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OBJECTIVE—To identify novel type 2 diabetes gene variants
and confirm previously identified ones, a three-staged genome-
wide association study was performed in the Japanese
population.

RESEARCH DESIGN AND METHODS—In the stage 1 scan,
we genotyped 519 case and 503 control subjects with 482,625
single nucleotide polymorphism (SNP) markers; in the stage 2
panel comprising 1,110 case subjects and 1,014 control subjects,
we assessed 1,456 SNPs (P � 0.0025, stage 1); additionally to
direct genotyping, 964 healthy control subjects formed the in
silico control panel. Along with genome-wide exploration, we
aimed to replicate the disease association of 17 SNPs from 16
candidate loci previously identified in Europeans. The associated
and/or replicated loci (23 SNPs; P � 7 � 10–5 for genome-wide
exploration and P � 0.05 for replication) were examined in the
stage 3 panel comprising 4,000 case subjects and 12,569 popula-
tion-based samples, from which 4,889 nondiabetic control sub-
jects were preselected. The 12,569 subjects were used for overall
risk assessment in the general population.

RESULTS—Four loci—1 novel with suggestive evidence (PEPD
on 19q13, P � 1.4 � 10–5) and three previously reported—were
identified; the association of CDKAL1, CDKN2A/CDKN2B, and
KCNQ1 were confirmed (P � 10–19). Moreover, significant asso-
ciations were replicated in five other candidate loci: TCF7L2,

IGF2BP2, SLC30A8, HHEX, and KCNJ11. There was substantial
overlap of type 2 diabetes susceptibility genes between the two
populations, whereas effect size and explained variance tended
to be higher in the Japanese population.

CONCLUSIONS—The strength of association was more prom-
inent in the Japanese population than in Europeans for more
than half of the confirmed type 2 diabetes loci. Diabetes 58:
1690–1699, 2009

T
he predisposition to and the course of type 2
diabetes vary according to ethnic group (1–3). In
Japan, the incidence of type 2 diabetes has
increased recently and is now comparable to

that of other countries; this is supposedly attributable to
the gradual spread of Western habits, such as consuming a
high-fat diet, and the lower insulin secretory capacity of
Japanese subjects (4,5). Recent technological develop-
ments have allowed the successful identification of gene
regions involved in the development of type 2 diabetes in
genome-wide association (GWA) studies (6–17). Several
susceptibility gene loci identified by GWA studies to date
have been used to obtain reproducible evidence of disease
association in different populations of European descent
and Asians, but not necessarily in African Americans
(18 –24). A number of GWA studies on type 2 diabetes
have been conducted on populations of European de-
scent (6 –12). Two GWA scans in the Japanese popula-
tion simultaneously reported the discovery of type 2
diabetes susceptibility gene (KCNQ1) variants in non-
European populations; this result was also obtained in
Scandinavian samples (25,26). Thus far, the replicated
associations for a limited number of candidate genes have
broadly indicated the tendency of interethnic similarity.
Even though the common (or cosmopolitan) effect of type
2 diabetes risk variants is known, the extent to which the
causation of this disease differs or overlaps between
populations remains unknown. Here, besides comparing
the genetic associations between European-descent and
Japanese populations, we aimed to identify new genetic
variants using a three-staged GWA study design.

RESEARCH DESIGN AND METHODS

Detailed characteristics of the subjects enrolled in each stage are described in
the supplementary information and in supplementary Table S1, which is
available in an online appendix at http://diabetes.diabetesjournals.org/cgi/
content/full//db08-1494/DC1. Briefly, patients and unaffected control subjects
analyzed in stages 1 and 2 were enrolled depending on whether they met
certain uniform criteria. Type 2 diabetes was diagnosed according to 1999
World Health Organization criteria. All stage 1 and 2 control subjects (�55
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years of age at examination) had normal glucose tolerance. The stage 3
samples comprised 4,000 type 2 diabetes case subjects derived from the
Biobank Japan project (http://biobankjp.org/) (27) and 12,569 subjects ran-
domly selected from residents aged 50–74 years in the general population. The
12,569 subjects were used as a population panel; this panel contained 4,889
nondiabetic subjects who met the following conditions: age �55 years, A1C
�5.0%, no previous and/or current treatment for diabetes, and absence of
renal failure (serum creatinine �3.0 mg/dl). In stage 3, these 4,889 control
subjects were used in a replication study wherein their genotypes were
compared with those of 4,000 patients. In addition to the samples genotyped
here, to boost the power of the GWA scan, we incorporated genotype
frequencies in the general Japanese population (n � 964) derived from the
Genome Medicine Database of Japan (GeMDBJ; http://gemdbj.nibio.go.jp),
which was used as an in silico control panel. A flowchart summarizing the
multistage design and study aims is shown in Fig. 1.
Stage 1 genome-wide scan and quality control. Genotyping was per-
formed with the Infinium HumanHap550 BeadArray (Illumina), which inter-
rogated 555,352 SNPs (supplementary information). The average call rate was
96.9% for the case and control subjects. Data cleaning and analysis were
performed using PLINK software (28). Samples with a genotype call rate of
�90% were excluded, as were outliers with respect to the number of
heterozygous SNPs, duplicates or relatives of another sample, or ethnic
outliers. We excluded SNPs for the following reasons: 1) GenTrain genotype
quality score �0.53, 2) genotype call rate �0.95, 3) genotype call rate �0.99
and minor allele frequency (MAF) �0.05, 4) significant (P � 10�6) deviation
from the Hardy-Weinberg equilibrium in the control subjects, or 5) MAF
�0.001 (supplementary Table S2); the remaining 482,625 SNPs were analyzed.
Analysis of stage 1 genotype data. Ethnicity was verified for 1,022 samples
(519 case and 503 control subjects) in the stage 1 panel with reference to data
from HapMap populations (29) (see supplementary information). Type 2
diabetes association was tested with the Cochran-Armitage trend test in the
stage 1 panel and an additional panel of 964 random control subjects. We
pooled the genotype counts for combining multiple panels. To detect and
correct population stratification and unnoticed differences in data processing

between facilities, the test statistic was adjusted using Eigenstrat software
(30) and the genomic-control method (31). The significance level for the
first-stage scan was set to P � 0.0025; significant SNPs were additionally
chosen using Fisher’s �2 test (P � 0.0025) to combine the association results
with the P value at the same locus in our previous affected sib-pair scan (32).
A total of 1,811 SNPs surpassed the stage 1 threshold, and we removed
redundant SNPs that were in mutual strong linkage disequilibrium (r 2 �0.9)
before proceeding to stage 2 (see supplementary information and supplemen-
tary Fig. S1 and Table S2 for detailed analysis).
Stage 2 genotyping and analysis. Stage 2 genotyping was performed with
iPLEX (Sequenom) and GoldenGate (Illumina) assays. Quality control was
conducted as described in stage 1, and 1,456 SNPs were successfully geno-
typed. We calculated P values with the trend test by combining 1,517
nondiabetic control subjects with 964 random control subjects similar to stage
1. The significance level for the second-stage scan was set to P � 7 � 10�5 in
the comparison between 1,629 case subjects and 2,481 control subjects (i.e.,
the stage 1 � 2 panels and the 964 random control subjects). A total of 30
SNPs representing 17 unique loci remained significant.
Replication of previously reported SNPs. Along with genome-wide explo-
ration, type 2 diabetes association was tested in the stage 1 and 2 panels using
the HumanHap550 BeadArray, iPLEX assay, or TaqMan method (Applied
Biosystems) for 17 SNPs from 16 candidate loci previously identified by GWA
studies in populations of European descent (6–17). These included IGF2BP2

(rs4402960), PPARG (rs1801282), CDKAL1 (rs7754840 and rs7756992),
SLC30A8 (rs13266634), CDKN2A/CDKN2B (rs10811661), HHEX (rs1111875),
TCF7L2 (rs7903146), EXT2 (rs3740878), KCNJ11 (rs5219), FTO (rs8050136),
JAZF1 (rs864745), CDC123-CAMK1D (rs12779790), TSPAN8-LGR5

(rs7961581), THADA (rs7578597), ADAMTS9 (rs4607103), and NOTCH2-
ADAM30 (rs10923931). The significant SNPs (trend test, P � 0.05) were
further analyzed in the stage 3 panel with the TaqMan method. Despite finding
significant association for CDKAL1 and CDKN2A/CDKN2B in the stage 1 and
2 panels, we proceeded with rs4712523 instead of rs7754840 and rs7756992
(CDKAL1) and with rs2383208 instead of rs10811661 (CDKN2A/CDKN2B) in
the GWA scans from stage 1 to stage 3; this decision was made considering the
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FIG. 1. Flow chart summarizing the multistage design and study aims. (A high-quality digital representation of this figure is available in the online
issue.)
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strong linkage disequilibrium between the SNPs in each of the corresponding
loci.
Stage 3 genotyping and analysis. The stage 3 design involved the replica-
tion of association and the estimation of effect sizes in the GWA scan and/or
replication study of previously reported SNPs. For an association to be
considered significant in the case-control comparison (4,000 case vs. 4,889
nondiabetic control subjects), it had to involve the same risk allele as that in
the previous stages, and it was accordingly assessed with a one-tailed test. For
each SNP locus confirmed in stage 3, the association of additional indepen-
dent SNPs or haplotypes in the locus was also tested (supplementary
information). Moreover, to assess the risk of diabetes and pre-diabetes in the
general population from the combination of SNPs robustly confirmed both in
populations of European descent and in our panel, multiple regression
analysis was performed with the logarithm of A1C (log A1C) as a response
variable (supplementary information), using the entire 12,569-subject popula-
tion-based sample.
Meta-analysis of other type 2 diabetes case-control studies in the

Japanese population. In addition, for SNPs with robustly confirmed associ-
ation in populations of European descent, we performed a meta-analysis by
combining our stage 1 � 2 (rs1801282, rs7756992, and rs8050136) or stage 1 �
2 � 3 results (the remaining seven SNPs shown in supplementary Figure S2)
with those of previous Japanese studies conducted by three other groups
(19–21,33–36). According to Woolf’s test (37), the heterogeneity among the
studies in the Japanese population was insignificant (P � 0.05), with the
exception of PPARG rs1801282 (P � 0.0012), for which the observed hetero-
geneity is supposedly attributable to low allele frequency. Thus, we pooled
genotype counts across the studies to form a combined dataset for the
Japanese population, and we estimated the effect sizes of individual loci. We
used the rmeta package for R software (http://www.r-project.org) for the
analysis.

Moreover, to compare the explained variance between the Japanese
population and populations of European descent, we calculated the coefficient
of determination R 2 for the loci confirmed in our replication study. Here, R2

is the square of the correlation between the genotypes of an SNP coded by the
number of risk alleles (0, 1, and 2) and the disease status (0 and 1)
(supplementary information).

RESULTS

GWA scans. Of 482,625 SNPs that passed quality control
in stage 1, genotypes were obtained for an average of
99.8% markers for each subject. The subjects were en-
rolled from regions of Japan with no strong population
stratification (38), and although some variance inflation
partly attributable to the subtle subpopulation structure
was apparent, such confounding influences could be suf-
ficiently removed using Eigenstrat (30) and genomic-
control adjustment (31). A total of 1,456 markers were
assessed in the stage 2 panel (Fig. 1 and supplementary
Fig. S1 and Table S2).

After the second-stage scan, 30 SNPs representing 17
unique loci attained the arbitrarily defined statistical sig-
nificance (P � 7 � 10�5) (supplementary Table S3). We
used one SNP each from these 17 loci in the third-stage
scan. Of 17 SNPs, 4 reached the significance threshold of
P � 0.003 (� 0.05/17) with Bonferroni correction.

The current GWA study showed strong and highly
consistent evidence for disease association of SNPs from
CDKAL1, CDKN2A/CDKN2B, and KCNQ1 (Fig. 2 and
Table 1 and supplementary Tables S4 and S5). Although
these three loci had already been reported in previous
GWA studies (8,11,25,26), here they were identified as part
of our genome-wide exploration. CDKAL1 is among the
best-replicated susceptibility loci. Significant association
has also been detected in a region on chromosome 9p,
near CDKN2A/CDKN2B. Moreover, strong association sig-
nals were observed in the intron of KCNQ1 on chromo-
some 11p15.5, which is in agreement with the results of
two previous GWA scans in the Japanese population
(25,26).

Stage 2 genotyping provided evidence suggestive of a
new association on chromosome 19q13. Several SNPs

located in the vicinity of the PEPD (peptidase D) gene
showed the tendency of replicated association in stages 1
and 2 (supplementary Table S3). Significant association
was further replicated in a relatively large case-control
study on the stage 3 panel (rs10425678, P � 0.002), but it
did not attain genome-wide significance (i.e., P � 1.4 �
10�5 for all stages and P � 2.1 � 10�6 when the number of
control subjects was increased by adding 964 random
control subjects) (supplementary Table S4). Given the
modest strength of association (R2 � 0.0017, see below)
assumed for this locus, the association still needs to be
established.
Replication of previously reported SNPs. Of 16 candi-
date loci tested for replication in the Japanese population,
7 were found to be associated with type 2 diabetes (Table
1). However, no significant association was observed for
SNPs from the remaining nine loci (FTO, PPARG, EXT2,
JAZF1, CDC123-CAMK1D, TSPAN8-LGR5, ADAMTS9,
and NOTCH2-ADAM30 in the stage 1 � 2 panel and
THADA in the stage 1 � 2 � 3 panel). Notably, the
originally reported SNPs or those in complete linkage
disequilibrium showed the strongest statistical evidence of
association in the seven confirmed loci, where the linkage
disequilibrium relations and haplotype patterns appear to
be similar but not identical between European-descent
and Japanese populations (supplementary Figs. S3 and
S4).

Besides KCNQ1 and the 16 candidate loci prioritized
here, we investigated the disease association of two can-
didate gene SNPs—rs734312 in WFS1 (39) and rs7501939
in TCF2 (40)—based on the genotype data of our stage 1
panel (n � 1,022) and 964 random control subjects (sup-
plementary Table S6). In some instances, it appeared that
the sample size was not sufficient to detect the presumed
odds ratio (OR) (supplementary Table S7). Nevertheless,
except for rs12779790 in CDC123-CAMK1D and rs3740878
in EXT2, in the majority of instances, the ORs were
consistent with those previously reported. Furthermore,
we analyzed seven previously reported SNPs with sugges-
tive evidence of an association in the Japanese population
(25), but none attained nominal significance in our first-
stage scan (supplementary Table S8).
Ethnic differences in genetic effects on type 2 diabe-
tes. With regard to the candidate gene SNPs robustly
confirmed in GWA studies conducted on Japanese and
European-descent populations, we compared the risk al-
lele frequency and OR between the meta-analysis dataset
of the Japanese population and that of populations of
European descent (8–10) (Fig. 3). The OR was consis-
tently higher in the Japanese population for all SNPs
except rs5219 in KCNJ11. Among the confirmed loci,
CDKAL1, CDKN2A/CDKN2B, SLC30A8, and HHEX
showed a significant difference in the ORs between Euro-
pean-descent and Japanese populations (P � 0.05, Woolf’s
test) (supplementary Table S6). However, the risk allele
frequency fluctuated between the two ethnic groups, and
the strength of association differed accordingly; this is
because an SNP with an risk allele frequency of �0.5 and
a higher OR can give rise to stronger association signals.
Thus, whereas TCF7L2 was shown as the strongest sus-
ceptibility locus in populations of European descent (41),
its association is estimated to be much weaker in the
Japanese population because of the low risk allele fre-
quency. In contrast, the results of the meta-analysis
showed that the CDKN2A/CDKN2B and CDKAL1 loci had
the strongest associations in the Japanese population;
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indeed, we obtained the highest number of hits for these
loci.

Next, we compared the strength of association for the
seven confirmed loci between Japanese and European-
descent populations and calculated R2 as the proportion
of phenotypic variance explained by an SNP (see RESEARCH

DESIGN AND METHODS). In Fig. 3, we illustrate the curves
corresponding to R2 � 0.008, 0.004, and 0.002, for which
the total sample size of case and control subjects required

to attain 80% power is n � 4,300, 8,600, and 17,200 at a
significance level of P � 5 � 10–7 (which is the significance
threshold generally required in GWA tests), and n � 1,000,
2,000, and 3,900 at a level of P � 0.05. Based on R2 mea-
surements using the meta-analysis data, the associations
of five of seven replicated loci are stronger in the Japanese
population than in populations of European descent. For
the CDKAL1 locus, for example, one-fourth of the sample
size necessary in populations of European descent is

FIG. 2. Plots of type 2 diabetes association and linkage disequilib-
rium for regions surrounding CDKAL1 (A), regions near CDKN2A/

CDKN2B (B), and KCNQ1 (C). A, B, and C each contain five
panels. In the top panels, all genotyped SNPs in the current
Japanese GWA scan (that passed the quality control) are plotted
with their �log10 (P values) for type 2 diabetes (Cochran-Armitage
trend test) against chromosome position (in Mb). Blue and red
squares indicate P values for the combined genotypes of stages 1 �
2 and stages 1 � 2 � 3, respectively, whereas vertical bars indicate
P values for the stage 1 genotype. In the second panels, �log10 (P

values) plots from the DIAGRAM study of populations of European
descent are similarly displayed (17). The third panels show the
genomic location of RefSeq genes with intron and exon structure
(NCBI [National Center for Biotechnology Information] Build 35).
The fourth and fifth panels show a WGAViewer (50) plot of linkage
disequilibrium (r 2) for all HapMap SNPs across the regions for the
HapMap populations—Japanese in Tokyo (JPT) and CEPH sub-
jects from Utah (CEU)—respectively.
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sufficient to obtain the same level of statistical significance
in the Japanese population. This is true for CDKN2A/
CDKN2B, HHEX, and SLC30A8, in which �50% of the
sample size seems to be sufficient for significance in the
Japanese population. However, TCF7L2 shows an oppo-
site trend in this regard.
Combined genetic risk of type 2 diabetes. Despite the
small value of explained variance (R2) at each risk locus,
it is assumed that knowledge about multiple-risk loci
could allow us to identify individuals with accumulated
genetic risk (42). To this end, a GWA study in Finns (10)
investigated the combined risk of type 2 diabetes based on
10 associated loci by logistic regression analysis of the
resampled dataset. The total variance explained by 10 loci
in Finns is R2 � 0.030, which is equivalent to the value for
7 loci obtained here (see DISCUSSION). Likewise, in a simu-
lated population, we arranged the individuals in the order
of the risk estimated by logistic regression, sorted them
into 20 equal-sized groups (5% in each), and calculated the
actual proportion of affected individuals in each group. We
found a 3.7-fold variation in type 2 diabetes prevalence
from the lowest to highest estimated risk groups for the
combination of seven associated loci in our study (Fig. 4).
The receiver operating characteristic curve was also de-
picted for the combined SNPs as a measure of sensitivity
and specificity (supplementary Fig. S5).

Moreover, for risk assessment in the general population,
we performed multiple regression analysis using A1C as a
surrogate quantitative phenotype to estimate the unbiased
effect size of individual loci (supplementary Table S9) and
evaluated the combined risk from multiple loci in 12,569

population-based samples (Table 2 and supplementary
information). Then, the estimated risk was compared with
the actual A1C value and the disease classification of
diabetes or pre-diabetes (supplementary information). In
the multiple regression analysis, significant association
(P � 0.005) was observed for all seven loci tested in
accordance with the results for the case-control study
(Table 1 and supplementary Table S4). As shown in Fig. 4,
5% of male subjects with the highest estimated risk are 2.3
times more likely to suffer from diabetes than those with
the lowest estimated risk; the risk is 5.2 times in female
subjects, indicating the potential existence of sex differ-
ence in the genetic risk of type 2 diabetes (supplementary
Fig. S6). Moreover, notably, SNP genotypes alone exerted
more exaggerated effects on the increase in genetic risk in
diabetes compared with pre-diabetes (Table 2).

DISCUSSION

Conducting GWA studies on a wider range of populations,
including East Asians, has recently gained importance
because of the discovery of new type 2 diabetes suscepti-
bility variants mapping to the KCNQ1 gene simultaneously
reported in two Japanese studies (25,26). Both studies
were, however, initiated some years ago, and they are, by
current standards, considered to be modest with regard to
the coverage of common SNPs (21 and 56% in HapMap)
and number of case subjects (187 and 194 subjects,
respectively) in the first-stage scan. Therefore, we con-
ducted another GWA study on the Japanese population
with greater coverage of common SNPs (87% of all phase

TABLE 1
Type 2 diabetes susceptibility loci identified or tested for replication in the current Japanese study

rs no.* Chromosome
Position

(bp) Region

Risk allele/
nonrisk

allele

Control risk
allele

proportion

Stage 1 � 2 (1,629 case
subjects/1,517 control

subjects)
OR (95% CI) P trend

Identified in this GWA
scan

rs4712523 6 20,765,543 CDKAL1 G/A 0.407 1.38 (1.25–1.52) 8.0E-10
rs2383208 9 22,122,076 CDKN2A/B A/G 0.553 1.31 (1.18–1.45) 1.6E-07
rs2237892 11 2,796,327 KCNQ1 C/T 0.594 1.25 (1.13–1.39) 2.3E-05
rs10425678 19 38,669,236 PEPD C/T 0.261 1.23 (1.10–1.37) 3.6E-04

Replication of previously-
reported SNPs

rs10923931 1 120,230,001 NOTCH2-ADAM30 T/G 0.020 1.17 (0.83–1.65) 0.3821
rs7578597 2 43,644,474 THADA T/C 0.990 1.95 (1.03–3.67) 0.0392
rs1801282 3 12,368,125 PPARG C/G 0.969 1.00 (0.75–1.34) 0.9741
rs4607103 3 64,686,944 ADAMTS9 C/T 0.594 1.09 (0.99–1.21) 0.0902
rs4402960 3 186,994,389 IGF2BP2 T/G 0.310 1.15 (1.04–1.28) 0.0098
rs7754840 6 20,769,229 CDKAL1 C/G 0.392 1.42 (1.28–1.57) 1.7E-10
rs7756992 6 20,787,688 CDKAL1 G/A 0.448 1.35 (1.23–1.50) 4.6E-09
rs864745 7 27,953,796 JAZF1 T/C 0.789 1.08 (0.95–1.22) 0.2456
rs13266634 8 118,253,964 SLC30A8 C/T 0.570 1.18 (1.06–1.30) 0.0015
rs10811661 9 22,124,094 CDKN2A/B T/C 0.555 1.35 (1.21–1.49) 2.2E-08
rs12779790 10 12,368,016 CDC123-CAMK1D G/A 0.151 0.98 (0.85–1.13) 0.7984
rs1111875 10 94,452,862 HHEX C/T 0.275 1.19 (1.07–1.33) 0.0011
rs7903146 10 114,748,339 TCF7L2 T/C 0.035 1.42 (1.10–1.84) 0.0073
rs5219 11 17,366,148 KCNJ11 T/C 0.355 1.22 (1.09–1.35) 2.5E-04
rs3740878 11 44,214,378 EXT2 A/G 0.633 1.01 (0.91–1.12) 0.8849
rs7961581 12 69,949,369 TSPAN8-LGR5 C/T 0.202 1.12 (0.99–1.27) 0.0751
rs8050136 16 52,373,776 FTO A/C 0.203 1.11 (0.98–1.26) 0.0915

Continued on following page
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1 � 2 HapMap variants [MAF �0.05] in CHB (Chinese in
Beijing) � JPT (Japanese in Tokyo) and a larger number of
case subjects (519 subjects) and unaffected control sub-
jects (503 subjects) in addition to random control subjects
in the first-stage scan. Four loci (three previously reported
and one novel) were identified via the multistage scans.
For the top three loci (KCNQ1, CDKN2A/CDKN2B, and
CDKAL1) the OR (�1.25) and MAF (0.41–0.45 in the
control subjects) were higher in the Japanese population
than in populations of European descent. In addition to
the nomination of four susceptibility loci (KCNQ1,
CDKN2A/CDKN2B, CDKAL1, and PEPD), the current
study replicated the significant association of five other
loci (TCF7L2, IGF2BP2, SLC30A8, HHEX, and KCNJ11)
previously reported in populations of European descent
(6–17) and provided an unbiased estimate of the risk from
the confirmed disease genotype.

Empirical studies suggest that the genetic effects of
individual causal risk alleles underlying complex genetic
diseases such as type 2 diabetes are modest, with most
genotype relative risks in the range of 1.1–2.0 (43). Indeed,
we observed this to be true for loci that were robustly

implicated in the development of type 2 diabetes by GWA
scans and/or extensive candidate gene approaches in
populations of European descent. Currently, the number
of loci has increased to almost 20 (as listed in supplemen-
tary Table S6), and in most cases, except for TCF7L2 and
KCNQ1, the OR is estimated to be between 1.09 and 1.20.

The current study provides, via genome-wide explora-
tion and replication analysis of some a priori selected loci,
significant evidence for the overall tendency toward a
stronger association in Japanese rather than European-
descent populations at least for alleles with a cosmopoli-
tan effect. The tendency for higher OR in Asians than in
Europeans was previously reported for the CDKAL1 locus
(22). Currently, it remains unknown whether the pen-
etrance for a genotype of interest differs considerably
between Japanese and European-descent populations.
With regard to genetic effects, four of seven confirmed loci
have demonstrated significantly higher OR in the Japanese
population (P � 4.1 � 10�5 to 0.024) (supplementary Table
S6). To simplify the situation, we have further assessed the
strength of association for individual SNPs by measuring
R2, which is scaled against OR and risk allele frequency in

TABLE 1
Continued

Stage 3 (4,000 case subjects/4,889
control subjects)†

All combined (5,629 case
subjects/6,406 control subjects)†

OR (95% CI) reported
in Europeans (14,586
case subjects/17,968

control subjects)OR (95% CI) P trend‡ OR (95% CI) P trend

1.23 (1.16–1.30) 4.0E-12 1.27 (1.21–1.33) 7.2E-20 1.12 (1.08–1.16)
1.33 (1.26–1.42) 4.8E-22 1.34 (1.27–1.41) 2.1E-29 1.20 (1.14–1.25)
1.36 (1.28–1.45) 8.0E-23 1.33 (1.27–1.41) 1.1E-26 1.18 (1.03–1.33)§
1.10 (1.03–1.18) 0.0020 1.14 (1.07–1.20) 1.4E-05 1.03 (0.97–1.09)§

— — — — 1.13 (1.08–1.17)�
0.98 (0.73–1.31) 0.55 1.13 (0.87–1.47) 0.35 1.15 (1.10–1.20)�

— — — — 1.14 (1.08–1.20)
— — — — 1.09 (1.06–1.12)�

1.14 (1.07–1.21) 2.5E-05 1.14 (1.08–1.21) 1.0E-06 1.14 (1.11–1.18)
— — — — 1.12 (1.08–1.16)
— — — — 1.26 (1.18–1.34)§
— — — — 1.10 (1.07–1.13)�

1.24 (1.17–1.31) 5.8E-13 1.22 (1.16–1.28) 1.8E-14 1.12 (1.07–1.16)
— — — — 1.2 (1.14–1.25)
— — — — 1.11 (1.07–1.14)�

1.21 (1.13–1.29) 2.6E-09 1.21 (1.15–1.28) 6.7E-12 1.13 (1.09–1.17)
1.59 (1.38–1.83) 5.3E-11 1.54 (1.36–1.74) 7.6E-12 1.37 (1.31–1.43)
1.02 (0.96–1.08) 0.3008 1.07 (1.01–1.13) 0.0149 1.14 (1.10–1.19)

— — — — 1.20 (1.11–1.30)¶
— — — — 1.09 (1.06–1.12)�
— — — — 1.17 (1.12–1.22)

Results for one SNP each selected from the individual chromosomal regions in the GWA scans are shown in the table (see supplementary
Table S4 for details and supplementary Table S5 for the results of logistic regression adjusted for BMI). The final P value was assessed by
pooling genotype counts for each SNP from all stages tested (without including 964 random control subjects from GeMBDJ). In two regions,
chromosome 6p22.3 (CDKAL1) and 19p13 (PEPD), the haplotype class showed more significant association than the individual SNP (see
supplementary Information). *In the stage 3 panel, we genotyped rs4712523 instead of rs7754840 (r 2 � 0.96) or rs7756992 (r 2 � 0.65) in
CDKAL1, and rs2383208 instead of rs10811661 (r 2 � 0.89) near CDKN2A/B, with the aim of determining the SNP(s) with the strongest
association in the Japanese population. †In stage 3 of the replication study on previously reported SNPs, after the confirmation of significant
association in 4,000 case subjects and 4,889 preselected control subjects, we further characterized 7,680 subjects (who comprised the rest
of the 12,569 population-based samples) (see RESEARCH DESIGN AND METHODS and Fig. 1). Thus, for the corresponding SNPs, 5,395 control
subjects were reselected from the entire population-based samples and used for the final association analysis in stage 3, which increased the
total number of control subjects across the three stages to 6,912. ‡One-tailed test for association was performed in the direction consistent
with stage 1 � 2 data; §for 4,549 case and 5,579 control subjects derived from the DIAGRAM consortium of Zeggini et al. (17); �for �60,000
total samples from Zeggini et al. (17); ¶for 3,278 case and 3,508 control subjects from Sladek et al. (6).
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Fig. 3. We found that despite the limited number of SNPs
tested here, the same level of statistical significance is
often detectable in the Japanese population with a much
smaller sample size than that in populations of European
descent (supplementary Table S7). Theoretically, the strin-
gency of ascertaining control subjects could lead to some
bias in effect size (44). In this respect, in addition to the
multistage case-control study, an extensive analysis of
associated loci in the general population was conducted,
which is the strength of the current study. We used the
population-based samples (n � 12,569) in stage 3 to

investigate the effect of control selection criteria on OR in
a case-control comparison and found that the ORs in our
meta-analysis were almost comparable to those estimated
in the general Japanese population (supplementary Table
S10). Moreover, with regard to ethnic diversity, linkage
disequilibrium in CDKAL1 and KCNJ11 is stronger in East
Asians (JPT � CHB), whereas linkage disequilibrium in
IGFBP2 and HHEX tends to be stronger in Europeans
(CEU [Centre d’Etude du Polymorphisme Humain (CEPH)
subjectsfrom Utah]) (Supplementary Figure S4); thus,
besides the issue of power, the results of the GWA scans in
the Japanese population (or East Asians) seem to be
useful in terms of interethnic comparison of association
signals, which may enhance the power of fine-mapping
efforts designed to identify the causal variants (45).

The tendency of stronger genetic association in the
Japanese population is also supported by the concomitant
evaluation of multilocus effects. When assuming an addi-
tive model, the combined risk of type 2 diabetes can be
measured by the sum of the R2 values of individual loci.
For example, the total variance explained by the seven loci
depicted in Fig. 3 is 0.030 in the Japanese population and
0.018 in populations of European descent. It remains
unknown whether these findings reflect higher heritability
of type 2 diabetes in Japanese than in European-descent
populations. Because little data are available on the esti-
mation of heritability in the Japanese or East Asian
populations, further studies are required to obtain the
standardized measures of heritability across different pop-
ulations by taking into account potential sources of heter-
ogeneity, such as the degree of westernization of lifestyle.

Suggestive evidence of association was identified for
SNPs in the PEPD gene. PEPD plays an important role in
collagen metabolism, and some extracellular matrix con-
stituents such as collagen IV have been shown to have a
profound impact on insulin secretion (46). Moreover,
enhanced collagen degradation via PEPD activity has been
reported in diabetic patients (47). Although there is evi-
dence suggestive of association at PEPD in all three
stages, the current GWA study by itself could not confirm
or refute the evidence; no significant association was
found in the previously reported Diabetes Genetics Repli-
cation and Meta-Analysis (DIAGRAM) data from Europe-
ans (risk allele frequency � 0.52, OR � 1.03) (Table 1) and
in the initial screening data of the JSNP (Japanese Single
Nucleotide Polymorphisms) scan in the Japanese popula-
tion (187 casevs. 752 random control subjects; P � 0.18 at
rs2241380, which is in complete linkage disequilibrium
with rs10425678 in PEPD; r2 � 1.0) (25).

The number of genes that could account for an appre-
ciable population-attributable fraction of common dis-
eases is under debate (48). Although the current study
detected and/or replicated a total of nine susceptibility
loci, including PEPD in the Japanese population, a
substantial number of SNPs showing some extent of
association signals in the first-stage scan remain to be
investigated, as reflected by the wide distribution of rep-
licated SNPs with unexamined “gaps” in the lower-left part
of the Q-Q plot (supplementary Fig. S7). The ORs corre-
sponding to such unexamined SNPs mostly fall in the
range of 1.10–1.25. To assess the statistical power in our
GWA scan, we simulated the frequency at which a disease-
associated SNP could surpass the cutoff level of the first
two stages (stages 1 and 2) (supplementary information
and supplementary Table S11). In the current experimen-
tal setting, it is likely that �50% of the susceptibility loci
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FIG. 3. Comparison of the strength of association for seven confirmed
type 2 diabetes loci between Japanese and European-descent popula-
tions. For the Japanese population, we estimated ORs and their 95%
CIs (red solid squares and vertical lines, respectively) for each locus
based on our meta-analysis involving four Japanese case-control stud-
ies (supplementary Fig. S2). For populations of European descent, on
the other hand, the corresponding values (blue solid squares and
vertical lines) were derived from the published data (8–10). The
association of an SNP with type 2 diabetes is measured by the coeffi-
cient of determination (R 2), which represents the ability to detect
association signals using the Cochran-Armitage trend test.
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FIG. 4. Estimation of the increase in type 2 diabetes risk from the
combination of seven susceptibility variants previously identified and
robustly replicated in the current study. We used case and control
subjects with complete data from all stages of our study (n � 12,105).
First, the risk for the genotypes of an SNP was estimated by logistic
regression. Then, the multilocus risk for an individual was assessed as
the sum of the risks for his/her genotype at seven SNPs. We simulated
a population with 10% prevalence by bootstrap sampling. In the
simulated population, we arranged the individuals in the order of their
multilocus risk, sorted them into 20 equal-sized groups, and calculated
the actual prevalence in each group. Means and 95% CIs of the
groupwise prevalence were estimated based on 1,000 bootstrap sam-
pling trials and are plotted in the figure. No significant gene-gene
interaction was observed between the seven SNPs by multiple logistic
regression analysis. T2D, type 2 diabetes.
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with modest but substantial effects (OR � 1.2–1.3) were
unidentified. For example, though not statistically signifi-
cant, the association of PPARG in the Japanese population
showed an OR (P � 0.06, OR � 1.18 at rs1801282) similar
to that in populations of European descent in a meta-
analysis, including the current study (supplementary Table
S4). Increasing the sample size of the stage 1 panel and/or
the number of SNPs genotyped in the second-stage scan
would allow us to discover more susceptibility variants,
including new population-specific loci, in the Japanese
population.

The incidence of type 2 diabetes is escalating to epi-
demic proportions globally, with a higher acceleration rate
in non-European populations (49). The integration of GWA
study results, i.e., a meta-analysis (17), for both European-
descent and non-European populations is necessary for a
comprehensive understanding of the genetics of type 2
diabetes, and it will lead to the efficient use of genomic
information based on ethnic diversity in clinical research.
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TABLE 2
Combined risk of diabetes and pre-diabetic status based on seven confirmed loci, age, BMI, and sex in the general Japanese
population

A1C (%)

Diabetes Pre-diabetes Diabetes � Pre-diabetes
RR versus
population

average (95%
CI) Prevalence

RR versus
population

average (95%
CI) Prevalence

RR versus
population

average (95%
CI) Prevalence

Male
Whole population 5.29 	 0.88 1.00 0.16 1.00 0.07 1.00 0.23
Highest risk group (5%)

assessed by
All predictors 5.48 	 0.87 1.65 (1.29–1.97) 0.27 1.34 (0.73–1.83) 0.09 1.56 (1.26–1.78) 0.36
SNP genotypes 5.57 	 1.12 1.67 (1.32–2.06) 0.27 0.92 (0.44–1.40) 0.07 1.45 (1.16–1.73) 0.34
Age and BMI* 5.44 	 0.78 1.16 (0.87–1.46) 0.19 1.95 (1.39–2.60) 0.14 1.40 (1.16–1.65) 0.33

Lowest risk group (5%)
assessed by

All predictors 4.98 	 0.73 0.46 (0.26–0.74) 0.08 0.50 (0.20–0.90) 0.04 0.47 (0.33–0.70) 0.11
SNP genotypes 5.11 	 0.74 0.72 (0.39–0.92) 0.12 0.71 (0.30–1.10) 0.05 0.72 (0.46–0.86) 0.17
Age and BMI* 4.98 	 0.77 0.46 (0.30–0.73) 0.08 0.40 (0.10–0.60) 0.03 0.44 (0.27–0.63) 0.10

Female
Whole population 5.17 	 0.60 1.00 0.07 1.00 0.06 1.00 0.13
Highest risk group (5%)

assessed by
All predictors 5.55 	 0.96 3.09 (2.36–3.73) 0.22 2.05 (1.37–2.60) 0.13 2.61 (2.10–2.96) 0.35
SNP genotypes 5.37 	 0.88 2.30 (1.60–2.78) 0.17 1.17 (0.73–1.80) 0.07 1.78 (1.41–2.10) 0.24
Age and BMI* 5.42 	 0.78 2.26 (1.71–2.78) 0.16 1.95 (1.34–2.53) 0.12 2.12 (1.73–2.46) 0.28

Lowest risk group (5%)
assessed by

All predictors 4.91 	 0.43 0.16 (0.00–0.32) 0.01 0.14 (0.00–0.28) 0.01 0.15 (0.04–0.26) 0.02
SNP genotypes 5.02 	 0.45 0.45 (0.16–0.73) 0.03 0.80 (0.38–1.22) 0.05 0.61 (0.35–0.83) 0.08
Age and BMI* 4.94 	 0.36 0.24 (0.08–0.64) 0.02 0.19 (0.00–0.37) 0.01 0.22 (0.09–0.47) 0.03

Data are the means 	 SD, unless otherwise indicated. Relative risk (RR) is calculated as the ratio of the prevalence in 5% of people with the
highest or lowest risk to the prevalence in the whole population. In this study, the combined disease risk for each individual was assessed
using the regression for A1C (see supplementary information). Subjects with self-reported diabetes or with A1C �6.1 were classified as
diabetic, and those who were not under antidiabetic medication and with 5.6 � A1C � 6.1 were classified as pre-diabetic. The actual A1C
level and the distribution by diabetic status for each 5% subgroup of the risk group are illustrated in supplementary Fig. S6. *For reference,
diabetes and/or pre-diabetes risk was assessed using the participant’s age and BMI alone as predictors.
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