relies on accurate predictions of each individual’s cure status. A recent book on cure models42 proposed
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an alternative way to estimate latency. In this method, the latency is estimated using the information from all subjects
and only depends on the cured proportion, which can be easily estimated. The latency regression part can be evaluated
independently of the incidence part as a result. Specifically, the K-M estimates are rescaled through ̂S′ = ( ̂S − ĉ)∕(1 − ĉ)
where ̂S is the original K-M value and ĉ is the estimated cured proportion, so that the latency survival probabilities range
from 0 to 1. The right panel of Figure 6 displays the rescaled latency survival functions for all 136 subjects with lower
(N = 71) vs higher (N = 65) risk. The survival curves were almost identical to the middle panel of Figure 6 which only
included predicted uncured subjects, suggesting the relevance of our latency predictors as well as the accuracy of our cure
status prediction.

Similar validation results for the other two datasets (GSE12417 and TCGA data) are shown in Figures A12 and A13.
Due to the small sample sizes and potentially insufficient follow-up of these two datasets, the predicted cure status was not
as accurate as that in GSE37642, but well-separated risk groups could still be observed in both datasets. Given the small
sample sizes of the validation datasets, we did not further split the data to training and testing sets and thus the predictive
performance may have been overestimated due to overfitting. However, since the main focus of the validation process is
on gene selection rather than model fitting, we believe the current process can serve the purpose well. We validated the
relevance and importance of our concise list of genes by using only the gene expression levels for these genes to predict
cure status and survival probabilities in the new datasets. The results indicate that our identified gene list is useful in
differentiating patient subgroups and may serve as a prognostic signature to better inform treatment decisions for AML
patients with different genomic characteristics.

We also performed the same validation procedure for the genes selected by other approaches. For each method, we fit
the corresponding model on different validation datasets including only the genes selected by that method, and calculated
the AUC and C-index for the fitted model which are summarized in Table 2. Because the non-cure Weibull did not select
any features with the FDR controlled, it was excluded in the validation. Our E-M approach and SCinCRM both only
selected genes in the latency part, so the incidence-based AUC cannot be calculated. C-Mix has achieved pretty good AUC
and C-index scores which is partly due to the long list of genes selected in the incidence part, similarly for the latency part
of the non-cure Cox model. Overall, our GMIFS method is strongly recommended as it selected succinct lists of important
genes for both regression components and had good predictive performance on independent datasets.

5 DISCUSSION AND CONCLUSION

In this article, we proposed penalized Weibull MCMs to model censored survival outcomes in the presence of a cure
fraction for high-dimensional data. The models allow us to estimate the effects of covariates on both the probability
of cure and time-to-event of the susceptibles simultaneously. Two estimation algorithms (GMIFS and E-M) have been
adapted to fit these models and combined with the model-X knockoffs framework for FDR control. The simulation results
demonstrate that our proposed methods outperformed competing approaches in terms of variable selection, estimation,
and prediction. In variable selection, we achieved high power with the FDR being controlled after adopting the knockoffs
framework. In the AML application, important genes have been identified to be associated with cure and/or survival,
which may have important implications for AML research or clinical practice paradigms.

One shortcoming of our study is that the incidence power is relatively low according to our simulation results.
Although the incidence part has the form of a logistic regression, it is essentially a more difficult problem to tackle than a
typical logistic regression. Unlike a regular binary problem, the response is hidden in the data and not explicitly observed.
Besides, due to censoring and low cure rate, the effective sample size can be relatively small compared with the number
of predictors, resulting in a poor signal-to-noise ratio. Any method that effectively boosts the incidence power may be
interesting to explore in the future. One potential weakness in our application study is that we assume all AML patients
who died prior to relapse died due to unobserved relapse and we used the death time as a surrogate for relapse time in
this case. This assumption may not hold in all cases because some patients may have died of irrelevant events like car
accidents. If we strictly consider relapse as the event of interest, then death is a competing risk for relapse and competing
risk models may be of interest. Two semi-parametric regression models for competing risks data with a cured fraction
based on finite-mixture models were introduced by Peng and Yu.42

In the future, we are interested in generalizing the proposed methods to penalized semi-parametric PH MCMs and
other parametric MCMs incorporating distributions in the generalized gamma and generalized F families. Penalties other
than LASSO, including the MCP33 and the elastic-net penalty,34 are interesting directions to work on. Besides penalized
regression models, machine learning techniques including random survival forests47 and gradient boosting machines48 in
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combination with the model-X knockoffs framework are promising approaches to high-dimensional variable selection in
cure models. These techniques have been shown useful for controlled variable selection in other outcome types including
continuous, binary,49 and ordinal responses.50 A previous paper51 applied bagging survival trees to cure models based
on the promotion time cure framework, but they only provided variable importance scores for latency covariates. How
to extract variable importance and perform variable selection for both incidence and latency using machine learning
techniques warrants further investigation.
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APPENDIX

T A B L E A1 Estimated unpenalized covariates using GMIFS and E-M

Incidence Latency

Covariate GMIFS E-M Covariate GMIFS E-M

ELN 2017 Intermediate 0.62 0.64 Platelets −0.26 −0.36

ELN 2017 Adverse 0.92 0.94 WBC 0.16 0.18

WT1 0.29 0.29 FLT3−ITD 0.23 0.22

TET2 −0.12 −0.12

NRAS 0.16 0.16

Abbreviations: ELN 2017, European LeukemiaNet prognostic group;45 FLT3-ITD, presence of FLT3-internal tandem duplication; SD, standard deviation; WBC,
white blood cell count.

F I G U R E A1 For a cure fraction of roughly 25%, cure prediction accuracy (top row) and C-statistic (bottom row) plotted by signal
amplitude for the training (right) and testing (left) datasets for our mixture cure models (MCM) using the GMIFS and EM algorithm in
comparison to SCinCRM, C-Mix, a non-cure Weibull and a non-cure Cox model. For our MCMs and SCinCRM, the C-statistic with cure
status weighting was calculated, while the regular C-statistic was calculated for C-Mix and non-cure models
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F I G U R E A2 For a cure fraction of roughly 25%, relative model error (left) and estimation error (right) plotted by signal amplitude for
incidence (top row) and latency (bottom row) for our mixture cure models (MCM) using the GMIFS and EM algorithm in comparison to
SCinCRM, C-Mix, a non-cure Weibull and a non-cure Cox model

F I G U R E A3 For a cure fraction of roughly 25%, false discovery proportion (left) and power (right) plotted by signal amplitude for
incidence (top row) and latency (bottom row) for our mixture cure models (MCM) using the GMIFS and EM algorithm in comparison to
SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model
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F I G U R E A4 Results when the latency portion of the model was simulated from a generalized gamma distribution. Cure prediction
accuracy (top row) and C-statistic (bottom row) plotted by signal amplitude for the training (right) and testing (left) datasets for our mixture
cure models (MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model.
For our MCMs and SCinCRM, the C-statistic with cure status weighting was calculated, while the regular C-statistic was calculated for C-Mix
and non-cure models

F I G U R E A5 Results when the latency portion of the model was simulated from a generalized gamma distribution. Relative model
error (left) and estimation error (right) plotted by signal amplitude for incidence (top row) and latency (bottom row) for our mixture cure
models (MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model
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F I G U R E A6 Results when the latency portion of the model was simulated from a generalized gamma distribution. False discovery
proportion (left) and power (right) plotted by signal amplitude for incidence (top row) and latency (bottom row) for our mixture cure models
(MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model

F I G U R E A7 Simulation scenarios when the incidence coefficients and latency coefficients have the same signs. Cure prediction
accuracy (top row) and C-statistic (bottom row) plotted by signal amplitude for the training (right) and testing (left) datasets for our mixture
cure models (MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model.
For our MCMs and SCinCRM, the C-statistic with cure status weighting was calculated, while the regular C-statistic was calculated for C-Mix
and non-cure models
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F I G U R E A8 Simulation scenarios when the incidence coefficients and latency coefficients have the same signs. Relative model error
(left) and estimation error (right) plotted by signal amplitude for incidence (top row) and latency (bottom row) for our mixture cure models
(MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model

F I G U R E A9 Simulation scenarios when the incidence coefficients and latency coefficients have the same signs. False discovery
proportion (left) and power (right) plotted by signal amplitude for incidence (top row) and latency (bottom row) for our mixture cure models
(MCM) using the GMIFS and EM algorithm in comparison to SCinCRM, C-Mix, a non-cure Weibull, and a non-cure Cox model
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F I G U R E A10 Venn diagram displaying the overlap with respect to genes identified as associated with incidence when using our
mixture cure GMIFS algorithm and C-mix

F I G U R E A11 Venn diagram displaying the overlap with respect to genes identified as associated with latency when using our mixture
cure GMIFS algorithm, mixture cure EM algorithm, SCinCRM, and a non-cure Cox model

F I G U R E A12 Using GSE12417 as a validation dataset and extracting Affymetrix probe sets that mapped to our selected genes from our
training phase to assign subjects into groups based on our MCM, Kaplan-Meier estimates for predicted cured (N = 29) vs uncured (N = 50)
groups (left panel), Kaplan-Meier estimates for subjects with lower risk (N = 28) vs higher risk (N = 22) among those that were predicted to
be uncured (middle panel), and rescaled latency survival functions for all 79 subjects with lower (N = 39) vs higher (N = 40) risk (right panel)
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F I G U R E A13 Using TCGA as a validation dataset, Kaplan-Meier estimates for predicted cured (N = 25) vs uncured (N = 70) groups
(left panel), Kaplan-Meier estimates for subjects with lower risk (N = 34) vs higher risk (N = 36) among those that were predicted to be
uncured (middle panel), and rescaled latency survival functions for all 95 subjects with lower (N = 45) vs higher (N = 50) risk (right panel)
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