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Abstract

Newborn screening (NBS) programmes utilise information on a variety of clini-

cal variables such as gestational age, sex, and birth weight to reduce false-

positive screens for inborn metabolic disorders. Here we study the influence of

ethnicity on metabolic marker levels in a diverse newborn population. NBS

data from screen-negative singleton babies (n = 100 000) were analysed, which

included blood metabolic markers measured by tandem mass spectrometry

and ethnicity status reported by the parents. Metabolic marker levels were

compared between major ethnic groups (Asian, Black, Hispanic, White) using

effect size analysis, which controlled for group size differences and influence

from clinical variables. Marker level differences found between ethnic groups

were correlated to NBS data from 2532 false-positive cases for four metabolic

diseases: glutaric acidemia type 1 (GA-1), methylmalonic acidemia (MMA),

ornithine transcarbamylase deficiency (OTCD), and very long-chain acyl-CoA

dehydrogenase deficiency (VLCADD). In the result, 79% of the metabolic

markers (34 of 43) had ethnicity-related differences. Compared to the other

groups, Black infants had elevated GA-1 markers (C5DC, Cohen's d = .37,

P < .001), Hispanics had elevated MMA markers (C3, Cohen's d = .13,

P < .001, and C3/C2, Cohen's d = .27, P < .001); and Whites had elevated

VLCADD markers (C14, Cohen's d = .28, P < .001, and C14:1, Cohen's d = .22,

P < .001) and decreased OTCD markers (citrulline, Cohen's d = −.26,
P < .001). These findings correlated with the higher false-positive rates in

Black infants for GA-1, in Hispanics for MMA, and in Whites for OTCD and

for VLCADD. Web-based tools are available to analyse ethnicity-related

changes in newborn metabolism and to support developing methods to identify

false-positives in metabolic screening.
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1 | INTRODUCTION

Newborn screening (NBS) is a public health programme
that identifies infants with heritable disorders before the
onset of clinical signs, allowing for early and life-saving
intervention. Screening for metabolic disorders using tan-
dem mass spectrometry (MS/MS) identifies most affected
newborns, along with a large number of false-positive
infants.1,2 In some states, initial screen-positive results
are followed by second-tier MS/MS-based testing at
higher specificity.3 Diagnostic biochemical and/or DNA
testing is performed to confirm (true positive) or reject
(false positive) the screening result, to establish the final
diagnosis and guide patient treatment.4-7 False-positive
screens for metabolic disorders can also be identified
using post-analytical interpretive tools in Clinical Labora-
tory Integrated Reports (CLIR, formerly R4S).8-10 Using
these algorithms, NBS data can be adjusted based on a
number of clinical variables associated with false-positive
screens such as gestational age (GA), sex, birth weight
(BW), age at blood collection, season of birth, and nutri-
tional therapy.11-15

We recently reported elevated screening marker levels
for methylmalonic acidemia (MMA) in healthy Hispanic
infants, which correlated with a higher MMA false positive
rate for this group.16 Ethnicity-related differences in NBS
marker levels have also been reported for cystic fibrosis
(CF), congenital hypothyroidism (CH), and for total galac-
tose (TGAL). Isolated TGAL elevations have been found in
certain ethnic groups, like the Hmong, which resulted in a
disproportionate number of false-positive cases in this pop-
ulation and implementation of Hmong-specific TGAL cut-
offs in the Minnesota NBS programme (A. Gaviglio,
personal communication). For CF, higher levels of immu-
noreactive trypsinogen (IRT) were found in African-
American infants in the United States,17 in infants of
North African descent in the Rhone-Alpes region of
France,18 and in Roma infants in Slovakia.19 For CH, ele-
vated mean concentrations of thyroid-stimulating hor-
mone (TSH) were found for Pakistani, Bangladeshi, and
Chinese infants, suggesting that ethnic diversity in
populations should be considered when establishing
screening TSH cutoffs.20

In this study, we investigated whether ethnicity status
could be associated with differences in the blood levels of
NBS markers for inborn metabolic disorders on the Rec-
ommended Universal Screening Panel (RUSP).21 To

identify the effects of ethnicity on metabolic marker
levels, we analysed a large and ethnically diverse popula-
tion of screen-negative infants reported by the California
NBS programme. Importantly, GA and BW are highly
correlated with race/ethnicity,22,23 and they are known to
influence metabolic marker levels.13,24 To account for
this confounding, we first studied the effects of these clin-
ical variables on marker levels, and then controlled for
them in the analysis of marker levels between ethnicity
groups. Additionally, we explored the effect of ethnicity
on false-positive newborn screens. The identified
ethnicity-related differences in marker levels were corre-
lated to false-positive cases for four inborn errors of
metabolism. Based on these findings, web-based software
was established to aid the interpretation of screening data
(https://RUSPtools.shinyapps.io/MetaDB), and to support
development of algorithms that incorporate information
on ethnicity and clinical variables in disease screening.

2 | MATERIAL AND METHODS

2.1 | Data summary

NBS data from 100 000 screen-negative singleton babies
born between 2013 and 2015 were analysed. The cohort
was selected at random by the California NBS pro-
gramme from over half a million newborns screened
each year. Babies that are screen-negative in first-tier
NBS are reported as negative with no additional testing.
The data included 41 metabolic analytes measured by
MS/MS,1 two analyte ratios (C3/C2, C0/(C16+C18)), and
clinical variables of BW, GA, sex, race/ethnicity, age at
blood collection (AaC), and total parenteral nutrition
(TPN) status. In addition, we analysed data from 2767
screen-positive infants for four inborn metabolic disor-
ders reported by the California NBS programme between
2005 and 2015. This cohort consisted of confirmed true-
positive (TP) cases and of first-tier false-positive
(FP) cases for glutaric acidemia type 1 (GA-1, TP = 48,
FP = 1344), methylmalonic acidemia (MMA, TP = 103,
FP = 502), ornithine transcarbamylase deficiency
(OTCD, TP = 24, FP = 496), and very long-chain acyl-
CoA dehydrogenase deficiency (VLCADD, TP = 60,
FP = 200). Of the 2532 false-positive cases, 10 infants
were false-positive for two disorders. Table 1 and S1 show
the cohort characteristics.
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2.2 | Analysis of clinical variables

The analysis of clinical variables included 99 537 screen-
negative infants with BW range of 1000 to 5000 g, GA range
of 28 to 42 weeks, and AaC from 12 hours to 7 days after
birth (Table 1, Figure 1A). Infants recorded outside these
ranges were removed from analysis (n = 463). The five GA
categories included preterm (<37 weeks), early-term
(37-38 weeks), full-term (39-40 weeks), late-term (41 weeks),
and post-term (42 weeks) birth.25 The five BW categories
included low BW (<2500 g), high BW (>4000 g), and normal
BW,26 which was divided into the normal BW categories of
2500 to 3000, 3001 to 3500, and 3501 to 4000 g.

2.3 | Analysis of race/ethnicity

The race/ethnicity status of the newborn was self-reported
by the parents. Of the 99 537 screen-negative infants stud-
ied, 79% (n = 78 671) were reported as being of Asian,
Black, Hispanic, or White origin. Newborns recorded with
more than one race/ethnicity (18%, n = 17 975) were classi-
fied according to NBS programme guidelines27 as follows:
(a) Hispanic, if reported Hispanic and any other race/eth-
nicity; (b) Black, if reported Black and any other race/eth-
nicity except Hispanic; (c) Asian, if reported Asian and any
other race/ethnicity except Hispanic and Black; (d) White,
if reported White only. All other ethnicities and unknown
race/ethnicity were recorded as Other/Unknown (2.9%,
n = 2891). The relative percentage of each race/ethnicity
group in our study cohort closely matched those of the
larger California NBS population of 5 624 000 newborns
tested between 2005 and 2015.

2.4 | Analysis of metabolic screening
markers

To identify differences in marker levels between the four
major race/ethnicity groups, 29 529 infants were
removed from the analysis, which included 2268 with
positive or unknown TPN status and 28 141 with AaC
outside the recommended blood collection time of 24 to
48 hours.28 Eight hundred and eighty infants overlapped
between these categories. The remaining 70 008 infants
were divided into 25 groups, each defined by a specific
BW and GA range (Figure 1B). For each of the 25 groups,
the median for each marker was calculated (https://
RUSPtools.shinyapps.io/MetaDB). We first analysed the
effect of race/ethnicity on metabolic markers in 19 247
full-term (39-40 weeks) infants with normal BW
(3001-3500 g) and AaC between 24 and 48 hours in

TABLE 1 Participant and sub-group demographics

Screen-
negative infants (%)

Screen-
positive
infants (%)

Variable (n = 100 000) (n = 2767)

Gestational age (wk)

>42a 25 (0.03) 40 (1.4)

42 472 (0.5) 50 (1.8)

41 7649 (7.6) 161 (5.8)

39-40 62 440 (62.4) 890 (32.1)

37-38 23 813 (23.8) 890 (32.1)

28-36 5553 (5.6) 648 (23.4)

<28a 73 (0.07) 88 (3.2)

Birth weight (g)

>5000a 124 (0.1) 6 (0.2)

4001-5000 8246 (8.2) 179 (6.5)

3501-4000 28 406 (28.4) 507 (18.3)

3001-3500 41 497 (41.5) 795 (28.7)

2500-3000 17 537 (17.5) 673 (24.3)

1000-2499 4101 (4.1) 507 (18.3)

<1000a 89 (0.09) 100 (3.6)

Sex

Male 51 625 (51.6) 1651 (59.7)

Female 48 071 (48.1) 1105 (39.9)

Unknown 304 (0.3) 11 (0.4)

Race/ethnicity

Asian 14 320 (14.3) 272 (9.8)

Black 6668 (6.7) 302 (10.9)

Hispanic 49 627 (49.6) 1164 (42.1)

White 26 481 (26.5) 941 (34.0)

Other/
unknown

2904 (2.9) 88 (3.2)

Age at collection (h)

<12a 48 (0.05) 13 (0.5)

12-24 21 598 (21.6) 466 (16.8)

24-48 71 562 (71.6) 1631 (58.9)

49-168 6625 (6.6) 615 (22.2)

>168a 167 (0.2) 42 (1.5)

TPN

No 97 646 (97.6) 2263 (81.8)

Yes 1068 (1.1) 392 (14.2)

Unknown 1286 (1.3) 112 (4.0)

Abbreviation: TPN, total parenteral nutrition.
aScreen-negative (n = 463) and screen-positive (n = 188) infants
recorded outside of the indicated ranges were removed from
analysis.
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order to control for the confounding effects of GA, BW,
and of AaC on marker levels. To identify sex-related
effects on marker levels in this cohort, an analysis was
performed between full-term females (n = 10 054) and
full-term males (n = 9152) with normal BW
(3001-3500 g) in each race/ethnicity group. Finally, the

effect of race/ethnicity on marker levels was studied in a
larger cohort of 58 056 term (37-41 weeks), normal BW
infants (2500-4000 g).

2.5 | Statistical analysis

Statistical analyses were performed in R 3.5.3.29 One-way
analysis of variance and Tukey's honest significance test
were used to compare BW differences between race/eth-
nicity groups (Figure S1). Cohen's d30 and t test were
used to evaluate BW differences between males and
females (Table S3). Fisher's exact test31 and binomial test
were used to compare differences between screen-
negative and false-positive infants (Table 2). Difference in
difference (DID) was calculated using the formula:
(BWmale − BWfemale)White − (BWmale − BWfemale)Other.
The analysis of metabolic differences between race/eth-
nicity groups was based on 41 markers and 2 ratios,
which required multiple test correction. We performed
effect size analysis using Cohen's d30 to compare marker
levels between groups, which were not affected by differ-
ences in sample size (Figure 2, Figures S4 and S5). Given
the large sample size, the smallest group analysed was
the group of Black female infants (n = 616). In this study
Cohen's d of .2, which is considered a small effect size,
was selected as the cutoff (medium effect 0.5, large effect
0.8).30 If Cohen's d is larger than .2, the P value is less
than .001 for a two-sample t test with 600 samples per
group, which is significant after a Bonferroni correction
(0.001 × 43 markers = 0.043). Some of the metabolic
marker values follow a log-normal distribution instead of
a Gaussian distribution. However, some marker values
are very close to 0, which would generate large negative
values after log-transformation. Here we choose to use
raw data marker values. Cohen's d effect size values
might be an underestimate for some markers, particu-
larly those that follow log-normal distribution and show
a large Cohen's d value.

3 | RESULTS

3.1 | Analysis of clinical variables and
race/ethnicity

The relation between BW, GA, sex, and race/ethnicity
was analysed in our screen-negative cohort. The mean
infant BW was higher in Whites (3429 g) than Hispanics
(3350 g), Blacks (3258 g), and Asians (3247 g; Table S3).
For term infants (94% of total cohort), BW and GA
showed a positive linear relationship (Pearson Cor = .5,
Spearman Cor = .41, P < .01) with no significant
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changes in the ethnic-related BW differences
(Figure 1A). Males had a higher mean BW than females
by 111 g (P < .001). This overall effect of sex on BW var-
ied significantly between racial/ethnic groups, ranging
from a difference of 60 g (P < .001) between White
(n = 6782) and Hispanic (n = 23 898) females, to 200 g
(P < .001) between White (n = 13 635) and Asian
(n = 7448) males (Figure S1). The BW difference
between White males and males in other race/ethnicity
groups was larger than that between White females to
females in other groups. The findings correlated with
male-to-female BW difference within race/ethnicity
groups, which was largest for Whites (137 g, P < .001).
The difference in male-to-female BW difference (differ-
ence in difference, DID) between Whites and other
race/ethnicity groups was 35 g (P < .001). An analysis of
GA and race/ethnicity showed that preterm birth was
higher in Blacks (n = 427, 6.4%, P < .001) and Hispanics
(n = 2863, 5.8%, P < .001), while late- and post-term
births were higher in Blacks (n = 590, 8.9%, P = .008)
and Whites (n = 3028, 11.5%, P < .001; Figure S2).

Asians and Hispanics had a high percentage of males in
preterm and early-term births (Figure S3).

3.2 | Analysis of race/ethnicity and
metabolic markers

Effect-size analysis between infants in the four race/eth-
nicity groups identified significant differences for 79.1%
of the markers (34/43 markers, Cohen's d > .2). This
analysis was performed in 19 247 full-term infants in the
BW category of 3001 to 3500 g in order to control for GA
and BW effects on marker levels (Figure 1B). Infants
with positive/unknown TPN status and AaC outside the
24 to 48 hours window were excluded from this analysis.
Significant findings included elevated C5, C5OH, and
C5DC in Blacks, elevated C3 and C3/C2 in Hispanics,
and elevated C14, C14:1, as well as decreased citrulline
in Whites (Figure S4). A separate analysis in this cohort
between females (n = 9152) and males (n = 10 054)
within each race/ethnicity group showed that marker

TABLE 2 Correlation of marker levels between screen-negatives and false-positives

Disease
NBS
marker

Race/ethnicitya Gestational ageb Birth weightc Sexd

(FP) SN FP SN FP SN FP SN FP
n = 58 056 No. (%) n = 70 008 No. (%) n = 44 365 (g) n = 44 245 No. (%)

GA-1
n = 1344

"C5DC "Black B: 100
(19.9)

(P = .005)

— PT: 139
(17.9)

(P < .001)

— FP: 3363
(n = 299)

SN: 3443
(P = .005)

— M: 179
(59.9)

(P = .002)

MMA
n = 502

"C3 "Hispanic H: 69
(71.9)

(P < .001)

"PT PT: 29
(19.3)

(P < .001)

"BW FP: 3539
(n = 54)

SN: 3443
(P = .14)

— M: 23
(42.6)

(P = .22)
"C3/C2 "Hispanic "PT "BW —

OTCD
n = 496

#CIT #White W: 46
(37.1)

(P = .005)

#PT PT: 58
(27.2)

(P < .001)

— FP: 3398
(n = 59)

SN: 3443
(P = .49)

— M: 39
(66.1)

(P = .026)

VLCADD
n = 200

"C14 "White W: 40
(43.0)

(P < .001)

"PT PT: 36
(19.7)

(P < .001)

#BW FP: 3209
(n = 61)

SN: 3443
(P < .001)

"Male M: 37
(60.7)

(P = .16)
"C14:1 "White "PT — —

Abbreviations: B, Black; BW, birth weight; FP, false-positive infants; GA, gestational age; H, Hispanic; M, male; PT, preterm birth; SN,
screen-negative controls; TPN, total parenteral nutrition; W, white. P values less than .05 are shaded grey. Only data without TPN and AaC
of 24 to 48 hours were analysed.
aPercentage of race/ethnicity groups in SN controls used in binomial testing was based on Table 1. GA was controlled from 37 to 41 weeks.
BW was controlled from 2500 to 4000 g.
bElevated marker levels were associated with preterm birth ("PT). Preterm birth rate of 8.3% in the general California population in 201442

was used in binomial testing.
cElevated marker levels were associated with high ("BW) and with low (#BW) birth weight. BW between FP and SN infants was compared
using a t test. GA was controlled to 39 to 40 weeks.
dSN male percentage of 50.9% was used in binomial testing. GA was controlled to 39 to 40 weeks.
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differences between females and males were similar
between race/ethnicity groups. An analysis in a larger
cohort of 58 056 term infants with a normal BW

confirmed the effect of ethnicity on markers levels
(Figure 2, Table S4). Finally, similar ethnicity-related
marker level differences were found for 47 800 infants
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recorded with only a single race/ethnicity category
(Figure S5), which are a sub-group (82%) of the 58 056
infants.

3.3 | Correlation of marker differences
to NBS false-positive results

The four metabolic diseases are detected in NBS by ele-
vated (GA-1, MMA, VLCADD), or decreased (OTCD)
marker levels (Table S5). Ethnic differences in NBS false-
positive rates were found for each disease. These findings
correlated with the physiologic differences in marker
levels in the respective race/ethnicity groups (Table 2).
For example, elevated C5DC found in screen-negative
Blacks correlated with the higher percentage of Blacks
among GA-1 false-positives (19.9% vs 6.7% in Table 1).
Elevated C3 and C3/C2 in screen-negative Hispanics cor-
related with the high percentage of Hispanics in MMA
false-positives. Decreased citrulline in screen-negative
Whites correlated with the high percentage of Whites in
OTCD false-positives. Elevated C14 and C14:1 in screen-
negative Whites correlated with the high percentage of
Whites in VLCADD false-positives. False-positives were
also associated with preterm birth (GA-1, MMA, OTCD,
VLCADD), BW (GA-1, VLCADD), and male sex
(GA-1, OTCD).

4 | DISCUSSION

NBS programmes consider information on a variety of
clinical variables such as GA, sex, and BW that can lead
to false-positive screens. These important clinical vari-
ables are known to influence metabolic marker
levels,13,16,24 while they themselves may be modulated by
ethnic differences.22,23 Here we investigate whether eth-
nicity status could be associated with differences in meta-
bolic marker levels for inborn metabolic disorders on the
RUSP.21 To explore this question, we first studied the
relationship between ethnicity and clinical variables,
which was analysed in a large and ethnically diverse pop-
ulation of screen-negative infants (n = 96 646) reported
by the California NBS programme. We found the mean
BW lower in Asian and Black infants, highest in Whites,
and second-highest in Hispanics, which was consistent
across different GAs at delivery (Figure 1A). Compared
with same-sex infants in other race/ethnicity groups, BW
differences for White males were larger than for White
females (Figure S1). These results correlated with the
larger male-to-female BW difference in White infants
(137 g, P < .001) compared to other race/ethnicity groups
(100-104 g, P < .001). Notably, the racial/ethnic

differences in BW correlated with differences in GA
(Figure S2). Black and Hispanic infants were more likely
to be born premature, White and Black infants had sig-
nificantly more late-term and post-term births, and Asian
and Hispanic infants had the highest male percentage
among preterm and early-term births. These findings
confirmed the complex relationship between clinical vari-
ables (BW, GA, sex), and race/ethnicity.32-36

In order to account for this confounding, we followed
a stringent study design by controlling for the influence
of important clinical variables in the analysis of marker
levels between ethnicity groups (Figure 1B). In a cohort
of 58 056 infants born at term with normal BW and age
of blood collection between 24 and 48 hours after birth,
ethnicity-related differences were found for 79.1% of the
NBS metabolic analytes (34 of 43, Cohen's d > .2)
(Figure 2). These analytes included 28 primary markers
for 38 metabolic disorders on the RUSP.21 Highly similar
and robust metabolic patterns in relation to race/ethnic-
ity were identified in a smaller cohort of full-term infants
with a BW of 3001 to 3500 g (n = 19 247, Figure S4). A
separate analysis between males and females in each
race/ethnicity group confirmed that sex had no signifi-
cant effect on the identified marker level differences.

We reasoned that these marker differences could lead
to false-positive newborn screens. To test this hypothesis,
we selected four diseases with frequent false-positive
results that included GA-1 with a ratio of 29 infants with-
out the condition to 1 infant with the condition
(PPV = 0.03). Analysis of false-positive cases for these
diseases revealed racial/ethnic disparities, which corre-
lated with the differences in marker levels discovered in
the respective race/ethnicity groups. For example, Black
infants were more likely false-positive in GA-1 screening,
which correlated with elevated C5DC in screen-negative
Black infants (Table 2). In addition to race/ethnicity-
associated marker differences identified for all four dis-
eases, NBS false-positives were also associated with pre
term birth (GA-1, MMA, OTCD, VLCADD), BW (GA-1,
VLCADD), and sex (GA-1, OTCD). These findings show
that newborn physiological metabolism is variably con-
founded by GA, sex, BW, and by ethnic differences.

A limiting factor in our study was confounding,
which could distort the association between clinical vari-
ables and race/ethnicity. Studying a large newborn popu-
lation (n = 100 000) allowed us to select sub-populations
to reduce the influence of confounding factors. To stratify
BW and GA by sex and race/ethnicity, analysis was per-
formed in normal weight, full-term infants. Such stratifi-
cation, however, was limited in false-positive cases due to
the much smaller sample size. We noted that GA-1 false-
positives had lower GA and BW compared to screen-neg-
atives, which could be related to the larger number of
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Black infants among false-positives (Table 2). For OTCD,
false-positives had a higher percentage of males com-
pared to screen-negatives, which could be related to
higher BW in males and in particular White males. For
VLCADD, while full-term screen-negative males had ele-
vated C14, the male percentage in full-term false-positive
males was not significantly increased. Notably, expan-
ding the analysis to the larger cohort of false-positive
males born at term (37-41 weeks) revealed an association
with elevated C14 (n = 96, 62.7%, P = .006), which indi-
cated that statistical significance for this association was
lost due to sample size.

Here we uncovered an association between MS/MS
disease markers and race/ethnicity, and show that these
differences could lead to false-positive newborn screens
for metabolic disorders. However, we do not suggest to
select different NBS marker cutoffs solely based on race/
ethnicity information. While such ethnicity-adjusted
marker levels could reduce false-positives, it could also
lower screening sensitivity and increase false-negatives
results, which is the primary concern of NBS. Neverthe-
less, results from this study could inform the second-tier
interpretive analysis of screen-positive cases. For example,
CLIR tools simultaneously correct analyte levels and ratios
for covariates such as preterm birth, sex, and BW in order
to reduce false-positives.10 Accordingly, race/ethnicity
information could be used in a regression model together
with other covariates (eg, BW, GA, AaC, sex) to adjust
metabolic marker levels, or by building a data mining
model that incorporates all covariates to predict metabolic
disease status. Each method requires a large amount of
self-reported race/ethnicity data that may not be recorded
by every NBS programme.27 Overcoming these challenges
could improve our ability to screen and diagnose meta-
bolic diseases in diverse and admixed populations.

The cause of the identified marker level differences in
race/ethnicity groups is unknown. It is possible that sys-
tematic disparities based on socioeconomic status and
ethnicity could affect BW, GA,32-34,36 and maternal nutri-
tion and access to prenatal vitamins could affect B12
levels in MMA screen-positive infants.37,38 It is also possi-
ble that genetic differences associated with ethnicity or
ancestry could contribute to these variable infant meta-
bolic phenotypes.39-41

5 | CONCLUSION

This study provides evidence for association between race/
ethnicity status and the levels of NBS markers for GA-1,
MMA, OTC, and VLCADD, which could lead to false-
positive screening results for these disorders. While
maintaining high sensitivity is the primary goal of NBS,

ethnic diversity in populations should be considered
together with the clinical variables of GA, sex, and BW in
the second-tier analysis of screening data for inborn meta-
bolic disorders.
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