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Abstract: In this study, we first developed an artificial intelligence (AI)-based algorithm for classifying
chest computed tomography (CT) images using the coronavirus disease 2019 Reporting and Data
System (CO-RADS). Subsequently, we evaluated its accuracy by comparing the calculated scores
with those assigned by radiologists with varying levels of experience. This study included patients
with suspected SARS-CoV-2 infection who underwent chest CT imaging between February and
October 2020 in Japan, a non-endemic area. For each chest CT, the CO-RADS scores, determined
by consensus among three experienced chest radiologists, were used as the gold standard. Images
from 412 patients were used to train the model, whereas images from 83 patients were tested to
obtain AI-based CO-RADS scores for each image. Six independent raters (one medical student, two
residents, and three board-certified radiologists) evaluated the test images. Intraclass correlation
coefficients (ICC) and weighted kappa values were calculated to determine the inter-rater agreement
with the gold standard. The mean ICC and weighted kappa were 0.754 and 0.752 for the medical
student and residents (taken together), 0.851 and 0.850 for the diagnostic radiologists, and 0.913
and 0.912 for AI, respectively. The CO-RADS scores calculated using our AI-based algorithm were
comparable to those assigned by radiologists, indicating the accuracy and high reproducibility of our
model. Our study findings would enable accurate reading, particularly in areas where radiologists
are unavailable, and contribute to improvements in patient management and workflow.

Keywords: artificial intelligence; deep learning; coronavirus disease 2019; coronavirus disease 2019
Reporting and Data System

1. Introduction

The gold standard for diagnosing coronavirus disease 2019 (COVID-19), which has
caused a pandemic worldwide, is reverse transcription-polymerase chain reaction (RT-PCR)
assay using nasopharyngeal mucosal swabs or oral saliva. Nonetheless, its sensitivity
is inadequate at approximately 0.7, and it takes several hours to several days to obtain
results [1–3]. On the contrary, chest computed tomography (CT) has a very high sensitivity,
and diagnosis with both CT and RT-PCR has higher sensitivity [4,5]. Furthermore, while
RT-PCR can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it
cannot provide information regarding COVID-19 pneumonia. Representative CT images of
the lungs of COVID-19 patients are characterized by multiple ground-glass opacities and
crazy-paving patterns [6]. However, COVID-19 pneumonia presents various patterns on
CT images depending on disease severity, making assessment difficult. Additionally, in
some instances, physicians who do not specialize in managing infectious or respiratory
diseases are forced to treat COVID-19 patients. Thus, these physicians, who often do not
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have diagnostic imaging expertise, interpret CT images to establish a diagnosis, potentially
leading to misdiagnosis and inappropriate patient management.

The COVID-19 Reporting and Data System (CO-RADS), developed by the Dutch Radi-
ological Society, grades COVID-19 pneumonia-like nature of chest CT images on a simple
scale from 1 (very low) to 5 (very high) to simplify diagnostic evaluation reports [7–11]. This
simple scoring facilitates communication between the reading physician and other health-
care providers and allows for quicker decision-making regarding treatment. However,
the CO-RADS is an interpreter-dependent scoring system, and its limited reproducibility
among interpreters creates problems in diagnosing, managing, and treating COVID-19 [7].

In medical imaging, artificial intelligence (AI) has progressed in recent years [12–14].
In particular, recent developments in AI for the analysis of COVID-19 chest CT images
have facilitated distinguishing COVID-19 from other diseases exhibiting similar symptoms
and recognizing signs that are sometimes missed by radiologists [15–17]. A previous
study showed the usefulness of the CT-first triage protocol in a real-world emergency
department [18]. Considering that chest radiologists may not be available for 24 h in many
hospitals, CT-based triage by AI may be helpful in clinical settings. To distinguish between
COVID-19, non-pneumonia, and community-acquired pneumonia, COVNet based on
ResNet50 was proposed by Li et al. [15]. Their study covered 4352 chest CT scans obtained
from 3322 patients. Consequently, the proposed model achieved sensitivity, specificity, and
area under the curve scores of 90%, 96%, and 0.96, respectively, for the COVID-19 group.
In addition, a model for detecting COVID-19 pneumonia from CT scans was proposed
by Ni et al., in a study of 19,291 CT scans from 14,435 individuals [19]. The proposed
model combined multiple networks for lesion detection, lesion segmentation, and lobe
segmentation. Further, the model was developed to diagnose COVID-19 by analyzing the
abnormal volume and the distance between the lesion and pleura. The proposed model
had accuracy and sensitivity of 94% and 100%, respectively, and was superior to three
radiologists. A model, fast-track COVID-19 classification network (FCONet), was proposed
by Ko et al., based on VGG16 and ResNet-50 to classify COVID-19, other pneumonia,
and non-pneumonia cases [20]. They included 1194 COVID-19 images, 264 low-quality
COVID-19 images (for testing only), and 2239 CT scans for pneumonia, normal, and
other disease cases in their study. They concluded that FCONet based on ResNet-50
outperformed other pre-trained models on an externally validated dataset of COVID-19
pneumonia images, achieving an accuracy of 96.97%. However, these methods cannot
identify COVID-19 patients without COVID-19 pneumonia as positive. Therefore, to
overcome this problem, Mei et al., integrated a convolutional neural network (CNN)-based
COVID-19 pneumonia classification model based on chest CT findings and a multilayer
perceptron-based classification model based on clinical symptoms, intensive contact history,
and blood data and developed a COVID-19 pneumonia classification model that combines
chest CT findings and clinical findings. They proposed a diagnostic model for COVID-19
that combines chest CT and clinical findings [16]. This model was able to correctly diagnose
17 of 25 COVID-19 patients without COVID-19 pneumonia as COVID-19-positive. An AI
tool has also been proposed to automatically evaluate CO-RADS scores [21]. The system
comprises the sequential application of three deep learning algorithms that perform leaf
segmentation, lesion segmentation, and CO-RADS scoring, respectively. The CO-RADS
score classification uses a network architecture called “Inception.” Furthermore, although
this system has been compared to radiologists’ reading results, it has not been evaluated
among radiologists with different years of experience. Therefore, in this study, we first
developed a discriminator of CO-RADS scores for CT chest images of patients suspected
of having COVID-19 using Xception, a network architecture that enables higher-level
classification. Next, to validate the algorithm, we compared the AI-based CO-RADS scores
with those assigned by residents and radiologists with different levels of experience.
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2. Materials and Methods
2.1. Patient Population

This single-center, non-interventional, retrospective study was approved by the Insti-
tutional Review Board (approval ID: B210100046). The requirement for the acquisition of
written informed consent from patients was waived owing to the retrospective nature of
this study.

We included 500 patients who underwent chest CT imaging for clinical suspicion of
COVID-19 at Yokohama City University Hospital between February and October 2020.
Following the exclusion of five patients with poor-quality CT images that did not accurately
classify the impaired respiratory status, the final study population comprised 495 patients.
The CT images were scored by consensus among three radiologists specializing in the chest
(10, 21, and 26 years of experience, respectively). The score that these radiologists assigned
was used as the reference standard for the CO-RADS. A summary of CO-RADS scores is
shown in Table 1. To establish and evaluate the deep-learning algorithm, 10510 CT images
from 412 patients were used as training and validation data, whereas 2966 images from the
remaining 83 patients were used as test data (Figure 1).

Table 1. CO-RADS Scores and Summary Adapted with permission from ref. [7]. Copyright ©
2020, RSNA.

CO-RADS Score Level of Suspicion of
COVID-19 Pneumonia Summary

1 Very low Normal or non-infectious
2 Low Typical for other infections but not COVID-19
3 Equivocal/unsure Features compatible with COVID-19 but also other diseases
4 High Suspicious for COVID-19
5 Very high Typical for COVID-19
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Figure 1. Flow diagram. Data for 500 patients who underwent chest CT for suspected COVID-19
pneumonia were collected. After exclusion, 495 eligible patients were included in the model devel-
opment and evaluation. The dataset was classified into a training set (n = 412) and an independent
patient-level test set (n = 83). The proportion of images with different CO-RADS scores in the test set
was equivalent to that in the training set. CO-RADS; COVID-19 Reporting and Data System.
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2.2. Data Acquisition and Image Processing

Chest CT scans were acquired using multidetector CT scanners with 64 (SOMATOM
Definition AS+, Siemens Healthcare, Erlangen, Germany; 0.625-mm collimation, 120 kVp,
and automatic tube current modulation), 80 (Aquilion Prime, Canon Medical Systems,
Otawara, Japan; 0.500-mm collimation, 120 kVp, and automatic tube current modulation),
or 64 (Aquilion Lightning, Canon Medical Systems, Otawara, Japan; 0.500-mm collimation,
120 kVp, and automatic tube current modulation) detector rows, with the patients in the
supine position under deep inspiration. The CT image was reconstructed in the axial
section with a slice thickness of 5 mm. The mean volume CT dose index was 9.2 ± 4.3 mGy,
and the mean dose-length product was 362.3 ± 189.1 mGy/cm. No contrast agent was used
in any of the cases. From the 5-mm slice chest CT images, the lung parenchyma, pulmonary
vessels, and bronchi were automatically segmented using commercially available software
(ZIO STATION 2, Ziosoft Inc., Tokyo, Japan), with manual correction. The segmented
images were converted to a JPEG file with a resolution of 256 × 256 pixels (Figure 2).
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Figure 2. Classification workflow. (a) The collected chest CT DICOM images were subjected to
lung segmentation using a workstation. The extracted lung fields were converted to images with
256 × 256 pixels and saved as PNG images, and the training images were augmented. (b) The
augmented training images were subjected to the Xception model, and the test images were applied
to the constructed artificial intelligence model to obtain the CO-RADS score for each slice. (c) The
CO-RADS score for each patient was determined according to the defined method.

2.3. Development of the Deep-Learning Model

To build a CNN-based algorithm, we used a commercially available software (Deep
Analyzer, Newtech Co., Ltd., Tokyo, Japan) with the following configuration: operating
system, Ubuntu 18.04.3 LTS (Canonical, London, UK); graphics processing unit, GeForce
RTX 2080 Ti (NVIDIA, Santa Clara, CA, USA); and central processing unit: Core i9-9820X
(Intel, Santa Clara, CA, USA). Xception was the CNN architecture used in this study.
This model is a pre-trained neural network that operates on a modified depth-separable
convolution, with 36 layers divided into 14 different modules. It was developed as an
“extreme inception” model with a higher processing power than the conventional inception
series (Figure 3) [22]. In a simple depth convolution operation, an n × n spatial convolution
is performed for each channel; however, the pointwise convolution was followed by a
depth convolution in this model. Xception was used to train 100 epochs, and Adam was
used as the optimizer with default parameters (lr = 0.001, beta_1 = 0.9, beta_2 = 0.999,
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eps = 1 × 10−7, decay = 0, amsgrad = False [23]). All images were augmented using the
following parameters: rotation range, 2.0; shear range, 0.05; and zoom range, 0.05.

Diagnostics 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

= 1 × 10−7, decay = 0, amsgrad = False [23]). All images were augmented using the following 
parameters: rotation range, 2.0; shear range, 0.05; and zoom range, 0.05. 

 
Figure 3. The Xception Network architecture. Reprinted with permission from ref. [22]. Copyright 
© 2017, IEEE. 

2.4. Reading Session 
The test data from 2966 images were applied to the constructed model, and AI was 

used to obtain the CO-RADS scores for each slice. In any individual case, the highest score 
among the image slices (AI-1) and the highest score in two or more consecutive slices (AI-
2) were determined (Figure 2).  

The data assessed by AI were also evaluated by six independent evaluators (one 
medical student, two residents with three years of experience, and three senior radiolo-
gists with 8, 10, and 12 years of experience) to determine the CO-RADS score for each case. 

2.5. Statistical Analysis 
All statistical analyses in this study were performed using EZR for Windows version 

1.54 (Saitama Medical Center, Jichi Medical University, Saitama, Japan) [24]. The training 
and testing groups were compared using the Mann–Whitney test. We calculated the in-
traclass correlation coefficients (ICCs) and weighted kappa coefficients for the CO-RADS 
scores between each observer and the reference standard and between the deep-learning 
algorithm and the reference standard. For every rater, the percentage of agreement be-
tween each CO-RADS score and AI-based score was calculated. Loss and accuracy were 
calculated when training to build the model. 

3. Results 
3.1. Patient Demographics 

Table 2 summarizes the patient characteristics for the training and test datasets. Fig-
ure 4 shows the CT images of three representative cases and the probability of obtaining 
different CO-RADS scores based on the deep-learning classification model. There were no 
significant differences in the distribution of age between the training and test data (p = 
0.06), male-to-female ratio among patients (p = 0.07), and CO-RADS score distribution (p 
= 0.12). 

Figure 3. The Xception Network architecture. Reprinted with permission from ref. [22]. Copyright ©
2017, IEEE.

2.4. Reading Session

The test data from 2966 images were applied to the constructed model, and AI was
used to obtain the CO-RADS scores for each slice. In any individual case, the highest score
among the image slices (AI-1) and the highest score in two or more consecutive slices (AI-2)
were determined (Figure 2).

The data assessed by AI were also evaluated by six independent evaluators (one
medical student, two residents with three years of experience, and three senior radiologists
with 8, 10, and 12 years of experience) to determine the CO-RADS score for each case.

2.5. Statistical Analysis

All statistical analyses in this study were performed using EZR for Windows version
1.54 (Saitama Medical Center, Jichi Medical University, Saitama, Japan) [24]. The training
and testing groups were compared using the Mann–Whitney test. We calculated the
intraclass correlation coefficients (ICCs) and weighted kappa coefficients for the CO-RADS
scores between each observer and the reference standard and between the deep-learning
algorithm and the reference standard. For every rater, the percentage of agreement between
each CO-RADS score and AI-based score was calculated. Loss and accuracy were calculated
when training to build the model.

3. Results
3.1. Patient Demographics

Table 2 summarizes the patient characteristics for the training and test datasets.
Figure 4 shows the CT images of three representative cases and the probability of ob-
taining different CO-RADS scores based on the deep-learning classification model. There
were no significant differences in the distribution of age between the training and test data
(p = 0.06), male-to-female ratio among patients (p = 0.07), and CO-RADS score distribution
(p = 0.12).
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Table 2. Summary of training and test datasets.

Training Data Test Data

Patients (n) 412 83

Male (n) 222 (54%) 48 (58%)
Images (n) 10,510 2966

Age
Range (years) 4–101 6–96
Mean (years) 61 57

CO-RADS consensus score (%)
1 249 (60%) 53 (64%)
2 56 (14%) 10 (12%)
3 72 (17%) 12 (14%)
4 25 (6%) 5 (6%)
5 10 (2%) 3 (4%)

CO-RADS; COVID-19 Reporting and Data System.
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Figure 4. Representative output from the classification model. (a) The CT image shows no abnormal
density in both lungs. The classification model presented a 100% probability of a CO-RADS score of 1.
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(b) CT imaging shows multiple centrilobular nodules in both lungs. The classification model pre-
sented an approximately 99% probability of obtaining a CO-RADS score of 2. (c) The CT images show
unilateral nonspecific ground-glass opacity in the dorsal aspect of the left lung. The classification
model presented an approximately 70% probability of obtaining a CO-RADS score of 3. Although a
score of 3 was determined, the possibility of 1 or 5 was also suggested. (d) CT imaging shows bilateral
subpleural predominant ground-glass opacity and consolidation and strong emphysematous changes
in the background. In classification models, a CO-RADS score of 4 is most likely. (e) The CT image
shows crazy-paving-like ground-glass opacity in the bilateral subpleural areas. The classification
model also presents the highest possibility of a CO-RADS score of 5.

3.2. Deep-Learning Model and Validation

The data of 412 patients (10,510 images) were classified into the training (90%) and
validation (10%) datasets using the hold-out method, and the model was constructed and
validated in 4 h. The accuracy of the constructed model was 99.5% and 98.6% for the
training and validation datasets, respectively. There was no sign of overfitting, as the plots
of training loss and validation loss decreased to a stable point, with a small gap between
them (Figure 5).
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3.3. Comparison between the AI-Based and Human Evaluation of CO-RADS

The agreement between the test dataset (83 patients) and the reference standards was
evaluated for the six raters and AI. AI-1 and AI-2 showed higher agreement than medical
students and residents. However, AI-1 showed a slightly lower level of agreement than
the certified radiologists, whereas AI-2 exhibited a higher level of agreement than the
certified radiologists (Table 3). Table 4 summarizes the number of correct matches for each
CO-RADS score using AI. Both AI-1 and AI-2 showed a high percentage of correct matches
for CO-RADS 1, 3, and 5, but a slightly low percentage for CO-RADS 2 and 4.
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Table 3. Agreement with the CO-RADS score for each evaluator.

Evaluators ICC Mean Kappa Value Mean

Medical student 0.781
0.754

0.779
0.752Resident 1 0.677 0.674

Resident 2 0.805 0.803

Radiologist 1 0.760
0.851

0.761
0.850Radiologist 2 0.896 0.895

Radiologist 3 0.897 0.895

AI-1 0.792 0.792
AI-2 0.913 0.912

AI; artificial intelligence, ICC; intraclass correlation coefficient.

Table 4. Number of correct matches for each CO-RADS score.

CO-RADS Score AI-1 AI-2

1 47/53 (89%) 53/53 (100%)
2 4/10 (40%) 4/10 (40%)
3 10/12 (83%) 9/12 (75%)
4 3/5 (60%) 3/5 (60%)
5 3/3 (100%) 3/3 (100%)

AI; artificial intelligence, CO-RADS: COVID-19 Reporting and Data System.

4. Discussion

This study revealed a high agreement between the CO-RADS scores calculated using
an AI-based model and those determined by experienced radiologists. The AI-derived
CO-RADS scores showed a slightly higher agreement rate with the gold standard than
the scores manually derived by the residents. We calculated the scores for each slice of
two-dimensional data; therefore, interpretation of the score for each individual patient
needs to be discussed. Calculation of the AI score from two or more consecutive slices
for each patient yielded a very high concordance rate, indicating that it is a reasonable
evaluation method, considering that two or more consecutive slices of pneumonia images
are often evaluated in clinical practice. In contrast, when the highest score for a single slice
was used, a score of 2 or higher was misinterpreted for a slice with no visually apparent
abnormal concentration. This misinterpretation of a single slice by AI may be due to the
learning process and should be resolved by increasing the amount of training data. The
performance of AI was better than that of the radiologists when the scores of two or more
consecutive slices were used as the final AI score. The discriminatory ability of CO-RADS
scores 2 and 4 was low, whereas AI could accurately determine a score of 1, indicating
its usefulness in diagnosing COVID-19 pneumonia. In addition, a score of 2 or more was
never misjudged as 1, suggesting AI’s effectiveness in determining the presence or absence
of abnormal lung shadows. However, a score of 2 was often mistaken for a score of 3, and
a score of 4 was often mistaken for a score of 3 or 5. Given that the human judgment is
ambiguous in cases with CO-RADS scores of 2, 3, 4, and 5, AI is not inferior to humans [25].
Nevertheless, more accurate labeling and larger training datasets are required to improve
the assessment of cases with these scores.

Recently, there has been an increase in the global spread of the more infectious delta
variant, leading to more severe disease [26]. Hence, the diagnosis and decision to isolate
patients infected with the delta variant need to be made rapidly compared with the con-
ventional strain, and chest CT is also important to detect pneumonia and predict severe
disease [27,28]. Therefore, the model developed in this study may be significant due to
its high negative predictive rate. In addition, a three-step algorithm (e.g., no pneumonia,
possible pneumonia, and definite pneumonia) may be acceptable if simpler scoring is
required, which is more in line with actual clinical practice.
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Previous studies have reported the usefulness of AI models for diagnosing COVID-19
pneumonia and differentiating it from other types of pneumonia with high sensitivity and
specificity [15,16]. Considering the inadequate sensitivity of RT-PCR tests, risk classification
of abnormal chest CT shadows for COVID-19 pneumonia using the CO-RADS may be very
useful in determining the isolation levels [29]. Therefore, developing an AI-based model
for CO-RADS will streamline clinical practice, reduce the infection risk among healthcare
workers, and ultimately improve positive diagnosis rates. The CO-RADS aids in diagnosing
COVID-19 pneumonia and stratifying the risk among outpatients with a chief complaint
of fever, thereby improving the workflow [7,11]. However, scoring is often dependent
on the experience and ability of the reading physician. In several pandemic locations,
physicians with no expertise in interpreting chest CT images have to chest CT images of
patients with suspected COVID-19 pneumonia. In such situations, AI-based diagnosis can
be significantly helpful. In this study, we constructed an AI model for CO-RADS scoring
with a diagnostic accuracy comparable to that of radiologists.

With the widespread use of the COVID-19 vaccine, the number of infected patients
is declining in some areas; nevertheless, patients with suspected COVID-19 will continue
to visit hospitals on a semi-permanent basis. Even under these circumstances, chest CT
plays a major role in the rapid assessment of infection risk and determination of the need
for isolation and other protective measures. Furthermore, AI has high expectations to
standardize risk assessment and reduce the burden on diagnostic radiologists. To improve
the AI capabilities further, it is important to (a) improvise the model by adding more
positive cases and those with CO-RADS scores of 2 and 4 to increase the amount of training
data and (b) develop studies using data from multiple institutions.

This study has some limitations. First, the partial volume effect of 5-mm slice CT
images might have made it difficult to determine the score. Second, this was a single-center
retrospective study without external data validation; therefore, bias in image selection
cannot be ruled out. However, we believe that the use of multiple CT machines might have
mitigated the bias. Third, a high proportion of images in the dataset had a CO-RADS score
of 1. This could have contributed to the higher match rate in our study, as compared to those
previously reported [25]. The study population was selected during the non-pandemic
period; hence, many patients visiting the outpatient clinic for fever could be non-COVID-19
patients. Despite these limitations, we believe that this study is significant because it uses a
dataset closer to the real world in Japan.

5. Conclusions

In this study, an AI model based on the Xception Network architecture was constructed
to determine CO-RADS scores for chest CT images with almost the same accuracy as
radiologists. The use of this model will increase the accuracy of CO-RADS scoring for CT
readings in the emergency room and enable faster triage to more appropriate treatment
and care. In a follow-up study, this model could be improved with more data accumulation
(e.g., multiple centers, larger sample sizes) and additional SARS-CoV-2 infection-positive
cases, allowing accurate risk assessment of suspected COVID-19. In addition, we believe
that the ability to omit image processing, such as the conversion of DICOM data to PNG
and preprocessing, will promote the use of the model in clinical practice.
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