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SUMMARY

RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in 

estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains 

unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced 

endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both 

examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1–6 were fused in frame to C-

terminal sequences from the partner gene. Functional properties include estrogen-independent 
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growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions 

activate a metastasis-associated transcriptional program, induce cellular motility, and promote the 

development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth 

remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally 

expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions 

therefore trigger both endocrine therapy resistance and metastatic progression, explaining the 

association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be 

effective.

In Brief

Lei et al. show that transcriptionally active estrogen receptor gene (ESR1) fusions identified from 

late-stage, treatment-refractory estrogen receptor-positive (ER+) breast cancer drive pan-endocrine 

therapy resistance and metastatic progression. Growth of breast tumors driven by ESR1 fusions at 

primary and metastatic sties can be suppressed with a CDK4/6 inhibitor.

Graphical Abstract

INTRODUCTION

The etiology of endocrine therapy resistance in estrogen receptor-positive (ER+) breast 

cancer is complex (Ma et al., 2015) but includes acquired somatic mutations within the 

ligand-binding domain (LBD) of the estrogen receptor gene (ESR1) causing ligand-

independent activation (Pejerrey et al., 2018). RNA sequencing (RNA-seq) has also 

identified multiple ESR1 gene fusion events, but their role in endocrine therapy resistance 

and how they might be targeted therapeutically is unclear (Giltnane et al., 2017). The 

majority of ESR1 fusion transcripts have been identified in primary breast cancer, and in 

some of these instances patients have high-grade disease and/or resistance to endocrine 

therapy (Giltnane et al., 2017; Veeraraghavan et al., 2014), implying some functionality. In 
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some cases, up to five ESR1 coding exons are included (exons 3–7), mostly fused out of 

frame but occasionally, and more interestingly, in frame. However, detailed characterization 

of the predicted chimeric proteins and a clear demonstration of a causal role for ESR1 
fusions in endocrine therapy resistance have been largely lacking.

Several years ago, our group described an unequivocal stable and functional ESR1 fusion 

protein (Li et al., 2013). This was an in-frame fusion gene consisting of exons 1–6 of ESR1 
fused to C-terminal sequences from the Hippo pathway coactivator YAP1 (ESR1-e6>YAP1), 

identified in a metastatic sample and matched patient-derived xenograft (PDX) from a 

patient with endocrine therapy-resistant disease. Limited functional characterization of 

ESR1-e6>YAP1 showed that the fusion protein drove resistance to endocrine therapy and 

estradiol-independent proliferation. Herein we build on our original report by contrasting the 

functional, transcriptional, and pharmacological properties of the ESR1-e6>YAP1 fusion 

with additional ESR1 gene fusion events identified by RNA-seq of both early-stage and 

metastatic ER+ breast cancers.

RESULTS

Identification and Verification of In-Frame ESR1 Gene Fusions

A systematic screen was conducted to identify ESR1 translocations in three datasets: 728 

primary breast tumors from The Cancer Genome Atlas (TCGA) (Ciriello et al., 2015), 81 

primary breast cancers from two neoadjuvant aromatase inhibitor (AI) clinical trials (Ellis et 

al., 2011; Olson et al., 2009), and 25 biopsy samples from patients with late-stage ER+ 

breast cancer (Figure 1A). From these analyses, 13 high-confidence ESR1 fusion transcripts 

were identified in 10 ER+ samples from the TCGA dataset (Table S1). Five of these fusion 

events were between ESR1 and CCDC170 and were recently reported (Veeraraghavan et al., 

2014). Of these, only 1 CCDC170 out-of-frame fusion included exon 5 (e5) of ESR1 
(ESR1-e5>CCDC170), thereby preserving sufficient ESR1 sequence to bind DNA. A single 

TCGA case displayed evidence for three ESR1 gene fusions: (1) a PCR-validated ESR1-e6 

fused in frame to C-terminal sequences from AKAP12 (ESR1-e6>AKAP12) (Figure S1); (2) 

a PCR-validated in-frame ESR1-e7 fusion involving the entire coding sequence of POLH, a 

DNA polymerase in the xeroderma pigmentosum gene family (ESR1-e7>POLH), and (3) an 

out-of-frame ESR1-e4>CCDC170 fusion.

From an RNA-seq screen of 81 primary, treatment-naive, ER+ breast cancers from two 

neoadjuvant AI clinical trials (Table S1, NeoAI Trials), two PCR-validated ESR1 fusions 

were identified. The first was an in-frame fusion retaining the first six exons of ESR1 
(ESR1-e6) fused to C-terminal sequences of NOP2, a nucleolar protein (ESR1-e6>NOP2). 

The second fusion identified involved ESR1-e6 fused out of frame to AKR1D1, an aldo-keto 

reductase family member (ESR1-e6>AKR1D1). In the datasets of primary ER+ breast 

cancer examined, ESR1 fusion events are relatively rare, occurring at ~2% frequency. The 

majority of these fusions are out of frame, and 42% of these fusion events (8 of 19) include 

sufficient ESR1 exons to allow ESR1 -specific nuclear binding.

To investigate ESR1 fusion events in late-stage ER+ disease, RNA-seq data from 25 biopsy 

samples obtained from patients with advanced endocrine therapy refractory disease were 
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examined (Table S1, Late Stage, and Table S2). These samples included the ESR1-e6>YAP1 

sample we originally described, as it was drawn from this series (Li et al., 2013), and of 

these 25 samples, 2 harbored in-frame ESR1 fusion events. The ESR1-e6>PCDH11X fusion 

was caused by ESR1-e6 fusion in frame with C-terminal sequences of protocadherin 11X. 

PCDH11X encodes for an atypical cell surface cadherin family member. The sample was a 

chest wall recurrence from a 49-year-old man who presented with locally advanced ER+ 

breast cancer and experienced progression on tamoxifen, letrozole/leuprolide, and 

fulvestrant before the sample was accrued.

Of the eight identified ESR1 fusions from all datasets that were PCR validated (Figure S1), 

only three in-frame fusions, ESR1-e6>YAP1 and ESR1-e6>PCDH11X from advanced 

disease and ESR1-e6>NOP2 from a primary tumor that showed subsequent resistance to 

endocrine therapy, produced stable proteins when expressed as cDNA, allowing further 

study (Figure 1B). Expression of all three fusion partner genes were highly expressed in 

patient tumors, as shown by expression rank plots for YAP1, PCDH11X, and NOP2 
translocation-bearing tumors relative to the expression of these genes among TCGA breast 

samples (Figure 1C). Relative RNA levels of transcripts were analyzed for each fusion 

partner, which showed increases in transcript levels beyond the fusion breakpoint for each 

gene examined, confirming that the fusion partner was disproportionately expressed versus 

the non-translocated allele (Figure 2A).

In-Frame ESR1 Fusions from Endocrine-Refractory Disease Confer Estrogen-Independent 
and Fulvestrant-Resistant Growth of ER+ Breast Cancer Cells

To test whether examples of ESR1 in-frame gene fusions were drivers of endocrine therapy 

resistance, each fusion was individually expressed in two ER+ breast cancer cell line models: 

T47D and MCF7. Expression of fusion ER proteins in T47D cells was similar or lower than 

that observed in the WHIM18 PDX bearing the ESR1-e6>YAP1 fusion, indicating that 

phenotypic conclusions are not based on excess expression (Figure 2B). In addition, several 

out-of-frame CCDC170 and an AKR1D1 fusion event identified in this study (Table S1) 

were also engineered into T47D cells. Growth of ESR1 fusion-expressing T47D was 

monitored in estradiol (E2)-deprived media and after addition of E2. Both in-frame fusions 

from advanced disease, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, promoted estrogen-

independent growth (Figure 2C, −E2), but the primary tumor fusion event, ESR1-e6>NOP2, 

had no growth-promoting properties. The out-of-frame events tested were also inactive 

(Figure S2A). E2 could stimulate growth in all conditions of fusion construct expression 

(Figure 2C, compare +E2 and −E2), suggesting that neither the ESR1 in-frame active 

fusions (ESR1-e6>YAP1 and ESR1-e6>PCDH11X) nor the ESR1-e6 truncation, and not 

even the in-frame but inactive ESR1-e6>NOP2 fusion, could function as a dominant-

negative on endogenous ER. Cells were treated with fulvestrant to degrade endogenous ER, 

while retaining expression of intact ESR1 fusions that cannot bind drug or ligand, to test the 

specific contribution of the fusions to E2-independent growth. As expected, endogenous ER 

was degraded by fulvestrant, whereas levels of ESR1 fusion proteins, as well as an ESR1-e6 

truncation construct, were unaffected (Figure S2B), and growth promoted by ESR1-

e6>YAP1 and ESR1-e6>PCDH11X was resistant to fulvestrant treatment (Figure 2C, −E2, 

+Fulvestrant). There was lack of additional growth promotion by the fusions when E2 was 
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added in the presence of fulvestrant (Figure 2C, compare +E2, +Fulvestrant and −E2, 

+Fulvestrant). However, under these same conditions (Figure 2C, +E2, +Fulvestrant), 

growth induced by the YAP1 and PCDH11X fusions remains significantly greater than 

controls (YFP and ESR1-WT [wild-type]). These results were confirmed in a second ER+ 

breast cancer cell line, MCF7 (Figures S2C-S2D). The NOP2 fusion was highly expressed in 

the MCF7 cell line, in contrast to NOP2 fusion-expressing T47D, but still lacked growth-

promoting activity in hormone-deprived conditions, confirming that absence of functional 

effects was not due to inadequate expression of the NOP2 fusion.

The ability of the three ESR1-e6-containing in-frame fusions to induce estrogen-

independent growth was further tested in vivo in a xenograft study with stable T47D cells 

without supplementary E2. As controls, T47D YFP cells were used with supplementary E2. 

Results showed that control YFP −E2 cells produced negligible tumor growth compared 

with YFP cells +E2 (Figure 2D). However, T47D cells expressing YAP1 and PCDH11X in-

frame ESR1 fusions formed tumors significantly larger than YFP −E2, while the cells 

expressing the NOP2 fusion did not (Figure 2D).

Active ESR1 Fusions Promote Estrogen-Independent Gene Expression

To explore transcriptional properties associated with the ESR1 fusion proteins described 

above, genome-wide binding of HA-tagged ESR1 fusions was examined by HA chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-seq) in hormone-

deprived stable T47D. ChIP-seq identified 445 binding regions shared by ESR1-WT, ESR1-

e6>YAP1, and ESR1-e6>PCDH11X (Figure 3A). Very few sites were bound by ESR1-

e6>NOP2 fusion despite high expression of HA-tagged NOP2 fusion (Figure S3E), 

supporting earlier observations of inactivity in functional studies (Figures 2C, 2D, and S2C). 

ChIP-qPCR confirmed recruitment of ER to regulatory regions of known estrogen-

responsive genes in a ligand-dependent manner in cells expressing WT-ER (Figure 3B). 

Additionally, both YAP1 and PCDH11X fusions showed estrogen-independent enrichment 

at regulatory regions of established estrogen-responsive genes. For example, both fusions 

were enriched at the promoter of a canonical ER-regulated gene, GREB1, and the 

PDCH11X fusion was also enriched at enhancer estrogen response elements (EREs) of 

TFF1 and PGR (Figure 3B).

To investigate whether expression from genes bound by ESR1 fusions was modulated, RNA-

seq was performed. Hierarchical clustering was conducted on differentially expressed genes 

near 445 shared sites bound by ESR1-WT, YAP1, and PCDH11X fusions, as indicated by 

the ChIP-seq data (Figure 3C). Upon stimulation with E2, the expression pattern of YFP 

control cells clustered away from unstimulated YFP cells, with enrichment for differential 

expression of estrogen-responsive genes. The YAP1 and PCDH11X fusion-expressing cells 

had expression patterns that clustered together under estrogen-deprived and stimulated 

conditions and with E2-stimulated YFP cells. The transcriptionally active ESR1 fusions 

maintained expression of estrogen-regulated genes in low-estrogen conditions at levels 

observed in YFP control cells in the presence of E2, demonstrating strong estrogen-

independent gene activation. mRNA-qPCR validation of GREB1, TFF1, and PGR 
expression confirmed estrogen-independent and fulvestrant-resistant gene regulation 
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(Figures 3D and S3F), suggesting that the active ESR1 fusions drive endocrine resistance in 

a canonical manner through ERE-dependent activation. Moreover, the estrogen-independent 

activity of the YAP1 and PCDH11X fusions was also independent of endogenous WT-ER, as 

transcriptional activity was maintained after cells were treated with fulvestrant to degrade 

endogenous ER. Thus, functionally important heterodimer formation between ESR1 fusion 

protein and WT-ER is not likely. This conclusion was also supported by the lack of ESR1 
fusion association with WT-ER in a co-immunoprecipitation assay (Figure S3D). In contrast, 

the ESR1-e6 truncation mutant and NOP2 fusion clustered together with YFP control cells 

displaying similar patterns of ligand-dependent ER gene expression, supporting our earlier 

observations that the NOP2 fusion lacks ability to bind a large repertoire of EREs but whose 

inactivity is not due to mis-localization outside the nucleus, as staining for HA-tagged ESR1 
fusions constructs demonstrated nuclear localization (Figure S3A). These data were further 

supported by ERE-luciferase reporter experiments in HEK293T cells (Figure S3B). ESR1-

WT drove estrogen-dependent expression of the ERE-luciferase reporter. In contrast, both 

ESR1-e6>YAP1 and ESR1-e6>PCDH11X as well as the ESR1-Y537S activating mutant 

drove estrogen-independent expression of the ERE-luciferase reporter. The level of 

activation by ESR1-e6>YAP1 was substantially higher than ESR1-e6> PCDH11X, which 

had activity intermediate to that achieved by the constitutively active ESR1-Y537S mutant 

and ESR1-e6>YAP1 (Li et al., 2013). In contrast to the ESR1-e6>YAP1 and ESR1-

e6>PCDH11X fusions, neither the ESR1-e6 truncation mutation nor the ESR1-e6>NOP2 

fusion drove expression of the ERE reporter. The transcriptional inactivity of the NOP2 
fusion was not due to abrogation of ERE binding, as pulldown experiments with a 

biotinylated concatenated ERE probe with a mutant ERE as a control demonstrated 

sequence-specific binding for all in-frame fusions (Figure S3C). In summary, our 

observations suggest that the inactivity of the NOP2 fusion may be due to a failure to access 

chromatin in the nucleus of intact cells, rather than an inability to bind DNA per se.

Active ESR1 Fusions Promote Metastasis by Upregulating an EMT-like Transcriptional 
Program

A cluster of genes was identified that was selectively upregulated by the active YAP1 and 

PCDH11X fusions (Figures 3C and4A). Gene set enrichment analysis (GSEA) was used to 

examine pathway enrichment in this cluster, which indicated significant enrichment of 

estrogen response pathways as well as an epithelial-to-mesenchymal transition (EMT)-like 

signature (Figure 4B). The EMT signature included TGM2, COL3A1, INHBA, and VCAN. 

One of the best-described EMT genes, SNAI1, was also selectively upregulated by both 

active fusions. Analysis of binding site distances to transcription start sites (TSSs) of genes 

in this cluster demonstrated that the majority of binding occurs at distances >50 kb from the 

TSS (Table S3). This suggests a propensity of the active YAP1 and PCDH11X fusions to 

bind in enhancer regions upstream and downstream of these genes, characteristic of the ER 

cistrome reported in the literature (Carroll et al., 2006). Motif analysis of these binding sites 

showed enrichment for the ERE motif (Figure S4A), suggesting that the direct regulation of 

EMT genes by the active YAP1 and PCDH11X fusions is mediated by enhancer and more 

distant range interactions. Upregulation of VCAN and SNAI1 transcripts (Figures 4C and 

S4B) and Snail protein (Figure 4D) was orthogonally validated. In MCF7 cells, whose basal 

levels of Snail were higher in YFP controls compared with T47D YFP, showed an induction 
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of Snail by ESR1-e6>YAP1, but not by ESR1-e6>PCDH11X, suggesting a degree of cell 

context-dependent effects (Figure 4D). Upregulation of Snail protein was also confirmed in 

T47D xenograft tumors and in a PDX model naturally harboring the ESR1-e6>YAP1 fusion 

(WHIM18) (Figure 4G). Expression of SNAI1 was unaffected by fulvestrant treatment in 

T47D cells, consistent with the conclusion that upregulation of EMT genes by the active 

fusions is independent of endogenous WT-ER (Figures 4C and S4B).

ChIP-seq also identified 71 selectively bound sites by ESR1-e6>YAP1 and ESR1-

e6>PCDH11X not bound by ESR1-WT nor ESR1-e6>NOP2 (Figure S4C). GSEA pathway 

analysis of differentially expressed genes near these sites showed enrichment for UV 

radiation response genes, as well as enrichment for EMT genes, with TGFBR3 and GJA1 
contributing to EMT pathway enrichment (Figure S4C). TGFBR3 encodes for transforming 

growth factor-β receptor III and has roles in migration and invasion (Gatza et al., 2010). 

GJA1 encodes for connexin-43, a gap junction protein whose expression in breast cancer 

cells has been implicated in pulmonary metastasis (Elzarrad et al., 2008), consistent with 

observed lung metastasis in both patients from which the ESR1-e6>YAP1 and ESR1-

e6>PCDH11X fusions were identified.

A decrease in E-cadherin levels from YAP1 and PCDH11X fusion-expressing cells was 

observed relative to YFP control and NOP2 fusion-expressing cells (Figure 4D), and a 

decrease in cell surface E-cadherin was also observed, consistent with an EMT-like 

transition (Figures S4E and S4F). However, there was no detectable increase in vimentin 

levels, suggesting that the YAP1 and PCDH11X fusions drive a partial EMT gene expression 

pattern that nonetheless can be metastasis associated (Jolly etal., 2015). To examine the 

functional consequences of the active fusions with respect to the metastatic process, cell 

motility was examined. The YAP1 and PCDH11X fusions induced significantly greater 

wound recovery and motility than YFP controls and NOP2 fusion-expressing cells (Figure 

4E, quantified in Figure S4D). To exclude the possibility that EMT-associated gene 

expression was due to phenotypic drift of cells under long-term selection, small interfering 

RNA (siRNA)-mediated knockdown of ESR1-e6>YAP1 fusion was examined to determine 

whether EMT-associated features could be reversed. Estrogen-deprived stable T47D YFP 

control or ESR1-e6>YAP1-expressing cells were pre-treated with fulvestrant to degrade 

endogenous WT-ER, before transfecting with negative control siRNA (siESR1–) or siESR1 

against the N terminus of ESR1 (siESR1+). Forty-eight hours post-transfection, Snail 

protein levels were markedly reduced in ESR1-e6>YAP1 cells after siESR1 transfection 

with or without fulvestrant pre-treatment compared with siESR1 – with or without 

fulvestrant (Figure 4F, compare lanes 5 and 7 with lanes 6 and 8). In addition, cells with 

decreased Snail as a result of ER-YAP1 fusion protein knockdown tended to have higher 

levels of E-cadherin, suggesting that knockdown of the ESR1-e6>YAP1 fusion transcript 

restores these aspects of a typical epithelial gene expression pattern. Similar effects were 

confirmed in stable MCF7 cells expressing ESR1-e6>YAP1 (Figure S4G, compare lanes 5 

and 7 with lanes 6 and 8), although Snail levels were more affected by fulvestrant pre-

treatment alone, showing that higher basal levels of Snail in MCF7 cells can also be driven 

by WT ESR1 (Figure S4G, compare lanes 1 and 3 for YFP-expressing cells and lanes 5 and 

7 for ESR1-e6>YAP1-expressing cells). However, Snail expression is resistant to fulvestrant 

suppression in the presence of the ESR1-e6>YAP1 fusion (Figure S4G, compare lanes 3 and 
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7). The metastatic potential of fusion-expressing cells in vivo was measured by ER 

immunohistochemistry from the lungs, liver, and bones of mice bearing T47D xenografts 

from Figure 2D. The number of micrometastatic ER+ cells in the lungs of YAP1 and 

PCDH11X fusion bearing mice was significantly greater than that in the lungs of mice 

bearing tumors generated from YFP control cells upon estrogen deprivation (Figure 4H). 

YFP control tumors grown with E2 supplementation were much larger (Figure 2D), but 

pulmonary micrometastasis was not significantly different from YFP controls −E2, 

demonstrating that differences in pulmonary metastasis potential associated with the active 

fusions were not due simply to differences in disease burden. Bone and hepatic 

micrometastases were not observed. Pulmonary metastasis in this model was not a feature of 

YFP control cells, even when disease burden was increased markedly with E2 

supplementation. Taken together, these results suggest a role for active YAP1 and PCDH11X 
fusions in driving pulmonary metastasis in association with the expression of genes known 

to contribute to EMT biology and metastatic behavior.

Growth Driven by ESR1 Fusions Can Be Suppressed with CDK4/6 Inhibitor Treatment

The loss of the LBD renders the function of ESR1 fusion genes resistant to all endocrine 

treatments, and therefore alternative therapies will be necessary to treat patients who present 

with active ESR1 fusions. Palbociclib, a selective CDK4/6 inhibitor was chosen for study 

because of our recent report that this agent can antagonize the growth of tumors expressing 

ESR1 mutations as long as phospho-Rb (pRb) is present (Wardell et al., 2015). Because the 

target of activated CDK4/6 is Rb, pRb levels were examined by immunohistochemistry 

(IHC) in ESR1 fusion-expressing T47D xenograft tumor sections (Figure S5A). pRb levels 

in YAP1 and PCDH11X fusion xenograft tumors grown without E2 supplementation were 

comparable with YFP controls +E2 and were elevated relative to YFP −E2 and NOP2 

fusion-containing tumors. T47D stable cells expressing YFP and the three in-frame ESR1 
fusions were treated with palbociclib under hormone-deprived conditions and growth-

inhibitory effects were assessed (Figure 5A). Palbociclib inhibited T47D cell growth driven 

by the YAP1 and PCDH11X fusions in a dose-dependent manner. A similar palbociclib 

effect was observed in ESR1 fusion-expressing MCF7 stable cells (Figure S5B). To test 

palbociclib sensitivity in vivo, a PDX model naturally harboring the ESR1-e6>YAP1 fusion 

(WHIM18) was exposed to palbociclib. Consistent with in vitro results, tumor growth in the 

PDX model was inhibited in mice treated with palbociclib compared with vehicle-treated 

mice (Figure 5B; tumor growth rates shown in Figure S5C). Palbociclib-treated WHIM18 

tumors also showed significant reduction in pRb and marked decrease in Ki-67 levels, 

without altering levels of ER (Figure 5C) or progesterone receptor (PR) (Figure S5D). Areas 

containing micrometastatic ER+ cells observed in the lungs of vehicle chow-treated 

WHIM18 mice were not seen in palbociclib-treated mice (Figure 5D), suggesting that 

pulmonary metastatic frequency could also be downregulated by CDK4/6 inhibition.

DISCUSSION

This study demonstrated that two in-frame ESR1 fusions in a small late-stage cohort of 

metastatic ER+ cases drive not only endocrine therapy resistance but also metastatic disease 

progression. The functional characterization of ESR1 fusions’ properties described herein 
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should drive efforts to identify and further characterize additional ESR1 fusions in early- and 

late-stage ER+ breast cancer.

The ability to block active ESR1 fusion-induced growth with a CDK4/6 inhibitor has 

important implications for clinical practice. Patients with active ESR1 fusions may present 

with a clinical pattern of rapidly progressing disease despite adjuvant or metastatic 

endocrine therapy treatment and therefore be offered chemotherapy instead of a CDK4/6 

inhibitor-containing regimen. Because therapeutically resistant disease is infrequently re-

biopsied and even more rarely analyzed using RNA-seq, a prospective study of ESR1 in-

frame fusion-expressing ER+ tumors will be required to establish an effective approach for 

these tumors.

Although ESR1 fusions are challenging to diagnose because of variable 3′ fusion partners, 

evidence for additional ESR1 fusions is emerging in the literature. For example, ESR1-

e6>DAB2 and ESR1-e6>GYG1 were both identified in metastatic ER+ breast cancer 

(Hartmaier et al., 2018). Like the active ESR1 fusions we describe herein, ESR1-e6>DAB2 

and ESR1-e6>GYG1 follow the same pattern (i.e., ESR1 exon 6 in-frame fusions with 3′ 
partners provided by inter-chromosomal translocation). Thus, this type of ESR1 fusion gene 

structure is most clearly linked to endocrine therapy resistance. Several precision medicine 

programs now include RNA-seq in their standard pipelines, and thus much more data on 

ESR1-e6 in-frame fusion prevalence should be available soon.

Because active ESR1 fusions induce pRb (Figure S5A), pRb might also be an appropriate 

marker to guide CDK4/6 inhibitor therapy and might provide strong pre-clinical rationale to 

potentially examine pRb levels in patients on Als to define populations for CDK4/6 

inhibition. This idea is supported by our previous report, in which the growth of endocrine-

refractory PDX tumors remained sensitive to CDK4/6 inhibition, as long as those tumors 

express pRb under estrogen-deprived growth conditions (Wardell etal., 2015).

The inactivity of the ESR1-e6>NOP2 fusion is surprising, as the expressed recombinant 

protein is stable. This demonstrates that not every in-frame ESR1-e6 fusion is active with 

respect to endocrine therapy resistance. The NOP2 fusion may have other biological 

properties that we were unable to detect in our experimental model systems. The out-of-

frame ESR1 fusions also had no growth-promoting properties but could also be active 

though novel mechanisms.

The role of active ESR1 fusions in promoting EMT-like gene expression changes follows a 

pattern associated with other members from a diverse family of cancer-associated gene 

fusion events. For example, the TMPRSS2-ERG fusion in prostate cancer has also been 

reported to directly regulate cell migration genes (Tian et al., 2014). Given the diverse 

structures of EMT-inducing ESR1 fusions revealed here with the study of just two, it is also 

possible that more EMT and motility-inducing transcription factor gene fusions remain to be 

discovered, and the formation of these could be primary drivers of metastasis.
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STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed and will be 

fulfilled by the Lead Contact Matthew J. Ellis (mjellis@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines

All cell lines were purchased from ATCC and cultured at 37°C in 5% CO2. All cell lines 

were authenticated and tested for mycoplasma. HEK293T and MDA-MB-231 cells were 

cultured in DMEM with L-Glutamine and 4.5 g/L glucose (HyClone) supplemented with 

10% FBS (cat# F0926, Sigma) and 1% penicillin-streptomycin (Invitrogen). T47D and 

MCF7 cells were cultured in RPMI1640 with L-Glutamine (Mediatech) supplemented with 

10% FBS, glucose to 4.5 g/L (Sigma), 10 mM HEPES (GenDEPOT), 1 mM sodium 

pyruvate (GenDEPOT), and 50 μg/mL gentamycin (GenDEPOT). Estrogen/hormone 

deprivation was performed by plating cells in culturing media overnight followed by 

washing with PBS and replacing with hormone deprived media consistaing of phenol red 

free media supplemented as described above but with 10% charcoal-stripped serum (CSS) 

(cat# F6765, Sigma), followed by changing with hormone-deprived media every 2-3 days 

for 5-7 days.

In Vivo Animal Studies

All animal experiments were carried out in strict accordance with the guidelines 

recommended for care and use of laboratory animals by the National Institutes of Health. 

The Animal Studies Committee at Washington University (St. Louis, MO, USA) approved 

all animal protocols used for T47D xenograft studies. Three-week old NOD/SCID gamma 

female mice were purchased from Jackson Laboratories. Stable T47D cells were trypsinized, 

counted, washed by PBS, and suspended in ice cold serum free RPMI medium at 10 × 106 

cells per 100 μL. Matrigel was added to a final 33% by volume. 150 μL mix (10×106 cells) 

was injected subcutaneously into the mouse flanks bilaterally. Six mice were injected per 

group. Tumor volumes were measured by caliper weekly. For PDX studies, all animal 

procedures were approved by the Institutional Animal Care and Use Committee at Baylor 

College of Medicine (Houston, TX, USA) (protocol# AN-6934). 2-3 mm tumor pieces from 

a second generation growing WHIM18 tumor were engrafted into cleared mammary fat pads 

of 3-4 weeks old SCID/bg mice (Charles River) and allowed to grow without exogenous E2 

supplementation until tumors reached 150-400 mm3. Mice were then randomized to receive 

vehicle or palbociclib (Pfzier) containing chow (daily dose of 70mg/kg per day) for an 

additional 30 days (11 mice per group). Tumor volumes were measured by caliper every 3-4 

days. For all animal experiments, tumor volumes were calculated by V = 4/3 × π × 

(length/2)2 × (width/2). Animals were sacrificed when tumors reached 1500 mm3 or at the 

study end time point. Tumors and organs were harvested and frozen in liquid nitrogen for 

storage or fixed in 4% formaldehyde overnight at RT, then held in 70% ethanol before 

paraffin embedding, sectioning (5 μm) and subsequent IHC processing.
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Clinical Samples

The primary breast cancer samples for this study were either accrued from two neoadjuvant 

endocrine therapy trials (Ellis et al., 2011; Olson et al., 2009) or analyzed from TCGA breast 

samples (Ciriello et al., 2015). The methodologies for RNA extraction and expression 

profiling experiments have been previously published (Ellis et al., 2011). Frozen metastatic 

biopsy samples from patients with advanced breast cancer (Table S2) were accrued under a 

banking protocol approved by the Washington University School of Medicine Institutional 

Review Board (approval number 201102244).

METHOD DETAILS

ESR1 Fusion Discovery Using ChimeraScan and INTEGRATE

Fusion candidates were discovered using ChimeraScan (Iyer et al., 2011) and INTEGRATE 

(Zhang et al., 2016) when whole genome sequencing data were available from 38 cases 

previously reported (Ellis et al., 2012). The Illumina RNA-Seq paired-end reads in FASTQ 

format were provided to ChimeraScan version 0.4.5, which was run using default 

parameters. The alignments (BAM format by TopHat2) of the RNA-seq reads are provided 

to INTEGRATE version 0.1, which is run using default parameters in RNA only mode. All 

the analysis was based on hg19. ChimeraScan results (bedpe format) are filtered by 

removing records with types marked as read through, overlapping converging, overlapping 

diverging, adjacent converging, and adjacent diverging. These could be transcriptome only 

variations or chimeras reported because of certain annotation issues. The gene fusions with 

ESR1 gene as a fusion partner are picked out from all the fusion candidates discovered by 

the methods described above and from analysis done by TCGA.

Molecular Cloning to Generate ESR1 Fusion Constructs

cDNAs encoding ESR1-e6>NOP2, ESR1-e6>PCDH11X, and ESR1-e6>AKR1D1 were 

synthesized from patient RNAs via oligo-dT reverse transcription (RT) followed by 

polymerase chain reaction (PCR) using primers complementary to the 5′ and 3′ ends of the 

fusion genes. ESR1-e7>POLH and ESR1-e6>AKAP12 were generated from cDNAs 

encoding ESR1, POLH, and AKAP12 by overlapping PCR extension/amplification as 

previously described for ESR1-e6>YAP1 (Li et al., 2013). All other constructs were created 

by standard PCR using pre-existing cDNA templates. Amplified DNA fragments were 

inserted into the lentiviral vector pFLRu-FH as described previously (Li et al., 2013). ESR1-

e6>AKAP12 was generated but due to its exceptionally large size, could not be cloned into 

the lentiviral vector and subsequently proved hard to express upon transfection and was not 

studied further. Carboxy-terminal HA-tagged ESR1 fusion constructs were generated by 

subcloning each construct from pFLRu-FH using primers for PCR that included BamHI and 

EcoRI restriction sites along with the HA sequence (STAR METHODS) into pCDH-CMV-

MCS-EF1α-RFP-Puro vector (System Biosciences). All constructs in their final vectors 

were confirmed by Sanger sequencing.
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Lentiviral Production and Stable Cell Line Generation

Lentiviral production was performed as described previously (Li et al., 2013). Briefly, ESR1 
constructs cloned in pFLRu-FH and HA-tagged ESR1 constructs in pCDH-CMV-MCS-

EF1α-RFP-Puro (System Biosciences) and pCDH-CMV-MCS-ER1α-Puro (System 

Biosciences) vector DNAs were co-transfected with the packaging plasmids into HEK293T 

cells using Fugene HD (Roche). Culture media containing viruses were harvested after 48 

hr, filtered, and added to T47D and MCF7 cells in the presence of polybrene. Stably infected 

cells were selected by 2 μg/mL puromycin (Sigma) two days after infection. Three sets of 

T47D stable cell lines were generated, one set expressing non-HA-tagged ESR1 constructs 

(used in Figures 2, S2, 4G, 4H, 5A, and S5A), one set expressing HA-tagged ESR1 
constructs in pCDH-CMV-MCS-EF1α-RFP-Puro (used in Figures 3, S3D-S3F, 4A-4F, and 

S4A-S4F) and one set expressing HA-tagged ESR1 constructs in pCDH-CMV-MCS-ER1α-

Puro used in Figure S3A. Two sets of MCF7 cells were generated, one set expressing non-

HA-tagged ESR1 constructs (used in Figures S2C, S2D, and S5B) and HA-tagged ESR1 

constructs in pCDH-CMV-MCS-ER1α-Puro (used in Figures 4D and S4G).

In Vitro Growth Assays

Hormone independent cell growth was subsequently measured by low density triplicate 

plating of T47D or MCF7 cell lines in hormone-deprived media in 96-well plates (2000 

cells/well) in the absence or presence of 10 nM E2 (Sigma) in combination without or with 

10 nM fulvestrant (Selleckchem). Cell growth was quantified by Alamarblue assay at Day 1 

and Day 12 post plating and relative growth was calculated as Day 12/Day 1 ratios. 

Remaining cells not used in the Alamarblue assay were plated in CSS containing media and 

grown further for 72h in the absence or presence of 10 nM fulvestrant before harvesting and 

subsequent processing for immunoblot analysis. For palbociclib sensitivity assays, T47D 

and MCF7 cells were hormone deprived for seven days, then plated in 96-well plates as 

described above in the absence of presence of 3-fold dilutions of palbociclib (cat# S1116, 

Selleckchem) from 10 μM down to 0.0015 μM for 12 days, changing hormone-deprived 

media and palbociclib every 2-3 days. Cell growth was quantified similarly as above and 

relative growth was calculated by taking the palbociclib treated Day 12/Day 1 ratio divided 

by the vehicle treated Day 12/Day 1 ratio.

siRNA Knockdown

Stable T47D or MCF7 were hormone-deprived for 7-9 days before pre-treatment with 

DMSO vehicle or 1 μM fulvestrant for 24h prior to reverse transfection with RNAiMAX 

(Invitrogen) and 50 nM siRNA Universal Negative Control #1 (cat# SIC001, Sigma) or 50 

nM siESR1 targeting N-terminal sequences of ESR1 (Sigma). Fresh DMSO or 1 μM 

fulvestrant was added during the transfection. 48h post transfection, cells were collected by 

scraping and subjected to immunoblotting.

Immunoprecipitation and Immunoblot Analysis

For IP assays, hormone deprived stable T47D cells were left untreated or stimulated with 10 

nM E2 for 15’ at 37°C. Cells were harvested then lysed in IP lysis buffer [0.5% NP-40, 10% 

glycerol, 280 mM NaCl, 50 mM Tris pH 8.0, 2 mM EGTA, 0.2 mM EDTA, 1 mM PMSF, 1 
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mM sodium orthovanadate, 1 mM DTT, 1 μg/mL pepstatin, phosSTOP phosphatase 

inhibitor tablet (Roche), and complete EDTA-free protease inhibitor tablet (Roche)] for 20 

min. 0.5 mg of clarified lysates were immunoprecipitated with an Anti-HA antibody (cat# 

3724, Cell Signaling, 1:50) overnight at 4°C with rotation. Protein A magnetic beads (cat# 

1614013, Bio-Rad) were added and rotated for 1h at 4°C followed by extensive washing 

with IP lysis buffer. Immunoprecipitated samples along with 25 μg of whole cell lysates 

(inputs) were heated at 90°C before loading onto SDS-PAGE gels (Invitrogen) and 

electroblotted onto nitrocellulose membranes (Bio-Rad). Whole cell lyates for all other 

immunoblotting procedures were prepared in RIPA buffer and blotted as described 

previously (Li et al., 2013). Fresh frozen WHIM18 tumors were cryopulverized (Covaris 

CP02) then lysed in RIPA buffer. The following primary antibodies were used for blotting: 

N-terminal estrogen receptor α (cat# 04-820, Millipore, 1:1000), C-terminal estrogen 

receptor α (cat# sc-543, Santa Cruz, 1:1000), E-Cadherin (cat#14472, Cell Signaling, 

1:1000), and Snail (cat #3879, Cell Signaling, 1:500). β-Actin (cat# A5316, Sigma, 1:5000) 

used as loading control for all immunoblots.

Dual Luciferase ERE Reporter Assay

To test ER fusion effect on wild-type ERE activation ability, 60 ng of empty pCDH-CMV-

MCS-ER1α-Puro Vector, ESR1-WT-HA, ESR1-e6>YAP1-HA, ESR1-e6>PCDH11X-HA, 

ESR1-e6>NOP2-HA, ESR1-e6-HA, or ESR1-Y537S-HA were co-transfected by reverse 

transfection using Lipofectamine 2000 (Invitrogen) together with 25,000 hormone-deprived 

HEK293T cells per well in triplicates in a 96-well plate with 60 ng Firefly luciferase 

reporter vector (driven by three copies of vitellogenin Estrogen Response Element (11354, 

Addgene) (Hall and McDonnell, 1999) and 5 ng control Renilla luciferase vector (pGL4.70, 

Promega). Prior to transfection, HEK293T cells were cultured in hormone deprived media 

containing charcoal-stripped serum for seven days. One day after transfection, cells were 

either left unstimulated or stimulated with 2.5 nM E2 for 24h. On the following day, cells 

were quantified for the firefly and Renilla luciferase levels using the Dual-Glo Luciferase 

assay kit (Promega). Averages of Firefly/Renilla luminescence readings from each sample 

were calculated and expressed as fold change in activity relative to Vector transfected −E2.

Biotinylated 3X ERE Pulldown

All 5′ biotinylated DNA were synthesized by Integrated DNA Technologies. The sequence 

of the wild-type and mutant 3XERE were 

GTAGGTCACTGTGACCTAGACGCAGGTCACTGTGACCTAGACGCAGGTCACTGTGACCGT and 

GTAGATCACTGTGAACTAGA CGCAGATCACTGTGAACTAGACGCAGATCACTGTGAACGT, 

respectively. Each DNA and its complement were annealed by boiling at 95°C for 15 min 

and allowed to cool overnight at room temperature. Each biotinylated DNA was bound to 

streptavidin M-280 Dynabeads (Invitrogen) per manufacturer’s directions and washed with 

NETN buffer (20 mM Tris, pH 8.0,150 mM NaCl, 0.5mM EDTA, and 0.5% NP-40) before 

incubation with 200-1000 μg of HEK293T extracts (whole cell or nuclear extracts) 

transiently transfected with the indicated expression constructs. Protein/DNA extracts were 

rotated at 4°C for 1h then washed four times with NETN buffer and analyzed by 

immunoblotting.

Lei et al. Page 14

Cell Rep. Author manuscript; available in PMC 2018 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ChIP-seq

Chromatin preparation—Stable T47D cells were hormone deprived for 7 days in 

charcoal-stripped containing media before fixing at 1% formaldehyde (cat# F8775, Sigma) 

while swirling for 10 min at RT. To quench, glycine was added to 0.2 M and incubated for 

another 5 min at RT. Cells were then washed and harvested in cold TBSE (20 mM Tris-HCl 

pH 7.5, 150 mM NaCl, 1 mM EDTA). After further washing in TBSE, cells were lysed in 

0.1% SDS buffer (50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton 

X-100, 0.1% sodium deoxcholate, 0.1% SDS, cOmplete EDTA-free protease inhibitor 

cocktail tablet) for 15 min at 4°C with rotation. Samples were centrifuged and washed 3X 

with 0.1% SDS buffer and resultant nuclear pellets were lysed with 1% SDS buffer for 15 

min at 4°C with rotation. After washing with 0.1% SDS buffer, nuclear lysates were 

centrifuged at 20,000 rpm and resultant chromatin pellets were resuspended in 0.1% SDS 

buffer with 0.5 mm glass beads (cat# 11079105, Biospec). The chromatin solution was 

sonicated with a Branson Sonifier S450D with 18, 30 s pulses at 40% amplitude. Crosslinks 

were reversed by incubating sonicated chromatin with pronase (Roche) at 42°C for 2h 

followed by incubation at 67°C for 6h. Phenol:chloroform (Ambion) extraction was used to 

isolate sonicated chromatin that contained DNA fragments 200-500 bp in size that was 

confirmed by agrose gel electrophoresis.

Chromatin immunoprecipitation—Dynabeads Protein G (ThermoFisher) were 

equilibrated in 0.1% SDS buffer then a portion was added to chromatin extracts from above 

to pre-clear for 2h at 4°C with rotation. HA antibody (cat# sc-7392, Santa Cruz) was added 

to the remaining Protein G and allowed to bind for 2h at 4°C with rotation. Pre-cleared 

chromatin extracts were then added to antibody-bound beads and rotated overnight at 4°C 

followed by extensive 5 min washes 0.1% SDS buffer, then once in 0.1% SDS buffer 

containing 0.35 M NaCl, then once in ChIP wash buffer (10 mM Tris-HCl pH 8.0, 250 mM 

LiCl, 1 mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate), then once in TE buffer. 

Elution was performed by pelleting and resuspending in ChIP buffer and heating at 68°C for 

1h with agitation. Samples were pelleted, reuspended in TE buffer and crosslinks were 

reversed with pronase and heating at 42°C for 2h followed by incubation at 67°C overnight. 

Chromatin isolation was then performed using phenol:chloroform extraction and used for 

ChIP-qPCR and subsequently processed for next generation sequencing as follows:

Next generation sequencing—The Biopolymers Facility (Harvard Medical School, 

Boston, MA, USA) conducted quality control testing on an Angilent BioAnalyzer followed 

by Wafergen PrepX DNA ChIP library preparation. Pooled libraries were loaded onto two 

lanes of HiSeq Rapid v2 flow cell (Illumina) with PhiX control adaptor-ligated library 

(Illumina) spiked-in at 5% by weight to ensure balanced diversity and to monitor clustering 

and sequencing performance. Single-end 50 bp reads were generated on a HiSeq 2500 

Sequencing System.

RNA-seq—Stable T47D cells were hormone deprived for 5 days in charcoal-stripped 

containing media then grown for another 48h in the absence or presence of 10 nM E2. RNA 

was isolated using RNeasy Mini Kit (QIAGEN) according to manufacturer’s directions and 

subjected to on column DNase (QIAGEN) digestion to remove genomic DNA before final 
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elution in water. The Genomic and RNA Profiling Core (Baylor College of Medicine, 

Houston, TX, USA) conducted sample quality checks using the NanoDrop 

spectrophotometer and Agilent Bioanalyzer 2100 followed by subsequent Illumina TruSeq 

Stranded mRNA library preparation protocol (p/n 15031047, rev. E) as follows: A double-

stranded DNA library was created using 180ng of total RNA (measured by picogreen), with 

the Illumina TruSeq Stranded mRNA-Seq Sample Prep kit (cat# RS-122-2101). First, cDNA 

was created using the fragmented 3′ poly(A) selected portion of total RNA and random 

primers. During second strand synthesis, dTTP is replaced with dUTP which quenches the 

second strand during amplification, thereby achieving strand specificity. Libraries were 

created from the cDNA by first blunt ending the fragments, attaching an adenosine to the 3′ 
end and finally ligating unique adapters to the ends. The ligated products were then 

amplified using 15 cycles of PCR. The resulting libraries were quantified using a NanoDrop 

spectrophotometer and fragment size assessed on an Agilent Bioanalyzer. A qPCR 

quantification was performed on the libraries to determine the concentration of adaptor 

ligated fragments using Applied Biosystems ViiA7 Real-Time PCR System and a KAPA 

Library Quant Kit (cat# KK4824).

Using the concentration from the ViiA7 qPCR machine above, 27 pM of library was loaded 

onto two lanes of a high output v4 flowcell (Illumina p/n PE-401-4001) and amplified by 

bridge amplification using the Illumina cBot machine (cBot protocol: 

PE_HiSeq_Cluster_Kit_v4_cBot_recipe_v9.0). PhiX Control v3 adaptor-ligated library 

(Illumina p/n 15017666) is spiked-in at 2% by weight to ensure balanced diversity and to 

monitor clustering and sequencing performance. Paired-end 100 bp reads were generated on 

a HiSeq 2500 Sequencing System (Illumina p/n FC-401-4003).

Quantitative PCR—qPCR was performed using SsoAdvanced SYBR green Supermix 

(Bio-Rad) and 0.5 mM primers (Sigma) listed in Key Resources Table and run on a 

LightCycler 96 (Roche). All samples were run in triplicate and values shown are the average 

± SEM of at least 2 independent experiments. For ChIP-qPCR, 1% inputs were run for each 

corresponding sample and primers against a region on Chr20 which ERα does not bind was 

used as a negative control. Chromatin captured from HA-ChIP in YFP-HA cells were used 

as control instead of IgG antibody alone. For mRNA-qPCR (Figures 3D, S3F, 4C, and S4B), 

RNA was extracted as described above from stable T47D cells grown in hormone deprived 

media for 5 days, before growing another 24h in the absence (−E2) or presence of 10 nM E2 

and/or 1 μM fulvestrant as indicated. One step quantitative RT-PCR was performed using 

iScript reverse transcriptase (Bio-Rad) with 25 ng RNA. Expression was normalized to 

GAPDH and relative expression was calculated as fold change using the 2−ΔΔCt method with 

YFP −E2 set to 1.

Immunohistochemistry—IHC staining was performed with assistance from The Lester 

and Sue Smith Breast Center Pathology Core at Baylor College of Medicine (Houston, TX, 

USA). Tissue sections were incubated at 58°C overnight in a dry slide incubator and 

deparaffinized in xylene and graded alcohol washes. Antigen retrieval was performed in 0.1 

M Tris-HCl pH 9.0 following by quenching in 3% H2O2. The following antibodies were 

used to stain for 1h at RT: ERa (clone 6F11, Novocastra, 1:200), pRb (Ser780) (clone 

Lei et al. Page 16

Cell Rep. Author manuscript; available in PMC 2018 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D59B7, Cell Signaling, 1:25), Ki67 (clone MIB-1, Dako, 1:200), and PR (clone PgR 1294, 

Dako, 1:1600). After washing in TBS, EnVision labeled polymer-HRP antimouse or anti-

rabbit antibodies (Dako) were added for 30 min. at RT. Slides were washed with TBS then 

developed with DAB+ solution (Dako) and DAB sparkle enhancer (Biocare). After washing 

in TBS, slides were counstained with Hematoxylin, dehydrated, and cleared before 

coverslipping with Cytoseal (VWR). ER positive staining cells were quantified in lung 

sections from 5 T47D xenograft bearing mice. Stained WHIM18 tumor and lung sections 

were quantified from 5 mice per treatment group.

Scratch Wound Assay—Stable T47D cells were hormone deprived for 7 days before 

seeding in hormone deprived media at 50,000 cell/well in a 96-well ImageLock plate (Essen 

BioScience). The following day, cells were treated 10 μg/mL mitomycin C (Sigma) for 2h 

before wounding with a WoundMaker (Essen BioScience). Cells were washed with hormone 

deprived media then fresh hormone deprived media containing mitomycin C was added. 

Images were acquired every 3h for 72h with an IncuCyte live-cell analysis system (Essen 

BioScience). Fresh hormone deprived media plus mitomycin C was changed every 24h. Cell 

motility assessed by the relative wound density (RWD) calculated by measuring density in 

the wound area relative to the density outside the wound area at 72h. The RWD is 0% at 0h 

and 100% when the density inside the wound is the same as the density outside the wound, 

therefore normalizing for changes in density due to proliferation outside the wound. 

Representative images are depicted and quantification from average of three independent 

experiments ± SEM are shown. P-values based on ANOVA followed by Dunnett’s post hoc 

test for multiple comparisons correction.

Immunofluorescence Microscopy—Hormone deprived stable T47D cells were seeded 

onto poly-D-lysine coated coverslips (Fisher) and grown overnight. Cells were fixed with 

4% formaldehyde for 20 min. at RT followed by permeabilization with 0.2% Triton X-100 

for 10 min at RT and blocking with 10% normal goat serum for 1h. Antibodies against E-

cadherin (cat# 14472, Cell Signaling, 1:50), vimentin (cat# 5741, Cell Signaling, 1:100) or 

HA-tag (cat# 2367, Cell Signaling, 1:50) were incubated overnight at 4°C then goat anti-

mouse-488 (cat# A-11011, Invitrogen, 1:1000), goat anti-rabbit-488 (cat# A-11008, 

Invitrogen, 1:1000), or goat anti-mouse-568 (cat# A-11004, Invitrogen, 1:1000) was added 

for 30 min at RT. Coverslips were mounted onto slides with ProLong Gold Antifade Reagent 

(Invitrogen). Fluorescence images were acquired on a Nikon Eclipse Ti microscope 

equipped with a CoolSNAP EZ camera (Photometrics Scientific) using a Plan Apo 40X/0.95 

aperture objective and Nikon NIS elements software. Images were quantified with ImageJ 

by setting a threshold from E-cadherin fluorescence channel from ESR1-WT cells which 

gave cell surface appearance. The same threshold was applied to images acquired from all 

other cell lines and cells were considered E-cadherin+ when cell surface signal was present 

using the described threshold. 2-3 images per cell line were quantified and shown are 

averages from two independent experiments ± SEM.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed with GraphPad Prism 7. P-values less than 0.05 were 

considered statistically significant (*p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). For 
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box and whiskers plots, the box depicts interquartile range with median line and whiskers 

extending to minimum and maximum values for each group.

Immunofluorescence images were quantified with ImageJ by setting a threshold from E-

cadherin fluorescence channel from ESR1-WT cells which gave cell surface appearance. 

The same threshold was applied to images acquired from all other cell lines and cells were 

considered E-cadherin+ when cell surface signal was present using the described threshold. 

2-3 images per cell line were quantified and shown are averages from two independent 

experiments ± SEM.

For cell proliferation assays, significance was determined based on one-way ANOVA 

followed by Tukey’s post hoc test for multiple comparisons correction for ESR1-e6>YAP1 

or ESR1-e6>PCDH11X fusion-expressing cells compared to all other stable T47D cells 

within a treatment group (indicated by asterisks) or using two-way ANOVA followed by 

Bonferonni’s post hoc test for multiple comparisons correction for each construct after E2 

stimulation, +E2 versus −E2 (#### p < 0.0001). Data are mean ± SEM of three independent 

experiments. For palbociclib sensitivity assays in stable T47D and MCF7 cell lines, each 

point represents averages ± SEM from 3-4 independent experiments of relative cell growth 

for indicated palbociclib dose, calculated by taking the palbociclib treated Day 12/Day 1 

alamarBlue reading ratio divided by vehicle treated Day 12/Day 1 ratio. P-values describes 

significance between YFP +E2, ESR1-e6>YAP1, and ESR1-e6>PCDH11x slopes compared 

to YFP −E2 as measured by ANOVA with Tukey’s post hoc analysis for multiple 

comparisons.

For ChIP-qPCR assays, bar graphs depict enrichment of ER binding regions in hormone 

deprived stable T47D cells before and after stimulation with E2 (100 nM) for 45 min as 

determined by HA-ChIP followed by qPCR for ER binding regions of estrogen responsive 

genes as indicated and negative ER binding region. Average values from 3 experiments are 

shown ± SEM. Asterisks denote significant differences in binding compared to WT-ER −E2 

for each gene binding region as determined by ANOVA followed by Tukey’s post hoc test.

In Vivo Analysis

For T47D xenograft assays, significance of tumor volumes Day 146 post injection was 

determined based on Kruskal-Wallis test followed by Dunn’s post hoc analysis for multiple 

comparisons correction comparing YFP −E2 to all other groups with N = 6 mice per group. 

For ER+ cell counting in the lungs, ER+ cells from IHC images of 5 mice bearing 

xenografted tumors at Day 146 were manually counted. Statistical analysis was based on 

Kruskal-Wallis test with Dunn’s post hoc analysis for multiple comparisons correction 

comparing YFP versus fusion-bearing groups and YFP +E2.

For WHIM18 PDX assays, Figure 5B depicts averages of tumor volumes from 8-11 mice 

per group ± SEM are shown. P-value determined by unpaired t test describes significance of 

tumor growth rates (slopes) derived from tumor volumes at day of randomization/start of 

treatment (Day 61 post transplantation) to experiment end (Day 91 post transplantation) for 

vehicle and palbociclib treated mice. Figure S5C depicts tumor growth rates as described 

above for all tumors measured in each condition. Middle line represents mean tumor volume 
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± SD. Day 0 post treatment is the same as treatment start/Day 61 post transplantation and 

represents the tumor growth rate from time tumors were palpable (Day 49 post 

transplantation) up to treatment start date. Day 30 is the same as Day 91 post transplantation 

and represents on-treatment tumor growth rates. P-values determined by one-way ANOVA 

with Tukey’s post hoc analysis for multiple comparisons. For IHC images, positive staining 

cells were quantified in tumor and lung sections from 5 mice per treatment group. Bar 

graphs represents mean ± SD and P-values indicate significance as determined by Wilcoxon 

rank-sum tests.

ChIP-seq Analysis

Single-end 50 bp reads were aligned to hg19 (GRCh37) reference genome using BWA(Li 

and Durbin, 2010) and alignment files were converted to BED format using BEDTools 

(Quinlan and Hall, 2010). BED files were used for peak calling by MACS v1.4.2 (Zhang et 

al., 2008). MACS peaks (p < 1e−7 cutoff and associated FDRs) were annotated with GREAT 

(McLean et al., 2010) using default settings. Motif analysis was performed by taking ~100 

bp sequences centered on the summit of peaks and submitted for enrichment analysis using 

MEME-ChIP in normal mode (Bailey and Elkan, 1994). P-values represents the probability 

that an equal or better site would be found in a random sequence of the same length 

conforming to the background letter frequencies (Bailey and Elkan, 1994).

RNA-seq Analysis

Paired-end 100 bp reads were aligned to hg19 (GRCh37) reference genome using RSEM 

v1.2.31 (Li and Dewey, 2011) and Bowtie 2 (Langmead and Salzberg, 2012). TPM 

(Transcripts Per Million) values calculated by RSEM were log2 transformed and row Z-

scores were generated for the all heatmaps shown. Differential gene expression analysis was 

performed using EBseq (Leng et al., 2013) with FDR < 0.1 as a cutoff comparing 4 groups: 

(1) YFP +E2 versus YFP −E2, (2) ESR1-e6>YAP1 −E2 versus YFP −E2, (3) ESR1-

e6>PCDH11X −E2 versus YFP −E2, and (4) ESR1-e6>NOP2 −E2 versus YFP −E2. 

Hierarchal clustering was performed on differentially expressed genes for which a nearby 

binding site within 1 Mb was observed by ChIP-seq shared by ESR1-WT, ESR1-e6>YAP1, 

ESR1-e6>PCDH11X, and ESR1-e6>NOP2 for Figure 3C. Clustering was also performed on 

differentially expressed genes for which a nearby site within 1 Mb was selectively bound by 

both ESR1-e6>YAP1 and ESR1-e6>PCDH11X but bound by ESR1-WT nor ESR1-

e6>NOP2 (Figure S4C).

DATA SOFTWARE AND AVAILABILITY

The accession number for the ChIP and RNA sequencing data from T47D reported in this 

paper is GEO: GSE116170. TCGA data for fusion gene discovery and for gene expression 

analysis can be downloaded from https://portal.gdc.cancer.gov/ and https://

portal.gdc.cancer.gov/legacy-archive. RNA-seq of human primary breast tumors from two 

neoadjuvant aromatase inhibitor clinical trials can accessed through dbGaP phs000472.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ESR1 fusions drive ligand-independent growth and endocrine therapy 

resistance

• ESR1 fusions reprogram the ER cistrome to drive EMT and metastasis

• CDK4/6 inhibition suppresses ESR1 fusion-induced growth
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Figure 1. Identification and Verification of ESR1 Fusions
(A) Circos plot depicting ESR1 fusion events from Table S1. In-frame ESR1 fusions are 

depicted with a red line, and out-of-frame ESR1 fusions depicted with a blue line. Asterisks 

denote PCR-validated transcripts (Figure S1).

(B)Of eight ESR1 fusions identified in (A) that were PCR validated, only three ESR1 
fusions produced stable, in-frame proteins (indicated in red): ESR1-e6>YAP1, ESR1-

e6>PCDH11X, and ESR1-e6>NOP2. Illustration depicting in-frame ESR1 fusions with 

ESR1 codon structure shown at the bottom. Non-coding exons (e) 1 and 2 are shown as 

white boxes, and gray boxes depict exons encoding domains shown above. Vertical line 

indicates shared break points after exon 6 of ESR1. All depicted fusions retain exons 

encoding amino acids (aa) 1–365 of ER corresponding to the activation function 1 (AF1) 

domain, DNA-binding domain (DBD), the hinge region that includes the nuclear localization 

domain, and part of the activation function 2 (AF2)/ligand-binding domain (LBD).

(C)RNA-seq determined rank-ordered expression of YAP1, PCDH11X, and NOP2 from 728 

TCGA breast tumor samples, shown as colored circles according to subtype. Triangles 

indicate ranked expression from indicated ESR1 fusion containing sample among the TCGA 

breast samples.

See also Figure S1.
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Figure 2. In-Frame ESR1 Fusions from Endocrine-Refractory Disease Confer Estrogen-
Independent and Fulvestrant-Resistant Growth of ER+ Breast Cancer Cells
(A) RNA-seq mapped read depth was calculated across YAP1, PCDH11X, and NOP2 genes 

in corresponding fusion containing tumors. Red line indicates fusion breakpoints.

(B) Immunoblotting with an N-terminal ER antibody in hormone-deprived stable T47D and 

WHIM18 PDX. Asterisks indicate ER fusion.

(C) Cell proliferation studies of hormone-deprived stable T47D cells (−E2), after fulvestrant 

treatment (−E2, +Fulvestrant), after E2 stimulation (+E2), or after E2 stimulation with 

fulvestrant treatment (+E2, +Fulvestrant). Bar graphs show average ± SEM from three 

independent experiments. ****p < 0.0001 and ####p < 0.0001 as described in STAR 

Methods.

(D) Box and whisker plots show tumor volumes of T47D xenograft tumors grown with 

(+E2) or without E2 supplementation (−E2). Boxes depict interquartile range, center line 

represents median, and whiskers extend to minimum and maximum values for each group (n 

= 6). p values show significance comparing YFP −E2 to all other groups.

See also Figure S2.
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Figure 3. Active ESR1 Fusions Promote Estrogen-Independent Expression of Target Genes
(A) Venn diagram depicting overlap of binding sites from hormone-deprived stable T47D 

cells expressing HA-tagged ESR1 constructs identified by HA-ChIP-seq.

(B) HA-ChIP followed by qPCR for ER-binding regions of ER-responsive genes and 

negative ER-binding region. Bar graphs show average values from three experiments ± 

SEM. Asterisks denote significant differences as described in STAR Methods.

(C) Heatmap showing differentially expressed genes near 445 sites bound by ESR1-

e6>YAP1, ESR1-e6>PCDH11X, and ESR1-WT identified in (A). Known ER-responsive 

genes are indicated (CTSD, GREB1, PGR, TFF1, and PDZK1). Scale bar indicates row Z 
score.

(D) Bar graphs depicting relative fold changes of estrogen-responsive genes whose ER-

binding regions were examined in (B) from hormone-deprived stable T47D cells, 

normalized to YFP −E2 (dark blue bar), after E2 addition (+E2, red bar), or in combination 

with fulvestrant (light blue and pink bars). −E2 and +E2 for ESR1 fusion-expressing cells 
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have been omitted for clarity; see Figure S3F for complete data. Data are shown as averages 

from two independent experiments ± SEM.

See also Figure S3.
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Figure 4. Active ESR1 Fusions Promote Metastasis by Upregulating an EMT-like Transcriptional 
Program
(A) Heatmap depicting genes upregulated by ESR1-e6>YAP1 and ESR1-e6>PCDH11X 

versus YFP and ESR1-e6>NOP2 (from bottom of Figure 3C). Scale bar indicates row Z 
score.

(B) GSEA using genes identified in (A). (C) Bar graphs depicting expression of SNAI1 and 

VCAN, by mRNA-qPCR in hormone-deprived stable T47D cells (−E2). Values are 

normalized to YFP −E2 (dark blue bar), treated with E2 (+E2, red bar), and in combination 
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with fulvestrant (light blue and pink bars). −E2 and +E2 conditions for all cell lines are 

shown in Figure S4B. Data are averages of two independent experiments ± SEM.

(D) Immunoblotting for endogenous ER (ER) and ER fusion (asterisks) using an N-terminal 

ERα antibody, Snail, and E-cadherin in hormone-deprived stable T47D and MCF7 cells. 

Vertical line in E-cadherin blot indicates different exposures taken for T47D and MCF7.

(E) Scratch wound healing assay images of hormone-deprived stable T47D at 0 and 72 hr 

post-wounding. Dotted black line indicates leading edge of cells. Scale bar, 300 μm.

(F) Immunoblotting of hormone-deprived T47D cells pre-treated with vehicle (Fulv−) or 

fulvestrant (Fulv+) before transfecting negative control siRNA (siRNA−) or siRNA against 

the N terminus of ESR1 (siESR1+).

(G) Immunoblotting for Snail in T47D xenograft and WHIM18 PDX tumors. (H) ER IHC 

images performed on lungs of mice bearing T47D xenografted tumors from Figure 2D. Box 

and whiskers plots show IHC quantification of ER+ cells, with boxes depicting interquartile 

range, center line representing median value, and whiskers extending to minimum and 

maximum values for each group (n=5). p values indicate significance comparing YFP −E2 

versus fusion-bearing groups or versus YFP +E2. Scale bar, 100 μm.

See also Figure S4 and Table S3.
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Figure 5. Growth Driven by ESR1 Fusions Can Be Suppressed with CDK4/6 Inhibitor Treatment
(A) Growth of hormone-deprived stable T47D cells in response to increasing concentrations 

of a CDK4/6 inhibitor, palbociclib. YFP +E2 used as control. P value describes significance 

between YFP +E2, ESR1-e6>YAP1, and ESR1-e6>PCDH11x slopes compared with YFP 

−E2. Data shown are averages of three independent experiments ± SEM.

(B) Tumor volumes of WHIM18 PDX in the absence of exogenous E2 supplementation. 

Arrow indicates treatment start (Tx) with vehicle or palbociclib containing chow. P value 

describes significance of tumor growth rates (slopes) derived from tumor volumes at day of 

randomization to experiment end. Data are shown as averages from 8–11 mice per treatment 

group ± SEM.

(C) Representative IHC images for ER, pRb, and Ki-67 from vehicle and palbociclib-treated 

WHIM18 tumors. Quantification of IHC staining below with significance comparing 

treatment groups. Data are averages counts from five tumor sections from each treatment 

group, with error bars representing SD.

(D) ER IHC images of lungs from WHIM18-bearing mice. Micrometastatic ER+ lesions 

were quantified by measuring area of ER+ cells. Data are shown as average ER+ areas from 
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five lung sections per treatment group. P value determined as in (C). Scale bar, 100 μm in 

(C) and (D).

See also Figure S5.

Lei et al. Page 30

Cell Rep. Author manuscript; available in PMC 2018 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lei et al. Page 31

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-HA (clone 
C29F4)

Cell Signaling Technology Cat#3724; RRID:AB_1549585

Mouse monoclonal anti-HA (clone 
6E2)

Cell Signaling Technology Cat#2367; RRID:AB_331789

Mouse monoclonal anti-HA (clone 
F-7)

Santa Cruz Biotechnology Cat#sc-7392; RRID:AB_627809

Rabbit monoclonal anti-ERα (clone 
60C), N-terminal

Millipore Cat#04-820; RRID:AB_1587018

Rabbit polyclonal anti-ERα, C-
terminal

Santa Cruz Biotechnology Cat#sc-543; RRID:AB_631471

Mouse monoclonal anti-ERα (clone 
6F11)

Leica Microsystems Cat#NCL-L-ER-6F11; RRID:AB_563706

Mouse monoclonal anti-β-Actin Sigma-Aldrich Cat#A5316; RRID:AB_476743

Mouse monoclonal anti-E-Cadherin 
(clone 4A2)

Cell Signaling Technology Cat#14472; RRID:AB_2728770

Rabbit monoclonal anti-Vimentin 
(clone D21H3)

Cell Signaling Technology Cat#5741; RRID:AB_10695459

Rabbit monoclonal anti-Snail (clone 
C15D3)

Cell Signaling Technology Cat#3879; RRID:AB_2255011

Rabbit monoclonal anti-Phospho-Rb 
(Ser780) (clone D59B7)

Cell Signaling Technology Cat#8180; RRID:AB_10950972

Mouse monoclonal anti-Ki-67 
(MIB-1) (clone Ki-67)

Beckman Coulter Cat#IM1316; RRID:AB_131615

Mouse monoclonal anti-PR (clone 
PgR 1294)

Dako Cat#M3568; RRID:AB_2252608

Biological Samples

WHIM18 patient-derived xenograft 
(PDX)

Li et al., 2013 N/A

Chemicals, Peptides, and Recombinant Proteins

β-Estradiol (E2) Sigma-Aldrich Cat#E4389

Fulvestrant Selleckchem Cat#S1191

Pablociclib Pfzier and Selleckchem N/A and Cat#1116

Critical Commercial Assays

Dual-Luciferase Reporter Assay 
System

Promega Cat#1910

Deposited Data

Human reference genome NCBI 
build 37, GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human

WGS and RNA-seq of WHIM18 
PDX

Li et al., 2013 dbGaP: phs000611

RNA-seq of human primary breast 
tumors from TCGA

Ciriello et al., 2015 https://portal.gdc.cancer.gov/ and https://portal.gdc.cancer.gov/legacy-archive

RNA-seq of human primary breast 
tumors from two neoadjuvant 

Olson et al., 2009 and Ellis et 
al., 2011

dbGaP: phs000472
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aromatase inhibitor clinical trials 
(Z1031/POL)

ChIP-seq and RNA-seq from T47D 
cell lines

This paper GEO: GSE116170

Experimental Models: Cell Lines

Human: HEK293T ATCC CRL-3216

Human: T47D ATCC HTB-133

Human: MCF7 ATCC HTB-22

Experimental Models: Organisms/Strains

NOD-SCID-IL2Rγc
−/− mice Jackson Laboratories Cat#005557

Fox Chase SCID Beige mice Charles River N/A

Oligonucleotides

See Table S4 for sequences of 
mRNA-qPCR primers, ChIP-qPCR 
primers, and siRNA

N/A N/A

Recombinant DNA

pFLRu-FH Li et al., 2013 N/A

pCDH-CMV-MCS-EF1α-RFP+Puro System Biosciences Cat#CD516B-2

pCDH-CMV-MCS-EF1α-Puro System Biosciences Cat#CD510B-1

3X ERE TATA luc Hall and McDonnell, 1999 Addgene Plasmid Cat#11354

pGL4.70[hRluc] Promega Cat#E6881; GenBank AY738226

Software and Algorithms

BWA Li and Durbin, 2010 N/A

BEDTools Quinlan and Hall, 2010 N/A

GREAT McLean et al., 2010 N/A

MEME-ChIP Bailey and Elkan, 1994 N/A

RSEM 1.2.31 Li and Dewey, 2011 N/A

Bowtie 2 Langmead and Salzberg, 2012 N/A

EBseq Leng et al., 2013 N/A

GraphPad Prism 7 GraphPad Software N/A

ImageJ NIH https://imagej.nih.gov/ij/

Cell Rep. Author manuscript; available in PMC 2018 October 04.

https://imagej.nih.gov/ij/

	SUMMARY
	In Brief
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Identification and Verification of In-Frame ESR1 Gene Fusions
	In-Frame ESR1 Fusions from Endocrine-Refractory Disease Confer Estrogen-Independent and Fulvestrant-Resistant Growth of ER+ Breast Cancer Cells
	Active ESR1 Fusions Promote Estrogen-Independent Gene Expression
	Active ESR1 Fusions Promote Metastasis by Upregulating an EMT-like Transcriptional Program
	Growth Driven by ESR1 Fusions Can Be Suppressed with CDK4/6 Inhibitor Treatment

	DISCUSSION
	STAR★METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Cell Lines
	In Vivo Animal Studies
	Clinical Samples

	METHOD DETAILS
	ESR1 Fusion Discovery Using ChimeraScan and INTEGRATE
	Molecular Cloning to Generate ESR1 Fusion Constructs
	Lentiviral Production and Stable Cell Line Generation
	In Vitro Growth Assays
	siRNA Knockdown
	Immunoprecipitation and Immunoblot Analysis
	Dual Luciferase ERE Reporter Assay
	Biotinylated 3X ERE Pulldown
	ChIP-seq
	Chromatin preparation
	Chromatin immunoprecipitation
	Next generation sequencing
	RNA-seq
	Quantitative PCR
	Immunohistochemistry
	Scratch Wound Assay
	Immunofluorescence Microscopy


	QUANTIFICATION AND STATISTICAL ANALYSIS
	In Vivo Analysis
	ChIP-seq Analysis
	RNA-seq Analysis

	DATA SOFTWARE AND AVAILABILITY
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table T1

