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A B S T R A C T

The SARS-Cov-2 has spread differently over space and time worldwide. By monitoring the contagion’s time
evolution, the November 3 2020 the Italian government introduced differentiated regime of restrictions among
its regions. This experiment demonstrated that public health policies can be effectively designed by means of
clustering. This paper proposes a fuzzy clustering model where spatial and temporal dimensions of the disease
spread are optimally weighted. The resulting model is applied with the aim of identifying groups of Italian
regions with similar contagion spread. We found that two groups of regions sharing similar patterns of COVID-
19 spread over both space and time exist. Appropriate public health policies can be designed on the basis of
this evidence.
1. Introduction

The spread of COVID-19 among the Italian regions and provinces
did not follow a uniform spatio-temporal pattern (Dickson et al., 2020).
This fact motivated specific measures at regional level to prevent and
contain the epidemic.

Starting from January 2020, a total of 844 legislative acts have
been issued by the Italian government to manage the spread of the
coronavirus, with an average of 35 per month.1 To further contain the
contagion spread, on November 3 2020 a new measure2 was experi-
mented. This measure introduced a differentiated regime of restrictions
among the Italian regions. More in detail, each region has been assigned
to a color cluster based on the temporal trend of the epidemic and
the risk of contagion. In a first cluster indicated with the yellow color,
all the regions with a moderate risk of contagion were grouped. In a
second cluster, the orange one, there were regions with medium-high
risk, while those with the highest risk of contagion were placed in the
cluster with red color.

In practice, the Italian government showed how the containment
of COVID-19 spread can be done by means of geographical areas
clustering, demonstrating its usefulness also for public health policy
decisions. In other words, clustering can be used for the definition
of differentiated local treatments. However, while it is well known
that COVID-19 spread has a spatial dimension (Cordes and Castro,

E-mail address: raffaele.mattera@unina.it.
1 This number of legislative acts refers to the time period between 1th January 2020 and 1th January 2022. Detailed information about the legislative acts

about COVID-19 in Italy can be found at the following link https://www.openpolis.it/coronavirus-lelenco-completo-degli-atti/.
2 Published on the Gazzetta Ufficiale (n.275 of 04-11-2020 - Suppl. Ordinario n. 41) on November 3 2020 ‘‘Ulteriori disposizioni attuative del decreto-legge 25

marzo 2020, n. 19, convertito, con modificazioni, dalla legge 25 maggio 2020, n. 35, recante’’ Misure urgenti per fronteggiare l’emergenza epidemiologica da COVID-19.

2020), the Italian government limited the attention on the contagion
time evolution. In what follows, following recent contributions on the
topic (e.g. see D’Urso et al., 2021a,b; Lopez-Oriona et al., 2021), we
argue that spatial dimension has to be taken into consideration together
with the temporal one for a more correct classification. Indeed, recently
there has been an increasing interest in the development of spatial and
spatio-temporal clustering algorithms for epidemiological data.

Following Fouedjio (2016) clustering of spatial data can be done
by considering either non-spatial clustering models based on spatial
dissimilarity measures or spatially constrained clustering approaches.
Within the first category, the clustering approaches define the dis-
similarity among the objects by means of geographical coordinates,
i.e. considering simple spatial proximity, or consider a dissimilarity
measure constructed on the basis of spatial features such as the var-
iogram (e.g. Oliver and Webster, 1989; Romano et al., 2015) or the
spatial auto-correlation (e.g. Scrucca et al., 2005; Holden and Evans,
2010). The second category is instead based on spatial contiguity
constraints rather than spatial dissimilarity measures (e.g. Pham, 2001;
Romary et al., 2015; D’Urso and Vitale, 2020). In other words, these
clustering approaches consider non-spatial distances but introduces a
penalty term in the objective function to enhance clustering in the same
group neighboring statistical units.

Clustering of time series object can be done in different ways as
well. The time series clustering approaches can be divided into three
vailable online 25 March 2022
877-5845/© 2022 Elsevier Ltd. All rights reserved.
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main groups (Maharaj et al., 2019): observation-based, feature-based
and model-based. The first uses raw data and the distances are directly
computed on the observed time series. Differently, the second approach
aims to group time series by taking into account some features such
as the auto-correlation function (ACF) or the partial autocorrelation
function (PACF) (e.g. see Caiado et al., 2006; D’Urso and Maharaj,
2009). Some of the methods belonging to this class, are based on the
frequency domain features like the periodogram with its transforma-
tions (Maharaj and D’Urso, 2011) or the cepstral (D’Urso et al., 2020).
The model-based approached are instead based on the assumption that
the time series are generated by the same statistical model, such as the
ARMA (Piccolo, 1990) or the GARCH (D’Urso et al., 2016) processes,
but with different parameter. Model-based approaches can be also
defined on the basis of probability distribution parameters (e.g. see
D’Urso et al., 2017; Cerqueti et al., 2021).

In many applications, however, it can be reductive considering only
spatial or temporal dimension because both of them have provide
important information. This is surely the case of epidemiological data
and, specifically, of COVID-19 spread modeling (D’Urso et al., 2022;
Vitale et al., 2021). Among different approaches for clustering spatio–
temporal data we can mention the use of a time series clustering model
based on a spatial dissimilarity measure (Izakian et al., 2012), model-
based clustering approaches (Disegna et al., 2017) or the use of time
series distance with the inclusion of contiguity constraints (Coppi et al.,
2010; D’Urso et al., 2019, 2021a).

As noted by D’Urso and Massari (2019), spatial and temporal data
are of different types. In this paper, following a Partition Around
Medoids (PAM) approach, we propose a fuzzy clustering model for
spatio-temporal data where both temporal and spatial information
are properly considered in the definition of a unique spatio-temporal
distance. Specifically, we apply the (D’Urso and Massari, 2019) fuzzy
clustering model with mixed-data type in a spatio-temporal framework,
considering a particular mixed distance measure for spatial and tempo-
ral data. By adopting a fuzzy approach, we admit that each statistical
unit can be in more than one cluster with a certain level of probabil-
ity. Indeed, the fuzzy approach implicitly indicates the presence of a
second-best cluster — sometimes, almost as good as the first best; this
is a property that is missing in the traditional clustering methods. More-
over, in the real world, the identification of a clear boundary between
clusters is not an easy task, so a fuzzy approach is more attractive than
a deterministic one. The properties of fuzzy clustering can be partic-
ularly useful when dealing with COVID-19 policy design application.
Usually fuzziness can be exploited to avoid the classification of some
units. However, in this framework, uncertainty cannot be seen as an
indication of policy avoidance. When cluster assignment of an unit is
uncertain, the definition of the right treatment can be difficult. Know-
ing that a statistical unit has an uncertain cluster assignment allows
policy makers to deeply investigate the characteristics of such a unit in
order to define the most appropriate treatment. Clearly, with an hard
clustering algorithm the risk of assigning an inappropriate treatment
is definitely higher, because policy makers have no information about
classification uncertainty for each statistical unit in the sample.

The proposed clustering algorithm is applied for the definition of
clusters of Italian regions with similar COVID-19 spread. The results
can be useful for the definition of new public health policy, where a
different level of restrictions could be imposed to different geographical
areas according to the spatio-temporal features of the disease spread.

The structure of the paper is the following. Section 2 presents the
clustering model, while Section 3 discusses the application and the data
used. Section 4 provides a discussion of the main results and Section 5
concludes.

2. Methodology

2.1. The clustering model

Let us consider 𝑁{𝑖 = 1,… , 𝑁} statistical units observed over time
2

nd space. Then, let us consider a matrix 𝐗𝑖,𝑡 containing in each 𝑖th
olumn the temporal pattern of a variable of interest 𝑥𝑡 for several
eographical units 𝑖. Aim of the clustering procedure is to group the 𝑁

units in terms of similarity over both time and space. In what follows we
propose a clustering approach that consider a spatio-temporal dissimi-
larity measure. By exploiting the fact that spatial and temporal data are
of different type, we apply the (D’Urso and Massari, 2019) fuzzy clus-
tering algorithm for mixed data type in a spatio-temporal framework.
In other words, we define a spatio-temporal distance that is constructed
by optimally weighting both temporal and spatial distances.

More in detail, the resulting clustering approach is based on the
following minimization problem:

min
𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖,𝑐𝑑(𝑠, 𝑡)

2
𝑖,𝑐 =

𝑁
∑

𝑖=1

𝐶
∑

𝑐=1
𝑢𝑚𝑖,𝑐

[

𝑤2
𝑠𝑑(𝑠)

2
𝑖,𝑐 +𝑤2

𝑡 𝑑(𝑡)
2
𝑖,𝑐

]

(1)

nder the constraints:
𝐶

𝑐=1
𝑢𝑖,𝑐 = 1, 𝑤𝑠 +𝑤𝑡 = 1, 𝑤𝑠, 𝑤𝑡 ≥ 0 (2)

here 𝐶 is the number of clusters, 𝑢𝑖,𝑐 is the membership degree of
he 𝑖th unit to the 𝑐th cluster with 𝑚 the fuzziness parameter. In this
ramework, we define 𝑑(𝑠)𝑖,𝑐 the spatial distance to which is assigned

weight 𝑤𝑠, and 𝑑(𝑡)𝑖,𝑐 the temporal distance with 𝑤𝑡 its relative
eight. By solving the minimization problem (1), we have the following

olutions:

𝑖,𝑐 =

⎛

⎜

⎜

⎜

⎝

𝐶
∑

𝑐′=1

[

𝑤2
𝑠𝑑(𝑠)

2
𝑖,𝑐 +𝑤2

𝑡 𝑑(𝑡)
2
𝑖,𝑐

𝑤2
𝑠𝑑(𝑠)

2
𝑖,𝑐′ +𝑤2

𝑡 𝑑(𝑡)
2
𝑖,𝑐′

]

1
𝑚−1

⎞

⎟

⎟

⎟

⎠

−1

(3)

for the membership degrees and:

𝑤𝑠 =

∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖,𝑐𝑑(𝑠)

2
𝑖,𝑐

∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖,𝑐

[

𝑑(𝑠)2𝑖,𝑐 + 𝑑(𝑡)2𝑖,𝑐
]2

(4)

𝑡 =

∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖,𝑐𝑑(𝑡)

2
𝑖,𝑐

∑𝑁
𝑖=1

∑𝐶
𝑐=1 𝑢

𝑚
𝑖,𝑐

[

𝑑(𝑠)2𝑖,𝑐 + 𝑑(𝑡)2𝑖,𝑐
]2

(5)

for the weights. The proof of these results can be obtained following
those provided by D’Urso and Massari (2019). The main issues related
to the presented clustering algorithm are the definition of the number
of clusters 𝐶 and the fuzziness parameter 𝑚.

It is well known that values of 𝑚 equal to 1 results into an hard
partition, where the membership of an 𝑖th unit to a 𝑐th cluster can be
either 1 or 0. Therefore, in order to introduce fuzziness in the clustering
problem the parameter 𝑚 has to be set 𝑚 > 1. However, also large values
of 𝑚 are not appropriate because for 𝑚 → ∞ the membership degrees
are equal to 1∕𝐶. Overall, there not exist a theoretical rule for selecting
he fuzziness parameter 𝑚, but most of literature considers a value of
= 2 (e.g. see Bezdek et al., 1984). Similarly, some studies have also

hown that the performance of fuzzy clustering algorithms is not so
ensitive to the variation of 𝑚 (e.g. see Choe and Jordan, 1992).

Then, we address the problem of selecting the number of clusters
𝐶 by means of the Fuzzy Silhouette (FS) criterion (Campello, 2007).
The Fuzzy Silhouette makes explicit use of the fuzzy partition matrix
𝑈 with elements 𝑢𝑖,𝑐 and considers the information on the membership
degrees contained in 𝑈 . In the case of high membership, it stresses
the importance of units closely placed with respect to the cluster
prototypes. In the case of small membership, it reduces the importance
of the units placed in overlapping areas. In details, the FS is computed
as follows:

𝐹𝑆 =
∑𝑁

𝑖=1(𝑢𝑖,𝑐 − 𝑢𝑖,𝑐′ )𝛼𝑆𝑖
∑𝑁

𝑖=1(𝑢𝑖,𝑐 − 𝑢𝑖,𝑐′ )𝛼
(6)

with:

𝑆𝑖 =
(𝑏𝑖 − 𝑎𝑖)
max{𝑏𝑖, 𝑎𝑖}
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The value 𝑎𝑖 is the average distance between the 𝑖th unit and the cluster
to which it belongs with the highest membership degree and 𝑏𝑖 is the
average distance between the 𝑖th unit and those of the other clusters.
Moreover, 𝑢𝑖,𝑐 and 𝑢𝑖,𝑐′ are the first and second largest elements of
the 𝑖th row of the fuzzy partition matrix, respectively and 𝛼 ≥ 0 is a
weighting coefficient, usually set equal to 1.

2.2. Distance measures

First of all, we have to define a dissimilarity measure to account
for the spatial nature of the phenomenon under consideration. We
measure the spatial dimension of the disease spread instantaneously,
i.e. at time 𝑡 = 𝑇 3 by means of the spatial auto-correlation. Spatial auto-
orrelation is a measure of similarity among neighboring statistical
nits. As stated by Tobler (1970) ‘‘everything is related to everything
lse, but near things are more related than distant things’’. Finding a
ositive spatial auto-correlation means that adjacent units have similar
haracteristics, while the units are different in the case of a negative
alue. Usually, spatial-autocorrelation is measured by means of the
lobal Moran’s 𝐼 index (Moran, 1948).

However, even if extremely useful, the global Moran’s 𝐼 statistics
s not able to provide a deeper understanding about which statistical
nits is similar or different to neighborhood ones. In other words, the
lobal Moran statistics only provides a general picture about the spatial
orrelation of a variable.

A local measure of spatial auto-correlation can be found in the Local
oran’s 𝐼 statistics (Anselin, 1995). The Local Moran’s 𝐼 is similar to

he global Moran’s 𝐼 in the extent to which it provides a measure of
ow similar locations are to their neighbors. Nevertheless, the second
ne is computed at local level, such that each statistical unis has
ts own spatial auto-correlation statistics. Local Indicators of Spatial
ssociation (LISA) have been often used for the determination of spatial
lusters (e.g. Moraga and Montes, 2011; Martínez Batlle and van der
oek, 2018; Pfeiffer et al., 2008). Some other papers (Scrucca et al.,
005; Stojanova et al., 2013) have used LISA as inputs of unsupervised
earning techniques, by considering only spatial information for clusters
efinition.

In this paper, we define the spatial distance, 𝑑(𝑠)2𝑖,𝑐 , as the squared
Euclidean distance between local spatial auto-correlations, estimated
by means of Local Moran’s 𝐼𝑖 (Anselin, 1995):

𝐼𝑖 =
∑

𝑗 𝑤𝑖𝑗𝑥𝑖𝑥𝑗
∑

𝑖 𝑥
2
𝑖

(7)

ith 𝑥𝑖 and 𝑥𝑗 are the values of the variable 𝑥 in the areas 𝑖 and 𝑗
espectively. The local Moran’s 𝐼𝑖 allows to account for spatial auto-
orrelation between neighbor statistical units. Positive values indicates
hat areas 𝑖 and 𝑗 have similar characteristics. On the contrary, negative
alues suggest a dissimilarity between 𝑖 and 𝑗.

Once the spatial distance has been defined, we have to discuss
suitable time series distance. As we have seen in the introduction

here are several ways of measuring distances between time series.
n this paper we propose to follow a feature-based approach, where
he time distance 𝑑(𝑡)2𝑖,𝑐 is computed according to the auto-correlation
tructure. Hence, the proposed clustering model consider both spatial
nd temporal auto-correlation.

Let us define �̂�𝑙,𝑖 the estimated autocorrelation at lag 𝑙 of the time
eries associated to the 𝑖th statistical unit. By considering the usual
ample auto-correlation estimator:

̂𝑖,𝑙 =
∑𝑇

𝑡=𝑙+1(𝑥𝑖,𝑡 − �̄�)(𝑥𝑖,𝑡−𝑙 − �̄�)
∑𝑇

𝑡=1
(

𝑥𝑖,𝑡 − �̄�
)2

(8)

3 Where 𝑇 is the last observation in the sample (i.e. today). Therefore,
the spatial distance can be seen as an instantaneous measure. Alternative
approaches can be also defined on the basis of weekly or monthly averages
rather than instantaneous values
3

d

with 𝑥𝑖,𝑡 the time series 𝑥𝑡 for the 𝑖th unit, �̄� the average and 𝐿 a
ufficiently large set of auto-correlation. Usually, common choices for

are 𝐿 = 10 or 𝐿 = 50 (Díaz and Vilar, 2010). Then, we consider the
ollowing Ljung and Box (1978) statistics:

𝑖 = 𝑇 (𝑇 + 2)
𝐿
∑

𝑙=1
(𝑇 − 𝑙)−1𝜌2𝑖,𝑙

here 𝑇 is the length of the time series, 𝜌𝑙 is the 𝑙th autocorrelation
oefficient. A large value of the statistics indicates that there is a
ignificant auto-correlation structure in the time series. Therefore, as
uggested by Bastos and Caiado (2021), the time distance 𝑑(𝑡)2𝑖,𝑐 can
e computed as the squared Euclidean distance between estimated 𝑄𝑖
tatistics.

. Application to Italian regions

As previously stated, we use the proposed clustering model with the
im of obtaining clusters of Italian regions that share similar spatio-
emporal patterns in the COVID-19 spread. Indeed, the Italian gov-
rnment introduced the application of differentiated local treatments
n the basis of contagion spread evolution. However, the potential
sefulness of clustering has not been totally explored. Clustering algo-
ithms allow the definition of a partition on the basis of an objective
easurement of dissimilarities among the statistical units. In presence

f territorial units with many variables, the definition of similarity
egree among the units becomes a difficult task. The resulting clusters
an be used to orientate public health policy (e.g. see D’Urso et al.,
021a).

We collect the data4 about several indicators of COVID-19 spread
rom the 20th February 2020 to the 20th April 2021 in order to consider
he dates with the highest spread of contagion. Hence, we have 𝑁 = 20
tatistical units with an observed time series length of 𝑇 = 422.

The considered dataset contains several indicators such as the num-
er of occupied beds in intensive cares, the number of positive cases or
he number of deaths per 1000 inhabitants. For each of the considered
ariables we have time series highlighting the differences in temporal
rends among the Italian regions.

The decision about which variable to consider in the clustering
odel is surely difficult and depends by the policy makers. For exam-
le, the number of occupied beds in intensive care was considered by
he Italian authorities as one of the most important indicators to track
he severity of pandemic.

To show how clustering results change with different target vari-
bles, in what follows we provide clustering results according to both
he number of cases per 1000 inhabitants and the occupied beds in
ntensive cares 1000 inhabitants.

The number of positive cases at 20th April 2021 is showed in Fig. 1.
The number of positive cases was relatively high in most of south re-

ions, especially Campania and Puglia, while in the north with the only
xception of Emilia-Romagna, the cases were relatively low. Overall, it
s evident a certain degree of similarity between neighboring regions,
uch as the case of Campania, Basilicata and Puglia or Lobardia and
iemonte in the north. The number of occupied beds in intensive care
s shown in Fig. 2.

Fig. 2 highlights a completely different picture, with the norther
egions having the most negative values. Fig. 2 explains why many
orth regions were assigned to more severe color clusters than others of
he south. Also in this case spatial heterogeneity and auto-correlation
merge. In general, it is evident that the consideration of alternative
ndicators suggest different results in terms of pandemic spread.

Nevertheless, together with the spatial dimension of the
henomenon, also the time pattern of the contagion is important and
as to be considered. Time dimension of occupied intensive care beds
er 1000 inhabitants for all the Italian regions is showed in Fig. 3.

4 Data can be retrieved at the following link: https://github.com/pcm-
pc/COVID-19/tree/master/dati-regioni.

https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
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Fig. 1. Number of positive COVID-19 cases per 1000 inhabitants 20/04/2021.

Fig. 2. Occupied intensive care beds per 1000 inhabitants 20/04/2021.

From Fig. 3 it is evident that the time evolution follow a different
pattern across different regions as well. For example, regions in the
south of Italy like Calabria, Sicily and Puglia show increasing occupied
intensive care beds in the last time periods, while the other Italian
regions show decreasing patterns. Moreover, almost all the time series
are characterized by very low values during the summer months.

Similarly, Fig. 4 shows the time pattern of positive cases for the
Italian regions.

Also in this case many differences can be highlighted. For example,
Sardegna, Campania and Puglia seem to have very similar time patterns
in terms of positive cases number. However we have already explained
4

that the definition of a proper similarity between time series should
Table 1
Weights assigned to the spatial and temporal distance.

𝑑(𝑠) 𝑑(𝑡)

Weights 65.27% 34.72%

Table 2
Clustering results: membership degrees.

Regions Medoids

Molise Piemonte

Abruzzo 0.00 1.00
Basilicata 0.94 0.06
Calabria 0.97 0.03
Campania 0.54 0.46
Emilia-Romagna 0.01 0.99
Friuli Venezia Giulia 0.00 1.00
Lazio 0.01 0.99
Liguria 0.00 1.00
Lombardia 0.02 0.98
Marche 0.00 1.00
Molise 1.00 0.00
Piemonte 0.00 1.00
Puglia 0.21 0.79
Sardegna 0.19 0.81
Sicilia 0.02 0.98
Toscana 0.03 0.97
Umbria 0.01 0.99
Valle d’Aosta 0.92 0.08
Veneto 0.02 0.98
Trentino-Alto Adige 0.01 0.99

not be based on raw data. Instead, alternative features should be con-
sidered, such as the auto-correlation structure. Moreover, also spatial
dimension of the disease spread has to properly taken into account in
the clustering process.

For these reasons we claim that the usage of spatio-temporal statisti-
cal models can be of relevance in designing novel public health policies
as the Italian government has shown. In what follows we propose
the use of the spatio-temporal application of the D’Urso and Massari
(2019) fuzzy clustering algorithm, with the aim of defining groups of
homogeneous Italian regions in terms of COVID-19 spread over the time
but also accounting for instantaneous differences among geographical
units.

4. Results and discussion

4.1. Target I: occupied beds in intensive care

In what follows we consider the occupied beds in intensive care as
the interesting variable to build the clusters of regions. A crucial aspect
of any clustering procedure is the selection of the number of clusters 𝐶.
At this aim, following previous studies, we use the Fuzzy Silhouette (FS)
criterion of Campello (2007). According to the FS criterion we choose
𝐶 = 2 clusters of regions (see Fig. 5).

The optimal weights selected by means of the solution of the prob-
lem (1) are shown in the Table 1.

From Table 1 we conclude that the spatial dimension is more
important in clusters definition but at the same time the time dimension
is not negligible.

The clustering results with the membership degrees are reported in
Table 2.

The medoids, Molise and Piemonte, follow a territorial difference,
i.e. south and north of Italy. Table 2 shows the membership degrees of
the territorial units. Overall, we do not observe very fuzzy classification
for most of the Italian regions, with Campania being the only exception.
Note the cluster 1 (Molise medoid) includes specifically regions located
in the south of Italy. However, not all the southern regions belong to

the first cluster, being more similar to those located in the center and
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Fig. 3. Occupied intensive care beds per 1000 inhabitants: time evolution of some Italian regions.
Fig. 4. Positive cases per 1000 inhabitants: time evolution of Italian regions.
s
(
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orth of Italy. Fig. 6 allows to visualize the clusters, in terms of crisp
lassification, geographically.

Overall, in terms of intensive care beds the clustering model high-
ights two clear geographical clusters: some neighboring regions of
outh Italy and those in the north and center with the islands. The only
orth regions that is placed in the same ‘‘south cluster’’ is the Valle
5

’Aosta. u
Then, to geographically visualize also the uncertainty in the clas-
ification, Fig. 7 shows the membership degrees in a map. The lighter
darker) is the color of the 𝑖th region the more (less) likely it belongs
o the cluster in Fig. 6.

As showed in Table 2, with the exclusion of Campania, the overall

ncertainty in the assignment is not problematic. This means that the
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Fig. 5. Campello (2007) Fuzzy Silhouette: values for different clusters 𝐶.

Fig. 6. Fuzzy clustering (occupied beds in intensive care): crisp classification.

Table 3
Weights assigned to the spatial and temporal distance.

𝑑(𝑠) 𝑑(𝑡)

Weights 50.71% 49.29%

Campania region cannot be assigned automatically to a cluster and it
would deserve a deeper investigation by policy makers.

4.2. Target II: positive cases

In what follows, we present another example by considering the
number of positive cases as the variable of interest for clustering.
According to the FS criterion, we choose again 𝐶 = 2 clusters of regions
(see Fig. 8).

The optimal weights selected by means of the solution of the prob-
lem (1) are shown in the Table 3.

From Table 3 we conclude that the spatial and time dimension are
of equal importance. Also in this case, two clusters are identified. The
clustering results, with membership degrees, are shown in Table 4.

Differently from the previous experiment, in this case the two
medoids (Piemonte and Toscana) are located in the north of Italy.
6

The uncertainty in the classification is not problematic also in this
Fig. 7. Fuzzy clustering model (occupied beds in intensive care): membership degrees.

Fig. 8. Campello (2007) Fuzzy Silhouette: values for different clusters 𝐶.

Table 4
Clustering results: membership degrees.

Regions Medoids

Piemonte Toscana

Abruzzo 0.12 0.88
Basilicata 0.97 0.03
Calabria 0.60 0.40
Campania 0.19 0.81
Emilia-Romagna 0.16 0.84
Friuli Venezia Giulia 0.15 0.85
Lazio 0.18 0.82
Liguria 0.07 0.93
Lombardia 0.14 0.86
Marche 0.26 0.74
Molise 0.15 0.85
Piemonte 1.00 0.00
Puglia 0.28 0.72
Sardegna 0.31 0.69
Sicilia 0.17 0.83
Toscana 0.00 1.00
Umbria 0.15 0.85
Valle d’Aosta 0.02 0.98
Veneto 0.24 0.76
Trentino-Alto Adige 0.64 0.36
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Fig. 9. Fuzzy clustering (positive cases): crisp classification.

case, with the Calabria and Trentino-Alto Adige having the lowest
membership degrees (0.6 and 0.64) to the cluster 1. Differently from the
previous experiment with intensive care, since the cluster 2 included
both northern and southern regions, we now observe two clusters that
are less spatially constrained. This happen because, differently from
Table 1, in this second setting the temporal dimension has a much
greater relevance, almost of the same importance of the spatial one (see
Table 3).

In Fig. 9 is shown the map with the crisp assignments that allows
for a better visualization of the clusters over the space. In terms of
positive cases, we observe that most of the regions are placed in the
yellow cluster while few of them are in the blue one. While Calabria
and Basilicata are neighbors in the blue cluster, Piemonte and Trentino-
Alto Adige are not. On the contrary, most of the yellow cluster regions
are neighbors. This happen, as explained previously, because now the
temporal dimension has greater relevance in defining the clusters.

Then, in order to visualize geographically the uncertainty in the
classification, Fig. 10 shows the membership degrees.

The lighter (darker) is the color of the 𝑖th region the more (less)
likely it belongs to the cluster in Fig. 9. Confirming the evidences
shown in Table 4, the membership degrees highlights an overall low
uncertainty in the classification, since the lowest value (Calabria) is
greater than 0.6.

4.3. Discussion

The most important result to be highlighted is that we found the
presence of the clusters of regions in terms of disease spread rather than
the three. This result hold for both the considered target variables. The
relatively high values of the Fuzzy Silhouette indicate that the clusters
are well defined in terms of both compactness and separation. This
means that one of the three clusters of color does not respect the actual
differences among the Italian regions. Moreover, clusters’ composition
is very similar for both the considered variables, i.e. positive cases and
occupied beds in intensive care. These findings open up for a discussion
related to the effectiveness of the proposed containment measures.

According to some recent studies, the clusters of colors had overall
positive effects on the reduction of the disease spread (Manica et al.,
2021; Pelagatti and Maranzano, 2021). Clearly, the different type of
7

t

Fig. 10. Fuzzy clustering (positive cases): membership degrees.

estrictions generated lower or greater reduction rates in the COVID-
9 infection rates. Obviously, the regions placed in the yellow cluster
howed a slower decrease of infections if compared with regions in
range and red clusters. For example, according to Manica et al. (2021),
hile regions in the yellow cluster experimented a reduction about 18%
f the infection rates, orange and red clusters showed reduction of 34%
nd 45% respectively. Therefore, as expected the red cluster has been
he most successful in reducing the pandemic spread, especially respect
o the orange one (Panarello and Tassinari, 2021).

As noted by Panarello and Tassinari (2021), the restrictions intro-
uced by the governments are not sufficient by themselves without
itizens’ compliance. Mobility restrictions had a huge negative psycho-
ogical impact on citizens (Yao et al., 2021) and generated considerable
osses in economic terms. With this respect, we have to stress that the
range cluster is characterized by more severe restrictions than the
ellow one. For example, food services such as restaurants and pubs,
hat are essential for social life, were suspended while in the yellow
luster they were allowed until 10pm in the evening. Moreover, while
obody was allowed to leave the region and municipality of residence,
n the yellow cluster citizens were instead allowed to move freely. On
he basis of these considerations, we can argue that the orange color
luster, with mild-severity restrictions, could be removed.

Clearly, these findings are far to be conclusive. Indeed, evaluating
hat would be the effects of two differentiated local treatments rather

han three is difficult and out of the scope of this paper. By comment-
ng the results, we should also have in mind the main limitation of
utomatic algorithms like the proposed clustering procedure. Indeed,
lustering algorithms can only provide an indication of the degree of
imilarity across geographical areas. Conversely, they are not able to
pecify the degree of the pandemic severity within each cluster. To get
ore insights deeper investigations are needed.

In general, we can argue that the choice of treatments has to be
ade on the basis of within cluster analyses conducted by policy mak-

rs with the help of public health authorities. Nevertheless, as argued
y D’Urso et al. (2021a), clustering algorithms can be interestingly used
y national and local authorities to deeply understand the contagion
volution, similarities among statistical units over time and space. On
he basis of the obtained results, more effective policies can be designed

o mitigate the effects of the pandemic.
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5. Conclusion

With the legislative act of November 3 2020 the Italian government
introduced a differentiated regime of restrictions among the Italian
regions, showing how the containment of COVID-19 spread can be
done by means of geographical areas clustering. In particular, yellow
cluster is characterized by not severe policies, while orange and red
ones by mild and severe restrictions. The clusters of colors, used for the
definition of specific local treatments, had overall positive effects on the
reduction of the disease spread at the time we are writing. Specifically,
the red cluster has been the most successful in reducing the pandemic
spread especially f compared to the orange one. Clearly, the yellow
cluster has been the less effective, but guaranteed more freedom to
citizens, that have been negatively affected by the pandemic also from
the mental health point of view.

In this paper we ask whether the three clusters of colors were
really reflecting the actual differences among the Italian regions in
terms of contagion spread. To this aim, we propose a clustering algo-
rithm that accounts for the differences in both the temporal trend and
spatial structure among the Italian regions. In particular, following a
Partition Around Medoids (PAM) approach, we apply the D’Urso and
Massari (2019) fuzzy clustering model with mixed-data type in a spatio-
temporal framework, considering a particular mixed distance measure
for spatial and temporal data.

What we show is that, in the case of intensive care beds, the
algorithm assigns an higher weight to the spatial dimension than the
temporal one, thus confirming the relevance of spatial dimension in
the understanding of contagion spread over the regions. By considering
positive cases, however, both dimensions have the same degree of
relevance. Second, we show that two groups of regions sharing different
patterns of COVID-19 spread exist. Clearly, evaluating the effects of
two differentiated local policies is difficult task, out of the scope of this
paper. However, clustering algorithms can successfully used to identify
objective degree of similarity across geographical areas. Therefore, we
advocate the use of clustering algorithms for the design of more effec-
tive health policies. For an accurate implementation of differentiated
local policies, deeper within cluster analyses has to be conducted by
experts and epidemiologists.

A future development of this work should be devoted to the simulta-
neous analysis of multiple target variables, by considering multivariate
time trajectories in the space as discussed recently in Lopez-Oriona
et al. (2021).
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