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Abstract: Openness-weighted association study (OWAS) is a method that leverages the in silico pre-
diction of chromatin accessibility to prioritize genome-wide association studies (GWAS) signals, and
can provide novel insights into the roles of non-coding variants in complex diseases. A prerequisite
to apply OWAS is to choose a trait-related cell type beforehand. However, for most complex traits,
the trait-relevant cell types remain elusive. In addition, many complex traits involve multiple related
cell types. To address these issues, we develop OWAS-joint, an efficient framework that aggregates
predicted chromatin accessibility across multiple cell types, to prioritize disease-associated genomic
segments. In simulation studies, we demonstrate that OWAS-joint achieves a greater statistical
power compared to OWAS. Moreover, the heritability explained by OWAS-joint segments is higher
than or comparable to OWAS segments. OWAS-joint segments also have high replication rates in
independent replication cohorts. Applying the method to six complex human traits, we demonstrate
the advantages of OWAS-joint over a single-cell-type OWAS approach. We highlight that OWAS-joint
enhances the biological interpretation of disease mechanisms, especially for non-coding regions.

Keywords: multiple cell types; chromatin accessibility; aggregated Cauchy association test

1. Introduction

Genome-wide association studies (GWAS) have been a powerful tool for identifying
genetic signals associated with complex traits [1]. In recent years, numerous trait-related
single nucleotide polymorphisms (SNPs) have been inferred from GWAS, which brings novel
insights into disease mechanisms and genetic architectures. However, the majority of GWAS
loci (∼89%) lie within non-coding regions [2,3]; hence, their interpretation remains a significant
challenge. In recent years, methods incorporating functional annotations have been developed
which support the prioritization of non-coding variants, improving the understanding of the
biological mechanisms underlying complex traits [4,5].

Chromatin accessibility refers to the degree to which nuclear macromolecules are
able to physically contact chromatinized DNA [6,7]. As an epigenetic feature, chromatin
accessibility is an informative functional annotation in revealing active regulatory ele-
ments [8]. In addition, measurements of chromatin accessibility are predictive for gene
expression [9,10]. However, obtaining experimental epigenome data for large cohorts is
costly. As an alternative, computational approaches have been proposed for chromatin
accessibility prediction. For example, deltaSVM leverages the gkm-SVM classifier and
quantifies cell-type-specific effects of variants on DNase I sensitivity in their native genomic
contexts [11]. DeepCage improves the prediction of novel chromatin accessible regions
with a unified deep neural network, which integrates both sequence information and the
binding status of transcription factors [12].

Recently, we have developed the openness-weighted association studies (OWAS)
approach, a computational framework that leverages predicted chromatin accessibility for
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the prioritization of GWAS signals [13]. The first step in OWAS is to choose a trait-related
cell type (e.g., the liver for low-density lipoprotein (LDL), and whole-blood for Crohn’s
disease (CD)). However, selecting an optimal cell type for a given complex trait remains
a substantial challenge [14,15]. In fact, many complex traits involve multiple related cell
types, such as obesity being regulated by cells in both brain and adipose tissues [3,16,17].
Additionally, it has been shown that phenotype-genotype associations are enriched in
open regions in multiple cell types for many traits [18,19]. Specifically, associations with
height displayed relatively ubiquitous enrichments in DNase I hypersensitive sites of
cell types including blood, fetal muscle, pancreas, etc. Even for those traits that showed
relatively narrow enrichments, such as CD, the associations were also enriched in open
regions of fibroblast and fetal intestine, in addition to blood cells [19]. Therefore, it is
reasonable to incorporate information from multiple cell types to improve the performance
of single-cell-type OWAS analysis.

In this study, we introduce OWAS-joint, a computational framework that integrates
multi-cell-type chromatin accessibility predictions to prioritize trait-associated genomic seg-
ments. OWAS-joint aggregates single-cell-type OWAS test statistics via an aggregated Cauchy
association test (ACAT) [20], bypassing the selection of specific cell types. We show through
simulations that OWAS-joint improves statistical power compared to single-cell-type meth-
ods. We compared the performance of OWAS-joint and single-cell-type with real data appli-
cations for six complex traits, including CD, rheumatoid arthritis (RA), hypertension (HT),
prostate cancer (PrCa), high-density lipoprotein (HDL), and LDL. Compared with OWAS,
OWAS-joint identified more signals that were biologically interpretable. Furthermore, seg-
ments identified by OWAS-joint explain higher heritability and have high replication rates
in independent cohorts. OWAS-joint takes GWAS summary statistics as the input and can
be easily applied to large cohorts (e.g., UK Biobank, UKBB). The findings of OWAS-joint
highlight the mediating effects of chromatin accessibility to the phenotype of interest, which
improves the functional interpretation of non-coding genetic variants and provides novel
insights into disease mechanisms. We provide an R package, OWASjoint, to implement the
proposed method, which is available at https://github.com/shuangsong0110/OWASjoint
(accessed on 1 May 2022).

2. Materials and Methods
2.1. Jointly Modeling Multi-Cell-Type Openness Scores

OWAS-joint integrates in silico predictions of chromatin accessibility across multiple
cell types and GWAS summary statistics to prioritize trait-associated genomic segments
(Figure 1). We examine 100 KB up and down-stream from the transcription start sites of
genes as regulatory regions, which cover most of the regulatory variants [21]. The regulatory
regions are then divided into segments of 5 KB, and the results are robust to the choice of
length [13]. In the software, users can specify a candidate segment either by length or by
the number of SNPs covered. For each segment and each cell type, OWAS test statistics
are calculated as described in Song et al. (2021). OWAS-joint combines the single-cell-type
OWAS results with ACAT [20]. To elaborate, denote pl,s as the OWAS p-value of segment s
concerning the l-th cell type. Specifically, the ACAT test statistic for segment s is

Ts =
L

∑
l=1
{ηltan[(0.5− pl,s)π]}, (1)

where L is the total number of cell types to be aggregated, and the ηl values are non-
negative weights that sum to 1, modeling the relative importance of each cell type. In par-
ticular, OWAS-joint is equivalent to single-cell-type OWAS on the k-th cell type when the
weight of the k-th cell type is 1 and the weights of other cell types are 0. We set ηl =

1
L

(l = 1, · · ·, L) in the following context assuming that there is no prior knowledge on the
related cell types. The transformed quantity tan[(0.5− pl,s)π] follows the Cauchy distribu-
tion if the p-value pl,s is from the null (i.e., pl,s follows a uniform distribution). Then the test

https://github.com/shuangsong0110/OWASjoint
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statistic Ts, which is a weighted average of Cauchy random variables, has approximately a
Cauchy tail under the null regardless of the dependency structure [20,22]. Thus, we can
transform Ts based on the cumulative density function of the Cauchy distribution to derive
the p-value of the multi-cell-type OWAS test,

ps ≈
1
2
− arctan(Ts)

π
. (2)

We note that the approximation holds with arbitrary correlation structures of the OWAS
test statistics across cell types, which ensures the computational efficiency of OWAS-joint.

Multiple 

cell types:
…

Aggregated Cauchy 

association test

OWAS-joint

Openness-weighted association studies (OWAS)

Figure 1. Schematic diagram of OWAS-joint. Cell-type-specific predictions of personalized chromo-
some accessibility and GWAS summary statistics are integrated via OWAS. OWAS-joint aggregates
the OWAS results with single cell types via an aggregated Cauchy association test.

The p-value cut-offs for segment-level association tests were determined using the Bon-
ferroni correction. For each cell type, we used 0.05 divided by the total number of segments
as the significance threshold (∼5× 10−8) to identify the trait-associated genomic segments.

2.2. Linkage Disequilibrium (LD) Shrinkage

In OWAS [13], the z-score for the s-th segment is derived by

Zs =
γ̂s

se(γ̂s)
≈ ∑

j∈Ωs

wj
σ̂j

σ̂s
zj, (3)

where γs is the effect size of segment s for the trait; Ωs denotes the set of SNPs in segment
s; wj, zj, and σ2

j denote the openness effect, z-score, and sample variance of the j-th SNP,

respectively, and σ2
s is the sample variance of the openness scores in segment s. We estimate

σ2
s with σ̂2

s = WT
s Ĉov(Xs)Ws, where Ws is the vector containing the openness effects of

SNPs in segment s. The covariance matrix of the genotype, Cov(Xs), can be estimated
from an external LD reference panel, such as the 1000 Genomes Project (1000G) [23] and
UKBB [24].

In real data applications, the LD matrix was estimated from European samples from
the 1000G reference panel. However, the limited sample size leads to rank deficiency
of the estimated covariance matrix. The singularity of the covariance matrix may yield
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a σ̂2
s close to zero, and further cause inflation of Zs. Therefore, we leverage a two-step

procedure to improve the robustness of the proposed method. In the first step, we perform
an LD-based clumping using PLINK software with an LD threshold of 0.99 to exclude
SNPs with perfect LD [25]. Secondly, we compute a shrinkage estimate of the LD matrix
using the R package “corpcor” [26,27]. After shrinkage, the estimated covariance matrix is
always positive definite and well-conditioned.

2.3. Simulation Settings

We used genotype data from the Wellcome Trust Case Control Consortium (WTCCC)
dataset in simulation studies (n = 15,757) [28]. The predicted openness weights of three
cell types, Th1, GM12878, and A549, were used as true openness effects in simulations to
capture the genetic architecture of openness effects. For each segment, the openness score
for the l-th cell type (l = 1, 2, 3) is :

Ol = XWl , (4)

where X is the genotype matrix of the segment, and Wl is the openness weights vector for
SNPs in the segment of the l-th cell type. A quantitative phenotype is generated using the
openness scores of the segment of all three cell types, i.e.,

y = λ1O1 + λ2O2 + λ3O3 + εεε, (5)

where λl is the effect size of the openness score of the l-th cell type. The error terms εεε are
identical and are independently normally distributed.

To evaluate the type-I error rate, we set λ1 = λ2 = λ3 = 0, which indicates the
phenotype is not associated with any openness scores. With respect to the evaluation of
statistical power, we varied the simulated genetic architectures in two respects: the number
of causal cell types, and the heritability explained by the segment. Specifically, the number
of causal cell types was decided by adjusting λl with

1. λ1 = 1, λ2 = λ3 = 0. Only the first cell type (Th1) is causal to the phenotype.
2. λ1 = λ2 = 1

2 , λ3 = 0. The cell types Th1 and GM12878 are causal, while A549 is not.
3. λ1 = λ2 = λ3 = 1

3 . All three cell types are causal.

The heritability was set to 0.02% for the low heritability setting, and 0.1% for the
high heritability effect setting. We removed segments containing fewer than two SNPs in
simulations. The procedure was repeated 10 times on 500 randomly selected segments on
chromosome 1.

2.4. GWAS Datasets
2.4.1. GWAS Summary Statistics

We provide the details of GWAS data used in our analysis in Table S1. The UKBB
GWAS summary statistics were downloaded from the second round of results released
in August 2018 by the Neale group (http://www.nealelab.is/uk-biobank, accessed on
3 February 2021). The Genetic Epidemiology Research on Aging (GERA) summary statistics
were used for replication analysis for HT (dbGaP: phs000674.v3.p3, http://cg.bsc.es/gera_
summary_stats/, accessed on 9 October 2021).

2.4.2. Individual-Level Genotype Data

We used individual-level genotype data from WTCCC for simulations and real data
applications to compute heritability. For quality control, we removed SNPs with a genotyp-
ing failure rate larger than 0.02 and significant Hardy–Weinberg equilibrium with p < 10−6

in PLINK 1.9 [25]. We also removed samples with a missing rate larger than 0.02. We
excluded the HLA region (chr6: 28, 477, 797-33, 448, 354, hg19) in the heritability estimation.

http://www.nealelab.is/uk-biobank
http://cg.bsc.es/gera_summary_stats/
http://cg.bsc.es/gera_summary_stats/
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2.5. Predicted Openness of Personal Genomes

We obtained the predicted openness effect (wj) of each SNP via the deltaSVM [11]. The
model was trained on DNase I-hypersensitive sites of 12 cell types from the UW ENCODE
Project (http://www.beerlab.org/deltasvm/, accessed on 13 May 2021). A list of the cell
types is provided in Table S2.

2.6. Pathway Enrichment Analysis

We tested the enrichment of OWAS genes in KEGG pathways [29] using the R package
“clusterProfiler” [30]. The false discovery rate (FDR) was controlled at the level of 0.2 with
an R package “qvalue” [31,32].

3. Results
3.1. Simulations

A key improvement of the OWAS-joint framework is to aggregate the statistical
evidence across multiple cell types. We performed simulations to evaluate the type-I error
rate and statistical power of OWAS-joint under varying genetic settings. The openness
weights from three commonly used cell types, A549, GM12878, and Th1, were considered in
the simulations (Section 2). In the null simulations, type-I error rates for both OWAS-joint
and single-cell-type OWAS were well controlled (Table S3). Under various heritability
settings, the statistical power was improved by OWAS-joint when the phenotype was
correlated with the openness scores of multiple cell types (Figure 2, settings 2–3). Even
when only one cell type was causal, the statistical power of OWAS-joint was comparable
to the results based on the causal cell type (Figure 2, setting 1). We also compared the
statistical power of OWAS-joint to simply combining results across three cell types with the
Bonferroni correction. OWAS-joint achieved a consistent power improvement from 30.9%
to 38.0% under low heritability settings, and 3.7% to 5.2% under high heritability settings.

High heritability Low heritability

1 2 2 3
0.00

0.25

0.50

0.75

1.00

3 1 
# causal cell types

P
ow

er

Cell types OWAS-joint Th1 GM12878 A549 Union of single cell types

Figure 2. The statistical power of OWAS-joint, OWAS applied with each of the three cell types, and a
union of single-cell-type methods with Bonferroni correction. Both phenotype effects with high (0.1%)
and low (0.02%) heritability were considered. The simulation settings 1, 2, and 3 correspond to one
(Th1), two (Th1 and GM12878), and three causal cell types.

3.2. Real Data Applications
3.2.1. OWAS-Joint Identifies More Genetic Signals

For real data applications, we applied OWAS-joint to six complex traits including
CD [33], RA [34], HT [24], PrCa [35], HDL [36], and LDL [36]. A detailed description
of the GWAS datasets is provided in Table S1. We compared the results of OWAS-joint
to that of single-cell-type OWAS, based on the 12 common cell types from the UW EN-

http://www.beerlab.org/deltasvm/
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CODE Project (Section 2). Consistent with the simulation studies, OWAS-joint identified
more trait-associated genes and segments than the single-cell-type OWAS and the union
with Bonferroni correction (Table 1 and Figure S1). For example, OWAS-joint identified
382 significant genes for CD, while the single-cell-type OWAS identified 293 genes on
average (standard deviation, SD = 13). The same patterns were observed in the analysis
of segments, where OWAS-joint identified 2743 trait-associated segments. In contrast, on
average, the single-cell-type OWAS identified 1138 segments (SD = 48).

Table 1. The number of segments and genes identified by OWAS-joint, the union of single-cell-type
OWAS with 12 cell types, and the average number of single-cell-type OWAS. The standard deviations
across 12 cell types are shown in brackets. The p-value cutoffs for the union of segment-level
association tests were determined by Bonferroni correction. The largest numbers of identified signals
are highlighted in boldface.

Trait
# Identified Segments # Identified Genes

OWAS-Joint Union (Bonferroni) Single-Cell-Type OWAS OWAS-Joint Union (Bonferroni) Single-Cell-Type OWAS

CD 2743 2595 1138 (48) 382 374 293 (13)
RA 1571 1558 659 (54) 595 590 204 (16)
HT 6598 6308 2452 (111) 978 944 776 (18)

PrCa 1711 1650 635 (32) 301 293 213 (14)
HDL 3070 2944 1347 (41) 1293 1264 441 (23)
LDL 2811 2734 1196 (50) 1229 1219 399 (22)

3.2.2. OWAS-Joint Provides Novel Biological Interpretation

We first performed KEGG pathway enrichment analysis on genes identified by OWAS-
joint and single-cell-type OWAS analysis (Figures S2 and S3). The related cell type for
single-cell-type OWAS was pre-specified based on domain knowledge [13,19,37] (Table S1).
Here, we focus our discussions on pathways that were enriched in OWAS-joint genes but
not in single-cell-type OWAS genes. The two infection-related pathways, the hepatitis B
(q-value = 0.14) and measles (q-value = 0.16) pathways, were enriched for CD. Infectious
agents were implicated in the initiation, maintenance, and risk of chronic inflammation
in CD [38,39]. The antigen processing and presentation pathway (q-value = 0.16) was
also enriched in OWAS-joint genes for CD, which confirms the pivotal role of antigen-
presenting cells in intestinal inflammation [40]. Another example is the PPAR signaling
pathway, which was enriched in OWAS-joint genes for LDL (q-value = 0.12). As discussed
in Gusev et al. (2018), PPARG activation increases LDL metabolism via induction of LDLR
and CYP7A1 [41]. It has also been reported that PPAR agonists decrease glycated LDL
uptake into macrophages via regulation of lipoprotein lipase [42]. We also found the
prostate cancer pathway was enriched in OWAS-joint genes for PrCa (q-value = 0.17),
which validates the results.

We further show that OWAS-joint identifies more candidate genes than single-cell-
type OWAS. We used 17 candidate causal genes-phenotype pairs for CD and HDL in
Wainberg et al. (2019) to benchmark OWAS-joint and OWAS. For CD, OWAS-joint identified
all six candidate causal genes, whereas STAT3 (OWAS-joint p-value = 2.3× 10−8) was not
identified by the single-cell-type OWAS with the whole-blood cell type (Th1). Experiments
have shown that STAT3-knockout mice develop Crohn’s-like symptoms [43]. For LDL,
OWAS-joint identified 8 out of 11 candidate causal genes, while OWAS with liver cell type
(HepG2) only identified 7 with PPARG missed (OWAS-joint p-value = 8.3× 10−9).

OWAS-joint genes can also be validated with etiological evidence. We highlight
several examples of CD. As discussed in Verlaan et al. (2009), the allele-specific chromatin
remodeling in ZPBP2 (OWAS-joint p-value = 2.1× 10−10) is associated with the risk of
autoimmune disease [44]. Furthermore, LRRK2 (OWAS-joint p-value = 9.0× 10−16) was
found to suppress the transcriptional activity of NFAT1, which has been considered a key
target for treating immune disorders [45]. In addition, we also found some susceptible genes
for ulcerative colitis (UC). UC is known to have a high genetic correlation (around 0.7) with
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CD [46]. An example is GNAI2 ( OWAS-joint p-value = 2.5× 10−9), which plays an essential
role in the inflammatory process [47]. GNAI2-deficient mice develop a lethal diffuse colitis
with clinical and histopathological features, which is similar to UC in humans [48].

3.2.3. More Heritability Explained by OWAS-Joint Segments

As discussed in Song et al. (2021), OWAS segments explain more heritability compared
with the genes or annotated SNP sets found by other methods, such as FUSION [49] and
CADD [50]. In the following, we show that OWAS-joint segments explain more heritability
than single-cell-type OWAS. Heritability was evaluated with WTCCC individual-level
genotype data for CD, HT, and RA. The samples for evaluation were independent of the
samples in the discovery cohorts. From Figure 3, we can see that the heritability explained
by OWAS-joint segments was higher or comparable to the highest heritability explained
by the single-cell-type OWAS segments with each of the 12 cell types. The patterns were
consistent across the three traits under varying p-value thresholds, and the improvement
was especially notable for RA.

0.00

0.05

0.10

0.15

0.20

−3 −2.5 −2

p value threshold (log10)

h2

CD

0.00

0.05

0.10

0.15

0.20

−3 −2.5 −2

p value threshold (log10)

h2

HT

0.000

0.025

0.050

0.075

0.100

0.125

−3 −2.5 −2

p value threshold (log10)

h2

RA

Cell types
OWAS-joint
A549
GM12878

HeLa−S3
HepG2
HMEC

HSMM
Th1
HUVEC

K562
LNCaP
MCF7

NHEK

Figure 3. Heritability (h2) explained by OWAS-joint segments and single-cell-type OWAS segments.
Varying p-value thresholds were considered. The error bars correspond to the standard error of the
heritability estimated by GCTA software. The heritability was evaluated with the WTCCC individual-level
genotype data. The red dashed lines mark the heritability explained by OWAS-joint segments.

3.2.4. Replication Rates of OWAS-Joint Segments

We evaluated the replication rates of OWAS-joint segments of the six traits mentioned
above. The independent GWAS cohort details for evaluating replication rates are provided
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in Table S4. We first binned the SNPs by GWAS p-values in the discovery cohorts. For SNPs,
either identified by OWAS-joint (i.e., SNPs that are harbored by significant segments
identified by OWAS-joint) or not, we calculated the replication rate in the replication
GWAS cohort within each bin. OWAS-joint achieved high replication rates for all six
phenotypes and all p-value bins (Figure 4). This indicated that OWAS-joint segments
effectively detected the truly associated SNPs. The improvement in the replication rates
was more prominent for GWAS SNPs with moderate p-values, which indicated the benefits
of aggregating multiple cell types when the GWAS power is limited.
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Figure 4. Replication rates of OWAS-joint results. OWAS-joint was performed with GWAS summary
statistics on CD, RA, HT, PrCa, HD, and LDL from the discovery cohort (with larger sample sizes) and
the replication cohort from UKBB and GERA. In the discovery cohort, GWAS SNPs were divided into
five bins according to their p-values (I: (0, 5× 10−6), II: [5× 10−6, 5× 10−5), III: [5× 10−5, 5× 10−4),
IV: [5× 10−4, 5× 10−3), V: [5× 10−3, 0.05)). In the replication cohort, GWAS significant SNPs were
identified with a relaxed threshold (p < 0.05). In each bin, SNPs were broken down into prioritized
and non-prioritized groups by the OWAS-joint results (p < 5× 10−8). The p-values shown in the
figure were derived from the binomial test.

4. Discussion

Despite the success of GWAS in identifying tens of thousands of associations be-
tween SNPs and complex traits, the interpretation of GWAS signals remains challenging.
The growing amount of cell-type-level epigenomic data has increased our understand-
ing of non-coding variations, but it is still unclear which cell types are more important
for the development of complex traits. In this article, we propose an efficient statistical
framework, aggregating personalized chromatin accessibility across multiple cell types,
for prioritization of disease-related genomic segments. OWAS-joint bypasses the selection
of trait-related cell types, which addresses the main challenge of cell type selection in OWAS
analysis. OWAS-joint tests the mediating effects of chromatin accessibility by quantifying
the association between personalized openness across multiple cell types and the pheno-
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type of interest. The results of OWAS-joint provide a biological interpretation, especially
for non-coding variants, and promote our understanding of disease mechanisms.

In both simulations and real data applications, we demonstrated that OWAS-joint
improves the statistical power and identifies more potential genetic signals than single-
cell-type OWAS analysis. In addition, OWAS-joint segments were shown to have greater
heritability enrichment and replication rates than OWAS. OWAS-joint takes GWAS sum-
mary statistics as input, which guarantees its general applicability without privacy concerns.
The method can be easily applied to large cohorts (e.g., UKBB), and maintains high compu-
tational efficiency. The computational framework can also be extended to other epigenetic
features for understanding of the mediation effects of epigenetic features for complex traits.

There are several limitations of our method. First, similar to OWAS, OWAS-joint
is based on the openness effects predicted by machine learning methods. Therefore, its
performance is affected by the prediction accuracy of the openness effects. When provided
with more data sources (e.g., RNA-seq or Chip-seq data [51,52]), it is expected that the
openness will be predicted more accurately. A recent study has shown that integrating
sequence information and the binding status of transcription factors further improved
the prediction accuracy of chromatin accessibility [12]. Second, we assume an additive
model for the openness effect at SNP level. It may be of value to consider and evaluate the
performance of other statistical models, such as dominant or recessive models. Third, our
method provides a novel perspective to interpret non-coding variants by incorporating
the change in chromatin accessibility in multiple cell types, but the method alone cannot
infer causality. Fourth, we also note that the ACAT weights in Equation (1) can be flexibly
specified based on domain knowledge of the relativity between the cell type and the trait.
Future work is needed to design optimal weights based on data and background knowledge
to further improve the performance of OWAS-joint.
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